九年级数学下册 期末测试 (新版)新人教版
- 格式:doc
- 大小:159.50 KB
- 文档页数:7
新人教版九年级数学下册期末测试卷及答案【全面】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.已知x+1x=6,则x2+21x=()A.38 B.36 C.34 D.32 3.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 6.一个等腰三角形的两条边长分别是方程27100x x-+=的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:x3﹣16x=_____________.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、C6、A7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x (x +4)(x –4).3、24、8.5、40°6、①③④.三、解答题(本大题共6小题,共72分)1、2x =2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)相切,略;(2).4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)120件;(2)150元.。
新人教版九年级数学下册期末考试【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70° 10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.因式分解:a 3-ab 2=____________.3.函数2y x =-x 的取值范围是__________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、C7、A8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、a (a+b )(a ﹣b )3、2x ≥4、125、5.6、49三、解答题(本大题共6小题,共72分)1、1x =2.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--. 4、(1)2(2)略5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)4元或6元;(2)九折.。
2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。
7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。
8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。
9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。
10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。
三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。
12. 已知函数y = 2x 3,求当x = 1时,函数的值。
13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。
四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。
五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。
期末测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分.下列各小题给出的四个选项中,只有一项符合题目要求)1.由两个正方体组成的几何体如图所示,则该几何体的俯视图为()2.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的.若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F3.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan 50°B.10sin 40°C.10sin 50°D.10cos50°的图象相交于A,C两点,过点A作x轴的垂线交x轴于点4.如图,正比例函数y=kx与反比例函数y=4xB,连接BC,则△ABC的面积等于()A.8B.6C.4D.25.(2020·四川凉山州中考)如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.12B.√22C.2D.2√26.如图,在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于点E ,PD ⊥AC 于点D.设BP=x ,则PD+PE 等于( )A.x 5+3B.4-x 5C.72D.12x 5−12x 2257.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD 为12 m,塔影长DE 为18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为( )A.24 mB.22 mC.20 mD .18 m8.如图,在Rt △ABC 中,∠ACB=90°,BC=4,AC=3,CD ⊥AB 于点D.设∠ACD=α,则cos α的值为( )A.45B.34C.43D.359.如图,在x 轴的上方,∠AOB 为直角,且绕原点O 按顺时针方向旋转.若∠AOB 的两边分别与函数y=-1x ,y=2x的图象交于B ,A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.由7个小立方块所搭成的几何体的俯视图如图所示,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()11.如图,A,B是反比例函数y=2x的图象上的两点.AC,BD都垂直于x轴,垂足分别为C,D,AB的延长线交x轴于点E.若C,D的坐标分别为(1,0),(4,0),则△BDE的面积与△ACE的面积的比值是()A.12B.14C.18D.11612.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O.设△OCD的面积为m,△OEB的面积为√5,则下列结论正确的是()A.m=5B.m=4√5C.m=3√5D.m=10二、填空题(每小题3分,共18分)13.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=kV(k为常数,k≠0),其图象如图所示,则k的值为.14.如图,在Rt △ABC 中,∠ACB=90°,∠A<∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处.若CD 恰好与MB 垂直,则tan A 的值为 .15.