圆的基本类型训练
- 格式:doc
- 大小:43.00 KB
- 文档页数:2
圆的方程终极训练:10个常考热点问题类型1、标准方程知识梳理:1.若圆C的圆心落在直线y=2x上,且该圆与x轴相切,半径r=4,则圆C的方程是___________________2.类型2、一般方程知识梳理:1.2.3.已知圆的方程为2x²+2y²+2x+my+6=0,则m的范围是_____________.类型3、轨迹方程知识梳理:1.已知平面上有一动点P,点A(-2,0),点B(6,0),且满足PA⊥PB,求动点P所在的轨迹方程?2.已知圆的方程为x²+y²=4,点A(4,0),动点P在圆上,连结PA,点M是PA的中点,求点P的轨迹方程?类型4、点与圆的位置关系知识梳理:1.已知圆的方程为(x+1)²+(y-2)²=10,A、B、C、D四点的坐标分别为(0,3),(-2,-1),(3,4),(15 ,8),试判断这四点与圆的位置关系分别是什么?2.已知圆的方程为x²+(y+2)²=4,点A(1,m)在圆外,求m的范围?类型5、直线与圆的位置关系知识梳理:举一反三:在上一问题中,把“相切”改为“相交”,其他条件不变,求a的范围?类型6、圆与圆的位置关系、公切线知识梳理:类型7、求切线方程知识梳理:类型8、弦的有关计算:弦长,弦所在直线方程,公共弦知识梳理:求直线AB的方程及AB的弦长?类型9、直线、圆有关对称问题知识梳理:类型10、圆有关最值问题知识梳理:1.已知圆的方程为(x+1)²+y²=4,点A(-2,-1),点B(2,2),试在圆上找一动点P,分别求PA的最小值和PB的最大值各是多少?2.已知圆的方程为(x+1)²+(y-2)²=10,A的坐标分别为(0,3),求过点A的最大弦长和最小弦长分别是多少?。
2025年中考数学二轮复习专题训练:辅助圆类型一、定点定长辅助圆例1.我们在学习圆的知识时,常常碰到题目中明明没有圆,但解决问题时要用到,这就是所谓的“隐圆”问题:下面让我们一起尝试去解决:(1)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.(2)如图,在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同的速度在边DC、CB上移动,连接AE和DF交于点P,由于点E、F的移动,使得点P也随之运动.若AD=2,则线段CP的最小值是.(3)如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF =2,点G为EF的中点,点P为BC上一动点,则P A+PG的最小值为多少?变式1.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,求PM的最小值.变式2.如图,在等腰Rt△ABC中,AC=BC=4,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,求点M运动的路径长.变式3.如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF =2,点G为EF的中点,点P为BC上一动点,求P A+PG的最小值.变式4.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,求∠CBD.变式5.如图,在Rt△ABC中,∠ABC=90°,BC=2,点D在AC边上运动,将△BCD沿BD翻折,点C的对应点为C′,在点D从点C到点A的动过程中,q求点C′运动的路径长.类型二:定弦定角辅助圆例2.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,求线段CP的最小值.变式1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB+∠PBA=90°,则线段CP长的最小值为.变式2.如图,Rt△ABC中,AC=2,∠CAB=30°,点D和点B分别在线段AC的异侧,且∠ADC=30°,连BD,求BD的最大值.变式4.[问题提出]我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?