光学3
- 格式:ppt
- 大小:619.00 KB
- 文档页数:23
13.1 证明反射定律符合费马原理。
证明:证明:设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,它们的折射率为它们的折射率为n 1和n 2。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,'OO 是它们的交线,则实际光线在界面上的反射点C 就可由费马原理来确定,如下图所示。
(1)反证法:如果有一点'C 位于线外,则对应于'C ,必可在'OO 线上找到它的垂足''C .由于''AC 'AC >,''BC 'BC >,故光线B AC'总是大于光程B ''AC 而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。
面内得证。
(2)在图中建立坐XOY 坐标系,则指定点A,B 的坐标分别为(x1,y1)和(x2,y2),未知点C 的坐标为(x ,0)。
C 点是在'A 、'B 之间的,光程必小于C 点在''B A 以外的相应光程,以外的相应光程,即即21vx x <<,于是光程ACB 为 yx x n y x x n CB n AC n ACB n 2211221221111)()(+-++-=+=根据费马原理,它应取极小值,即0)(1=ACB n dx d0)sin (sin )()()()()()(21112222211212111=-=¢-¢=+---+--=i i n CB B C AC C A n y x x x x n y x x x x n ACB n dx d 所以当11'i i =,取的是极值,符合费马原理。
,取的是极值,符合费马原理。
3.2 根据费马原理可以导出在近轴条件下,从物点发出并会聚倒像点的所有光线的光程都相等。
1. 证:设两个均匀介质的分界面是平面,它们的折射率为n 1和n 2。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,O O ′是他们的交线,则实际 光线在界面上的反射点C 就可由费马原理来确定(如右图)。
(1) 反正法:如果有一点C ′位于线外,则对应于C ′,必可在O O ′线上找到它的垂足C ′′.由于C A ′>C A ′′,B C ′>B C ′′,故光谱B C A ′总是大于光程B C A ′′而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。
(2) 在图中建立坐oxy 标系,则指定点A,B 的坐标分别为(y x 11,)和(yx 22,),未知点C 的坐标为(0,x )。
C 点在B A ′′,之间是,光程必小于C 点在B A ′′以外的相应光程,即x xx 21<<,于是光程ACB 为:x x n y x x n CB n AC n ACB n 21121221111)()(+−++−=+=根据费马原理,它应取极小值,即:()()()()()(12222211212111−′=+−−−+−−=AC C A n y x x x x n y x x x x n ACB n dx dQ i i 11=′,∴0)(1=ACB n dx d取的是极值,符合费马原理。
故问题得证。
2.(1)证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点S ′。
由于球面AC 是由S 点发出的光波的一个波面,而球面DB 是会聚于S ′的球面波的一个波面,固而SB SC =, B S D S ′=′.又Q光程FD EF n CE CEFD ++=,而光程AB n AB =。
根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程却相等。
光学三原则
1.光的直线传播定律:在各向同性的均匀介质中,光是沿直线传播的.
2.光的独立传播定律;不同光源发出的光线从不同方向通过某点时,彼此不影响,各光线的传播不受其它光线影响.
3.光的反射定律:当一束光投射到某一介质光滑表面时,保存一部分光反射回原来的介质,这一光线称为反射光线,反射光线、入射光线和法线位由于同一平面内,入射线同法线组成的角称为入射角,反射光线同法线组成的角称为反射角,反射角等于入射角.
4.光的折射定律:当一束光投射到某一介质光滑表面时除了有一部分光发生反射外,还有一部分光通过介质分界面入射进第二传输介质中,这一部分光线称为折射光线,折射光线和入射光线分别位于法线的两侧,且与法线在同一平面.折射光线位于入射光线和法线所决定的平面内.折射光线同法线组成的角称为折射角,入射角的正弦值同折射角正弦值的比值为一恒定值.。