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为 m .16.已知由几块小正方块搭成的几何体的主视图与左视图如图所示,则这个几何体最多可能有 个小正方块.17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B',折痕为EF.已知AB=AC=3,BC=4,若以点B',F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是 .18.已知函数y=x 的图象与函数y=4x的图象在第一象限内交于点B ,点C 是函数y=4x在第一象限的图象上的一个动点(不与点B 重合),则当△OBC 的面积为3时,点C 的横坐标是 .三、解答题(共66分)19.(4分)计算:sin 30°+cos 245°-12tan 260°+1cos30°.20.(6分)双曲线y=kx (k 为常数,且k ≠0)与直线y=-2x+b 交于A (-12m ,m -2),B (1,n )两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D.若点E为CD的中点,求△BOE的面积.21.(8分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.22.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1 m的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40 m,又测得该建筑物顶端A的仰角为60°,求该建筑物的高度AB.(结果保留根号)23.(8分)如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=3.5(1)求DE,CD的长;(2)求tan∠DBC的值.24.(10分)(2020·江苏南京中考)如图,在港口A处的正东方向有两个相距6 km的观测点B,C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B,C处分别测得∠ABD=45°,∠C=37°.求轮船航行的距离AD.(参考数据:sin 26°≈0.44,cos 26°≈0.90,tan 26°≈0.49,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(10分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M,M',N',N.小明在探究线段MM'与N'N的数量关系时,从点M',N'向对应边作垂线段M'E,N'F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时(如图①),直线l分别交AD,A'D',B'C',BC于M,M',N',N,小明发现MM'与N'N相等,请你帮他说明理由.(2)当直线l与方形环的邻边相交时(如图②),l分别交AD,A'D',D'C',DC于M,M',N',N,l与DC的夹角为α,你认为MM'与N'N还相等吗?若相等,说明理由;若不相等,求出MM'的值.(用含α的三角函数表示)N'N26.(12分)如图,双曲线y=k(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).x(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.期末测评一、选择题1.D2.B3.B4.C5.A6.A 由题意知DP ∥AB ,EP ∥AC.∴△BEP ∽△BAC. ∴PECA =BPBC ,即PE=CA ·BP BC =4x5.∵△CDP ∽△CAB ,∴DPAB =CPBC , ∴DP=3(5-x )5.∴PD+PE=x5+3. 7.A8.A 由条件知,∠B=∠ACD=α,斜边AB=5,cos α=cos B=BC AB=45.9.D 过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E (图略),则S △AOF =1,S △OBE =0.5.易证△AOF ∽△OBE ,则BOAO =√0.51=√22,即tan ∠OAB=√22是个定值,所以∠OAB 大小保持不变. 10.A11.D 解出A ,B 两点的坐标分别为A (1,2),B (4,0.5),∴AC=2,BD=0.5.∵△BDE ∽△ACE ,∴它们面积的比值为116.12.B 二、填空题13.9 由题图知ρ=1.5,V=6,则k=ρ·V=9.14.√33 由CM 是Rt △ABC 斜边的中线,可得CM=AM ,则∠A=∠ACM.由折叠可知∠ACM=∠DCM.又∠A+∠B=∠BCD+∠B=90°,则∠A=∠BCD.所以∠A=∠ACM=∠DCM=∠BCD=30°,因此tan A=tan 30°=√33. 15.15 16.9 17.127或218.1或4 连接OC ,BC ,过点C 作CD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E.由于函数y=x 的图象与函数y=4x 的图象在第一象限内交于点B ,故易知B (2,2).设点C 的坐标为(m ,4m ),又点B ,C 都在y=4x 的图象上,所以S △ODC =S △BOE .如图①所示,当点C 在点B 左方的图象上时,S △OBC =S △ODC +S 梯形BCDE -S △BOE =S 梯形BCDE =12(2+4m)(2-m )=3,解得m 1=1,m 2=-4(不合题意,舍去),即点C 的横坐标是1.如图②所示,当点C 在点B 右方的图象上时,同理,有S △OBC = S 梯形BCDE =12(2+4m )(m-2)=3,解得m 1=4,m 2=-1(不合题意,舍去),即点C 的横坐标是4.综上可知,点C 的横坐标为1或4.三、解答题19.解 原式=12+(√22)2−12×(√3)2+√32=12+12−32+2√33=-12+2√33. 20.解 如图.21.(1)证明 ∵∠AED=∠B ,∠DAE=∠CAB ,∴△ADE ∽△ACB ,∴∠ADE=∠C.又AD AC=DFCG,∴△ADF ∽△ACG. (2)解 ∵△ADF ∽△ACG ,∴AD AC =AF AG =12,∴AFFG =1.22.解 由题意知∠PAO=60°,∠B=30°.在Rt △POA 中,tan ∠PAO=PO OA ,tan 60°=30OA ,OA=30÷√3=10√3(m).在Rt △POB 中,tan B=POOB ,tan 30°=30OB ,OB=30÷√33=30√3(m),所以AB=OB-OA=30√3-10√3=20√3(m),即商店与海源阁宾馆之间的距离为20√3 m .23.解 (1)在Rt △ADE 中,由AE=6,cos A=35,得AD=10.由勾股定理得DE=8.利用三角形全等或角平分线的性质,得DC=DE=8.(2)方法1:由(1)AD=10,DC=8,得AC=18. 利用△ADE ∽△ABC ,得DE BC=AE AC ,即8BC=618,BC=24,得tan ∠DBC=13.方法2:由(1)得AC=18,又cos A=ACAB=35,得AB=30.