[初步思考](1)如图1,AB是⊙O的弦,∠AOB=100°,点P1、P2分别是优弧AB和劣弧AB上的点,则∠AP1B=°,∠AP2B=°;(2)如图2,AB是⊙O的弦,圆心角∠AOB=m°(m<180°),点P是⊙O上不与A、B重合的一点,求弦AB所对的圆周角∠APB的度数为;(用m 的代数式表示)[问题解决](3)如图3,已知线段AB,点C在AB所在直线的上方,且∠ACB=135°,用尺规作图的方法作出满足条件的点C所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);[实际应用](4)如图4,在边长为6的等边三角形ABC中,点E、F分别是边AC、BC上的动点,连接AF、BE,交于点P,若始终保持AE=CF,当点E从点A运动到点C时,点P运动的路径长是.类型三、四点共圆辅助圆例3.(1)[学习心得]小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图①,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C,D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)[问题解决]如图②,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;△BCD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A,B,C,D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)[问题拓展]如图③,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2,求AD 的长.变式1.如图,在△ABC中,∠ABD=∠ACD=60°,∠ADB=90°﹣∠BDC.求证:△ABC是等腰三角形.变式2.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:(1)∠CFD=∠CAD;(2)EG<EF.变式3.已知,如图1,在平面直角坐标系中,△AOC为等边三角形,AD=AO,连接OD 交AC于N,连接CD.(1)求∠ODC的度数;(2)证明:∠CAD=2∠COD;(3)如图2,CA的延长线交y轴于P点,连接PD,延长OA交PD于K,连接KN,PK =7,求NK的值.变式4.如图,△AOB是等边三角形,以直线OA为x轴建立平面直角坐标系,若B(a,b)且a、b满足+(b﹣5)2=0,D为y轴上一动点,以AD为边作等边△ADC,CB交y轴于E.(1)如图1,求A点坐标;(2)如图2,D为y轴正半轴上一点,C在第二象限,CE的延长线交x轴于M,当D 点在y轴正半轴上运动时,M点坐标是否变化,若不变,求M点的坐标,若变化,说明理由;(3)如图3,D在y轴负半轴上,以DA为边向右构造等边△DAC,CB交y轴于E点,如果D点在y轴负半轴上运动时,仍保持△DAC为等边三角形,连BE,试求CE,OD,AE三者的数量关系,并证明你的结论.。
题型五 圆的相关证明与计算类型二 与切线有关的证明与计算(专题训练)1.如图,ABC V 内接于O e ,AB 是O e 的直径,E 为AB 上一点,BE BC =,延长CE 交AD 于点D ,AD AC =.(1)求证:AD 是O e 的切线;(2)若1tan 3ACE Ð=,3OE =,求BC 的长.【答案】(1)见解析;(2)8【分析】(1)根据BE BC =,可得BEC BCE Ð=Ð,根据对顶角相等可得AED BEC Ð=Ð,进而可得BCE AED Ð=Ð,根据AD AC =,可得ADC ACE Ð=Ð,结合90ACB Ð=°,根据角度的转化可得90AED D Ð+Ð=°,进而即可证明AD 是O e 的切线;(2)根据ADC ACE Ð=Ð,可得1tan tan 3EA D ACE DA ==Ð=,设AE x =,则3AC AD x ==,分别求得,,AC AB BC ,进而根据勾股定理列出方程解方程可得x ,进而根据6BC x =+即可求得.【详解】(1)Q BE BC =,\BEC BCE Ð=Ð,Q AED BEC Ð=Ð,\BCE AED Ð=Ð,Q AD AC =,\ADC ACE Ð=Ð,Q AB 是直径,\90ACB Ð=°,90D AED ACD BCE ACB \Ð+Ð=Ð+Ð=Ð=°,\AD 是O e 的切线;(2)AD AC =Q ,\ADC ACE Ð=Ð,1tan tan 3EA D ACE DA \==Ð=,设AE x =,则3AC AD x ==,3,336OB OA AE OE x BC BE OE OB x x ==+=+==+=++=+,226AB OA x ==+,在Rt ABC V 中,222AC BC AB +=,即()()()2223626x x x ++=+,解得122,0x x ==(舍去),68BC x \=+=.