由勾股定理,得BC=24,得tan ∠DBC=13.24.解 如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C=37°,∴CH=DHtan37°.在Rt △DBH 中,∠DBH=45°,∴BH=DHtan45°. ∵BC=CH-BH , ∴DHtan37°−DHtan45°=6,解得DH=18.在Rt △DAH 中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD 约为20 km .25.解 (1)在方形环中,∵M'E ⊥AD ,N'F ⊥BC ,AD ∥BC ,∴M'E=N'F ,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF. ∴△MM'E ≌△NN'F ,∴MM'=N'N.(2)∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,∴△NFN'∽△M'EM.∴MM 'N 'N=M 'ENF. ∵M'E=N'F ,∴MM 'N 'N =N 'FNF=tan α. ①当α=45°时,tan α=1,则MM'=NN'. ②当α≠45°时,MM'≠NN',且MM 'N 'N =tan α.26.解 (1)将点A (2,3)代入解析式y=k x ,解得k=6.(2)将D (3,m )代入反比例解析式y=6x ,得m=63=2,所以点D 的坐标为(3,2).设直线AD 的解析式为y=k 1x+b (k 1≠0),将A (2,3)与D (3,2)代入,得{2k 1+b =3,3k 1+b =2,解得k 1=-1,b=5. 所以直线AD 的解析式为y=-x+5.(3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M.因为AB ∥x 轴,所以BM ⊥y 轴.所以MB ∥CN ,△OCN ∽△OBM.因为C 为OB 的中点,即OC OB =12,S △OCNS △OBM =(12)2.因为A ,C 都在双曲线y=6x 上,所以S △OCN =S △AOM =3.由33+S △AOB =14,得S △AOB =9,故△AOB 的面积为9.。
人教版初三下册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 如果一个等边三角形的周长是15厘米,那么它的每条边长是()。
A. 3厘米B. 5厘米C. 10厘米D. 15厘米2. 下列哪一个数是有理数?()A. √3B. √9C. √1D. π3. 下列函数中,哪一个函数是增函数?()A. y = x^2B. y = x^3C. y = 2x + 1D. y = 1/x4. 已知一组数据的平均数是10,方差是4,那么这组数据中的数值()。
A. 都大于10B. 都小于10C. 大于10和小于10的都有D. 无法确定5. 下列哪一个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 矩形D. 正方形二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 0的任何次幂都等于0。
()3. 两个负数相乘,结果是正数。
()4. 一元二次方程的解可以是两个相同的数。
()5. 任何一个数都有相反数。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是36,那么这个数是______。
2. 任何数的零次幂都等于______。
3. 两个数的乘积为负数,那么这两个数______。
4. 一元二次方程ax^2 + bx + c = 0的判别式是______。
5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的面积是______平方厘米。
四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。
2. 请简要说明一元二次方程的求解方法。
3. 请简要说明概率的意义和计算方法。
4. 请简要说明相似三角形的性质。
5. 请简要说明圆的周长和面积的计算公式。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。
2. 解方程:2x^2 5x 3 = 0。
3. 已知一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,求这个长方体的体积。
2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。
A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。
A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。
A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。
A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。
A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。
()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。
()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。
()4. 两个平行线上的任意一点,到这两条平行线的距离相等。
()5. 一个数的立方根和它的平方根是同一个数。
()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。
()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。
()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。
()4. 下列函数中,是一次函数的是y = 3x + 2。
()5. 一个数的立方根和它的平方根是同一个数。
()四、简答题(每题2分,共10分)1. 简述一次函数的定义。
2. 简述相似三角形的性质。
3. 简述等差数列的定义。
4. 简述平行线的性质。
5. 简述立方根和平方根的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
2022—2023年人教版九年级数学下册期末考试题(完整版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A 5B .2C .52D .510.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm ,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2242a a ++=___________.3.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.已知关于x 的一元二次方程x 2+x +m ﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.3.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.某口罩生产厂生产的口罩1月份平均日产量为20000,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、C8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、22(1)a +3、﹣34、10.5、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x =-2、(1)x 1x 2(2)m <543、(1)略;(2)37°4、羊圈的边长AB ,BC 分别是20米、20米.5、(1)5,20,80;(2)图见解析;(3)35.6、(1)10%;(2)26620个。
新人教版九年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣53.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、A6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、x 1≥-且x 0≠4、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)=x^24x+3,则f(1)的值为()A.0B.1C.2D.32.在直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(-2,3)B.(-2,-3)C.(2,3)D.(3,-2)3.下列哪个数是素数?()A.27B.29C.35D.394.若一组数据的方差为4,则这组数据的标准差是()A.2B.4C.8D.165.在三角形ABC中,若∠A=60°,∠B=70°,则∠C的度数是()A.50°B.60°C.70°D.80°二、判断题(每题1分,共5分)6.任何两个奇数之和都是偶数。
()7.在一次函数y=kx+b中,若k>0,则函数图像是上升的。
()8.平行四边形的对边相等。
()9.圆的周长和直径成正比。
()10.若一个数的平方是负数,则这个数一定是负数。
()三、填空题(每题1分,共5分)11.若a+b=5且ab=3,则a=______,b=______。
12.函数y=2x+1的图像是一条_________。
13.若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是_________。
14.在一个比例尺为1:1000的地图上,两城市之间的距离是5厘米,实际距离是_________公里。
15.若一组数据为2,4,6,8,10,则这组数据的平均数是_________。
四、简答题(每题2分,共10分)16.简述平行线的性质。
17.什么是算术平方根?如何计算一个数的算术平方根?18.简述概率的基本公式。
19.什么是相似三角形?相似三角形有哪些性质?20.如何求解一元二次方程?五、应用题(每题2分,共10分)21.某商店进行打折促销,原价为300元的商品打8折,现价是多少?22.一个长方形的长是10厘米,宽是5厘米,求这个长方形的对角线长度。
23.若一个等差数列的首项是2,公差是3,求第10项的值。
新人教版九年级数学下册期末测试卷附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .5 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+- 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGH S S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:33a b ab -=___________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠=︒,求FGC∠的度数.∠=︒,28ACBABC5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、B6、A7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、ab(a+b)(a﹣b).3、24、425、1 36、24 5三、解答题(本大题共6小题,共72分)1、4x=2、1 23、(1)相切,略;(2).4、(1)略;(2)78°.5、(1)50;(2)见解析;(3)16.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
期末测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图所示的三个矩形中,其中相似形是( ) A .甲与乙 B .乙与丙 C .甲与丙 D .以上都不对2.若函数y =m +2x的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( )A .m <-2B .m <0C .m >-2D .m >03.点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是( ) A .(32,12) B .(-32,-12) C .(-32,12) D .(-12,-32) 4.(长沙中考)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米 B .30sin α米 C . 30tan α米 D . 30cos α米5.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是( )6.如图,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,BE 的延长线交AD 于点G ,且BG∥DF,则下列结论错误的是( ) A .AG AD =AE AFB .AG AD =EG DFC .AE AC =AG ADD .AD BC =DF BE7.如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A(-1,-3)、B(1,3)两点,若k 1x >k 2x ,则x 的取值范围是( )A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >18.如图,△ABC 是一块锐角三角形材料,高线AH 长8 cm ,底边BC 长10 cm ,要把它加工成一个矩形零件,使矩形DEFG 的一边EF 在BC 上,其余两个顶点D 、G 分别在AB 、AC 上,则四边形DEFG 最大面积为( ) A .40 cm 2 B .20 cm 2 C .25 cm 2 D .10 cm 29.(福田区二模)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 与反比例函数y =c x 的大致图象是( )10.