【点睛】本题考查了切线的判定,勾股定理解直角三角形,正切的定义,利用角度相等则正切值相等将已知条件转化是解题的关键.2.如图,ABC V 内接于O e ,AB AC =,AD 是O e 的直径,交BC 于点E ,过点D 作//DF BC ,交AB 的延长线于点F ,连接BD .(1)求证:DF 是O e 的切线;(2)已知12AC =,15AF =,求DF 的长.【答案】(1)见解析;(2)DF =【分析】(1)由题意根据圆周角定理得出90ABC CBD Ð+Ð=°,结合同弧或等弧所对的圆周角相等并利用经过半径外端并且垂直于这条半径的直线是圆的切线进行证明即可;(2)根据题意利用相似三角形的判定即两个角分别相等的两个三角形相似得出FBD FDA ~△△,继而运用相似比FB FD FD FA=即可求出DF 的长.【详解】解:(1)证明:∵AD 是O e 的直径∴90ABD Ð=°(直径所对的圆周角是直角)即90ABC CBD Ð+Ð=°∵AB AC=∴ABC C Ð=Ð(等边对等角)∵ AB AB=∴ADB C Ð=Ð(同弧或等弧所对的圆周角相等)∴ABC ADBÐ=Ð∵//BC DF ,∴CBD FDBÐ=Ð∴90ADB FDB Ð+Ð=°即90ADF Ð=°∴AD DF^又∵AD 是O e 的直径∴DF 是O e 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).(2)解:∵12AB AC ==,15AF =∴3BF AF AB =-=∵F F Ð=Ð,90FBD FDA Ð=Ð=o∴FBD FDA ~△△(两个角分别相等的两个三角形相似)∴FB FD FD FA=,∴231545FD FB FA =×=´=∴DF =【点睛】本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.3.如图,AB 为O e 的直径,C 为O e 上一点,D 为AB 上一点,BD BC =,过点A 作AE AB ^交CD 的延长线于点E ,CE 交O e 于点G ,连接AC ,AG ,在EA 的延长线上取点F ,使2FCA E Ð=Ð.(1)求证:CF 是O e 的切线;(2)若6AC =,AG =,求O e 的半径.【答案】(1)见解析;(2)5【分析】(1)根据题意判定ADG DCB V V ∽,然后结合相似三角形的性质求得2AGD E ÐÐ=,从而可得FCA AGD ÐÐ=,然后结合等腰三角形的性质求得90FCO а=,从而判定CF 是O e 的切线;(2)由切线长定理可得AF CF =,从而可得2FAC E ÐÐ=,得到AC AE =,然后利用勾股定理解直角三角形可求得圆的半径.【详解】(1)证明:B AGC ÐÐQ =,ADG CDB ÐÐ=,ADG DCB \V V ∽,BD BC GD GA\=,BD BC Q =,GD GA \=,ADG DAG \ÐÐ=,又AE AB ^Q ,90EAD \а=,90GAE DAG E ADG \Ð+ÐÐ+а==,GAE E \ÐÐ=,AG DG EG \==,2AGD E ÐÐ=,2FCA E ÐÐQ =,FCA AGD B \ÐÐÐ==,Q AB 是O e 的直径,90CAB B \Ð+а=,又OA OC Q =,ACO CAB \ÐÐ=,90FCA ACO \Ð+а=,90FCO \а=,即CF 是O e 的切线;(2)Q CF 是O e 的切线,AE AB ^,AF CF \=,2FAC FCA E \ÐÐÐ==,6AC AE \==,又AG DG EG Q ==,在Rt ADE △中,2AD ===,设O e 的半径为x ,则2AB x =,22BD BC x==﹣,在Rt ABC △中,2226222x x +(﹣)=(),解得:5x =,O \e 的半径为5.【点睛】本题考查了圆周角定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等,熟练掌握相关定理与性质是解决本题的关键.4.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .(1)求证:CE 为⊙O 的切线;(2)若DE =1,CD =3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O 的半径是4.5【分析】(1)如图1,连接OC ,先根据四边形ABCD 内接于⊙O ,得CDE OBC ÐÐ=,再根据等量代换和直角三角形的性质可得90OCE а=,由切线的判定可得结论;(2)如图2,过点O 作OG AE ^于G ,连接OC ,OD ,则90OGE а=,先根据三个角是直角的四边形是矩形得四边形OGEC 是矩形,设⊙O 的半径为x ,根据勾股定理列方程可得结论.【详解】(1)证明:如图1,连接OC ,∵OB OC =,∴OCB OBC ÐÐ=,∵四边形ABCD 内接于⊙O ,∴180CDA ABC Ð+Ð=°又180CDE CDA Ð+Ð=°∴CDE OBC ÐÐ=,∵CE AD ^,∴90E CDE ECD ÐÐа=+=,∵ECD BCF ÐÐ=,∴90OCB BCF Ðа+=,∴90OCE а=,∵OC 是⊙O 的半径,∴CE 为⊙O 的切线;(2)解:如图2,过点O 作OG AE ^于G ,连接OC ,OD ,则90OGE а=,∵90E OCE Ðа==,∴四边形OGEC 是矩形,∴OC EG OG EC =,=,设⊙O 的半径为x ,Rt △CDE 中,31CD DE =,=,∴EC ==∴OG =1GD xOD x =﹣,=,由勾股定理得222OD OG DG +:=,∴222(1)x x =+-,解得: 4.5x =,∴⊙O 的半径是4.5.【点睛】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键.5.如图,V ABC 内接于⊙O ,且AB =AC ,其外角平分线AD 与CO 的延长线交于点D .(1)求证:直线AD 是⊙O 的切线;(2)若AD =,BC =6,求图中阴影部分面积.【答案】(1)见解析;(2)6p -【分析】(1)连接OA ,证明OA ⊥AD 即可,利用角平分线的意义以及等腰三角形的性质得以证明;(2)求出圆的半径和阴影部分所对应的圆心角度数即可,利用相似三角形求出半径,再根据特殊锐角三角函数求出∠BOC .【详解】解:(1)如图,连接OA 并延长交BC 于E ,∵AB=AC ,△ABC 内接于⊙O ,∴AE 所在的直线是△ABC 的对称轴,也是⊙O 的对称轴,∴∠BAE=∠CAE ,又∵∠MAD=∠BAD ,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=12×180°=90°,即AD ⊥OA ,∴AD 是⊙O 的切线;(2)连接OB ,∵∠OAD=∠OEC=90°,∠AOD=∠EOC ,∴△AOD ∽△EOC ,∴AD OA EC OE =,由(1)可知AO 是ABC D 的对称轴,OE \垂直平分BC ,132CE BC \==,设半径为r ,在Rt EOC D 中,由勾股定理得,,\解得6r =(取正值),经检验6r =是原方程的解,即6OB OC OA ===,又6BC =Q ,OBC \D 是等边三角形,60BOC \Ð=°,OE =BOC BOC S S S D \=-阴影部分扇形2606163602p ´=-´´6p =-【点睛】本题考查了切线的判定和性质、角平分线的性质,圆周角定理,三角形外接圆与外心,扇形面积的计算,灵活运用切线的判定方法是解题的关键.6.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,过⊙O 外一点D 作//DG BC ,DG 交线段AC 于点G ,交AB 于点E ,交⊙O 于点F ,连接DB ,CF ,∠A =∠D .(1)求证:BD 与⊙O 相切;(2)若AE =OE ,CF 平分∠ACB ,BD =12,求DE 的长.【答案】(1)见解析;(2)【分析】(1)如图1,延长DB 至H ,证明90ABD Ð=°,即可根据切线的判定可得BD 与O e 相切;(2)如图2,连接OF ,先根据圆周角定理证明OF AB ^,再证明EFO EDB △∽△,列比例式可得4OF =,即O e 的半径为4,根据勾股定理可得DE 的长.