(常德中考)若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB 与扇形A 1O 1B 1是相似扇形,且半径OA∶O 1A 1=k(k 为不等于0的常数),那么下面四个结论:①∠AOB =∠A 1O 1B 1;②△AOB∽△A 1O 1B 1;③AB A 1B 1=k ;④扇形AOB 与扇形A 1O 1B 1的面积之比为k 2.成立的个数为() A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共24分)11.小明在操场上练习双杠,他发现双杠两横杠在地面上影子的关系是____________.12.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则AB =____________,sin A =____________.13.在平面直角坐标系中,△ABC 顶点A 的坐标为(3,2),若以原点O 为位似中心,画△ABC 的位似图形△A′B′C′,使△ABC 与△A′B′C′的相似比等于12,则点A′的坐标为 .14.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =____________.15.(连云港中考)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为____________.16.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为____________.17.如图,双曲线y =kx (k >0)与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线.已知点P 坐标为(1,3),则图中阴影部分的面积为____________.18.直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (x >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为____________.三、解答题(共66分) 19.(8分)计算:(-1)2 016-(12)-3+(cos 68°)0+|33-8sin 60°|.20.(8分)如图,在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于E.求证:△ABD∽△CBE.21.(10分)已知图中的曲线是反比例函数y =m -5x(m 为常数)图象的一支.(1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (2)若该函数的图象与正比例函数y =2x 的图象在第一象限内的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.22.(12分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa )是气体体积V(m 3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1 m 3时,气压是多少?(3)当气球内的气压大于140 kPa 时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m 3)23.(贺州中考)(14分)如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,便新坡面DC 的倾斜角∠BDC=30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数)(参考数据:2=1.414,3=1.732).24.(14分)已知:如图,在△ABC 中,AB =AC ,AE 是角平分线,BM 平分∠ABC 交AE 于点M ,经过B ,M 两点的⊙O 交BC 于点G ,交AB 于点F ,FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切;(2)当BC =4,cos C =13时,求⊙O 的半径.参考答案1.B 2.A 3.B 4.C 5.C 6.C 7.C 8.B 9.C 10.D 11.平行 12.5 45 13.(6,4)或(-6,-4) 14.5 15.8π 16.13 17.4 18.(8,32) 提示:AB =OA sin ∠AOB =10×35=6,OB =OA 2-AB 2=102-62=8,AO 的中点C 的坐标为(4,3),把C 点代入y =k x (x >0)得y =12x ,当x =8,y =32,所以点D 的坐标为(8,32). 19.原式=1-8+1+|33-8×32| =-6+ 3.20.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC.∵CE ⊥AB ,∴∠ADB =∠CEB=90°. ∵∠B =∠B,∴△ABD ∽△CBE.21.(1)这个反比例函数图象的另一支在第三象限.因为这个反比例函数的图象分布在第一、第三象限,所以m -5>0,解得m >5.(2)如图,由第一象限内的点A 在正比例函数y =2x 的图象上,设点A 的坐标为(x 0,2x 0)(x 0>0),则点B 的坐标为(x 0,0).∵S △OAB =4,∴12x 0·2x 0=4,解得x 0=2(负值舍去),∴点A 的坐标为(2,4).又∵点A 在反比例函数y =m -5x 的图象上,∴4=m -52,即m -5=8. ∴反比例函数的解析式为y =8x.22.(1)设p =k V ,由题意知120=k 0.8,所以k =96,故p =96v .(2)当V =1 m 3时,p =961=96(kPa ).(3)当p =140 kPa时,V =96140≈0.69(m 3).所以为了安全起见,气体的体积应不少于0.69 m 3. 23.由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10.在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=10 3.∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米). ∵2.7米<3米,∴该建筑物需要拆除.24.(1)证明:连接OM ,则OM =OB.∴∠OBM=∠OMB. ∵BM 平分∠ABC,∴∠OBM =∠GBM.∴∠OMB=∠GBM. ∴OM ∥BC.∴∠AMO =∠AEB.在△ABC 中,AB =AC ,AE 是角平分线,∴AE ⊥BC.∴∠AEB =90°.∴∠AMO =90°.∴OM ⊥AE.∴AE 与⊙O 相切. (2)在△ABC 中,AB =AC ,AE 是角平分线,∴BE =12BC ,∠ABC =∠C.∵BC =4,cos C =13,∴BE =2,cos ∠ABC =13.在△ABE 中,∠AEB =90°,∴AB =BEcos ∠ABC=6.设⊙O 的半径为r ,则AO =6-r , ∵OM ∥BC ,∴△AOM ∽△ABE.∴OM BE =AOAB .∴r 2=6-r 6.解得r =32.∴⊙O 的半径为32.欢迎您的下载,资料仅供参考!。