【详解】(1)证明:如图1,延长DB 至H ,Q,DG BC//\Ð=Ð,CBH DQ,Ð=ÐA D\Ð=Ð,A CBHe的直径,Q是OAB\Ð=°,ACB90\Ð+Ð=°,A ABC90\Ð+Ð=°,90CBH ABC\Ð=°,90ABD∴AB⊥BD,e相切;\与OBD(2)解:如图2,连接OF,CFQ平分ACBÐ,\Ð=Ð,ACF BCF\=,AF BF∴∠AOF=∠BOF=90°,OF AB \^,BD AB ^Q ,//OF BD \,EFO EDB \△∽△,\OF OE BD BE=,AE OE =Q ,\13OE EB =,\1123OF =,4OF \=,4OA OB OF \===,246BE OE OB \=+=+=,DE \.【点睛】此题考查了相似三角形的判定与性质,切线的判定,圆周角定理,勾股定理等知识,解答本题需要我们熟练掌握切线的判定,第2问关键是证明EFO EDB △∽△.7.如图,在Rt △ACD 中,∠ACD =90°,点O 在CD 上,作⊙O ,使⊙O 与AD 相切于点B ,⊙O 与CD 交于点E ,过点D 作DF ∥AC ,交AO 的延长线于点F ,且∠OAB =∠F .(1)求证:AC 是⊙O 的切线;(2)若OC =3,DE =2,求tan ∠F 的值.【答案】(1)见详解;(2)12.【分析】(1)由题意,先证明OA 是∠BAC 的角平分线,然后得到BO=CO ,即可得到结论成立;(2)由题意,先求出BD=4,OD=5,然后利用勾股定理求出6AB AC ==,10AD =,结合直角三角形ODF ,即可求出tan ∠F 的值.【详解】解:(1)∵DF ∥AC ,∴∠CAO=∠F ,∵∠OAB =∠F ,∴∠CAO=∠OAB ,∴OA 是∠BAC 的角平分线,∵AD 是⊙O 的切线,∴∠ABO=∠ACO=90°,∴BO=CO ,又∵AC ⊥OC ,∴AC 是⊙O 的切线;(2)由题意,∵OC =3,DE =2,∴OD=5,OB=3,CD=8,∴4BD ==,由切线长定理,则AB=AC ,设AB AC x ==,在直角三角形ACD 中,由勾股定理,则222AC CD AD +=,即2228(4)x x +=+,解得:6x =,∴6AB AC ==,6410AD =+=,∵∠OAB =∠F ,∴10DF AD ==,∵90FDO ACO Ð=Ð=°,∴51tan 102OD F DF Ð===.【点睛】本题考查了圆的切线的判定和性质,勾股定理,角平分线的性质,以及三角函数,解题的关键是熟练掌握所学的知识,正确的求出所需的长度,从而进行解题.8.如图,在Rt ABC V 中,90ACB °Ð=,以斜边AB 上的中线CD 为直径作O e ,与BC 交于点M ,与AB 的另一个交点为E ,过M 作MN AB ^,垂足为N .(1)求证:MN 是O e 的切线;(2)若O e 的直径为5,3sin 5B =,求ED 的长.【答案】(1)见解析;(2)75ED =.【解析】【分析】(1)欲证明MN 为⊙O 的切线,只要证明OM ⊥MN .(2)连接,DM CE ,分别求出BD=5,BE=325,根据ED BE BD =-求解即可.【详解】(1)证明:连接OM ,OC OM =Q ,OCM OMC \Ð=Ð.在Rt ABC V 中,CD 是斜边AB 上的中线,12CD AB BD \==,DCB DBC \Ð=Ð,OMC DBC \Ð=Ð,//OM BD \,MN BD ^Q ,MN OM \^,MN \是O e 的切线.(2)连接,DM CE ,易知,DM BC CE AB ^^,由(1)可知5BD CD ==,故M 为BC 的中点,3sin 5B =Q ,4cos 5B \=,在Rt BMD △中,cos 4BM BD B =×=,28BC BM \==.在Rt CEB V 中,32cos 5BE BC B =×=,327555ED BE BD \=-=-=.【点睛】本题考查切线的判定和性质,等腰三角形的性质,解直角三角形等知识;熟练掌握切线的判定定理是解题的关键.9.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB D D ≌;()2若,BE BF =求AC 平分DAB Ð.【答案】()1证明见解析;()2证明见解析.【解析】【分析】()1利用,AD BC =证明,ABD BAC Ð=Ð利用AB 为直径,证明90,ADB BCA Ð=Ð=°结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC Ð=Ð 再证明,CBF DAF Ð=Ð 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB Ð=Ð 从而可得答案.【详解】()1证明:,AD BC =Q,AD BC\= ,ABD BAC \Ð=ÐAB Q 为直径,90,ADB BCA \Ð=Ð=°,AB BA =QCBA DAB \V V ≌.()2证明:,90,BE BF ACB =Ð=°Q,FBC EBC \Ð=Ð90,,ADC ACB DFA CFB Ð=Ð=°Ð=ÐQ,DAF FBC EBC \Ð=Ð=ÐBE Q 为半圆O 的切线,90,90,ABE ABC EBC \Ð=°Ð+Ð=°90,ACB Ð=°Q90,CAB ABC \Ð+Ð=°,CAB EBC \Ð=Ð,DAF CAB \Ð=ÐAC \平分DAB Ð.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.10.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交 BC于点D,过点D 作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【答案】(1)见解析;(2)【解析】【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【详解】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,Q AB为⊙O的直径,90,ACB\Ð=°∵DE∥BC,∴∠E=ACB=∠ 90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BF BA BD=,∴BD2=BF•BA=2×6=12.∴BD=【点睛】本题考查的是圆的基本性质,圆周角定理,切线的判定,同时考查了相似三角形的判定与性质.(1)中判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”,有切线时,常常“遇到切点连圆心得半径”;(2)中能得△DBF∽△ABD是解题关键.11.如图,在⨀O中,AB为⨀O的直径,C为⨀O上一点,P是 BC的中点,过点P作AC的垂线,交AC 的延长线于点D .(1)求证:DP 是⨀O 的切线;(2)若AC=5,5sin 13APC Ð=,求AP 的长.【答案】(1)见解析;(2)AP=.【解析】【分析】(1)根据题意连接OP ,直接利用切线的定理进行分析证明即可;(2)根据题意连接BC ,交于OP 于点G ,利用三角函数和勾股定理以及矩形的性质进行综合分析计算即可.【详解】解:(1)证明:连接OP ;∵OP=OA;∴∠1=∠2;又∵P 为 BC的中点;∴ PCPB =∴∠1=∠3;∴∠3=∠2;∴OP ∥DA ;∵∠D=90°;∴∠OPD=90°;又∵OP 为⨀O 半径;∴DP 为⨀O 的切线;(2)连接BC ,交于OP 于点G ;∵AB 是圆O 的直径;∴∠ACB 为直角;∵5sin 13APC Ð=∴sin ∠ABC=513AC=5,则AB=13,半径为132由勾股定理的12=,那么CG=6又∵四边形DCGP 为矩形;∴GP=DC=6.5-2.5=4∴AD=5+4=9;在Rt △ADP 中,==.【点睛】本题考查圆的综合问题,熟练掌握圆的切线定理和勾股定理以及三角函数和矩形的性质是解题的关键.12.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC ,CE ⊥AB 于点E ,D 是直径AB 延长线上一点,且∠BCE =∠BCD .(1)求证:CD 是⊙O 的切线;(2)若AD =8,BE CE =12,求CD 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO =∠BCO+∠BCD =90°,∴∠DCO =90°,∴CD 是⊙O 的切线;(2)解:∵∠A =∠BCE ,∴tanA =BC AC =tan ∠BCE =BE CE =12,设BC =k ,AC =2k ,∵∠D =∠D ,∠A =∠BCD ,∴△ACD ∽△CBD ,∴BC AC =CD AD =12,∵AD =8,∴CD =4.【点睛】本题考查了切线的判定定理,相似三角形的判定与性质以及解直角三角形的应用,熟练掌握性质定理是解题的关键.13.如图,AB 是O e 的直径,点C 是O e 上一点,CAB Ð的平分线AD 交 BC于点D ,过点D 作//DE BC 交AC 的延长线于点E .(1)求证:DE 是O e 的切线;(2)过点D 作DF AB ^于点F ,连接BD .若1OF =,2BF =,求BD 的长度.【答案】(1)见解析;(2)BD =【解析】【分析】(1)连接OD ,由等腰三角形的性质及角平分线的性质得出∠ADO =∠DAE ,从而OD ∥AE ,由DE ∥BC 得∠E =90°,由两直线平行,同旁内角互补得出∠ODE =90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB =90°,再由OF =1,BF =2得出OB 的值,进而得出AF 和BA 的值,然后证明△DBF ∽△ABD ,由相似三角形的性质得比例式,从而求得BD 2的值,求算术平方根即可得出BD 的值.【详解】解:(1)连接OD ,如图:∵OA =OD ,∴∠OAD =∠ADO ,∵AD 平分∠CAB ,∴∠DAE =∠OAD ,∴∠ADO =∠DAE ,∴OD ∥AE ,∵DE ∥BC ,∴∠E =90°,∴∠ODE =180°−∠E =90°,∴DE 是⊙O 的切线;(2)因AB 为直径,则90ADB Ð=°∵1OF =,2BF =∴OB=3∴4AF =,6BA =∵∠ADB=∠DFB=90°, ∠B=∠B∴△DBF ∽△ABD ∴BF BD BD AB=∴22612BD BF BA =×=´=所以BD=.【点睛】本题考查了切线的判定、相似三角形的判定与性质、平行线的性质等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.。
圆的周长计算练习题灵活计算各种类型圆的周长圆的周长是指圆的边界长度,是一个重要的几何概念。
为了能够熟练地计算各种类型圆的周长,我们进行一些练习题,以提高我们的计算能力和思维灵活性。
练习题1:计算普通圆的周长已知一个圆的半径r,求其周长L。
解:根据圆的定义,圆的周长L等于圆的直径d与圆周率π的乘积。
即L = d × π = 2r × π。
因此,普通圆的周长计算公式为L = 2rπ。
练习题2:计算赤道圆的周长已知地球的赤道半径为6378.137千米,求地球的赤道圆周长。
解:由于地球的赤道是近似的圆形,可以将其视为一个赤道圆。
赤道圆的半径r等于地球的赤道半径,即r = 6378.137千米。
根据普通圆的周长计算公式L = 2rπ,代入r的值可得L = 2 × 6378.137 × π ≈ 40075.024千米。
因此,地球的赤道圆周长约为40075.024千米。
练习题3:计算椭圆的周长已知一个椭圆的长轴长度为a,短轴长度为b(a > b),求该椭圆的周长。
解:椭圆的周长L不能简单地通过一个公式来表示,但可以通过积分来计算。
不过,在一些特殊情况下,椭圆的周长可以近似地计算出来。
当椭圆的长轴和短轴较接近时,椭圆可以近似为一个圆。
此时,我们可以使用近似公式L ≈ 2π√((a^2 + b^2) /2)来计算椭圆的周长。
这个公式是根据圆的周长公式推导得出的。
练习题4:计算扇形的周长已知一个扇形的半径是r,圆心角是θ(角度制),求扇形的周长。
解:扇形的周长由弧长和半径两部分组成。
弧长是圆的周长的一部分,而半径则是扇形的一条边。
扇形的弧长L1等于扇形的圆心角θ所占据的比例乘以圆的周长L。
即L1 = (θ / 360) × L,其中L = 2rπ。
代入L的值可以得到L1 = (θ / 360) × 2rπ。
扇形的半径r是另一条边,所以扇形的周长L等于L1加上2r。
类型四圆的应用【知识讲解】1. 有关圆的应用正方形内最大的圆,两者联系:边长=直径长方形内最大的圆,两者联系:宽=直径车轮滚动一周前进的路程就是车轮的周长,每分前进米数=车轮的周长乘转数2. 常用到的公式:长方形:周长公式:C=(a+b)×2,面积公式:S=ab;正方形:周长公式:C=4a,面积公式:S=a²;圆:周长公式:C=2πr或C=πd, 面积公式:S=πr²。
圆环:面积公式:外圆面积-内圆面积(S=πR²-πr²)【典型例题】【例1】一根铁丝恰好可以围成一个边长是4.71m的正方形,如果用这根铁丝围成一个圆,这个圆的面积是多少平方米?【解析】先根据正方形的周长公式:C=4a,求出正方形的周长,即圆的周长,用圆的周长除以3.14再除以2,即可求出这个圆的半径,再利用圆的面积公式:S=πr2,即可解答。
【答案】解:4.71×4=18.84(米)18.84÷3.14÷2=6÷2=3(米)3.14×32=3.14×9=28.26(平方米)答:圆的面积是28.26平方米。
【小结】此题考查了正方形的周长、圆的周长和面积公式的综合应用。
【巩固练习】一、选择题1.车轮滚动一周,所行的路程是求车轮的()A.周长 B.半径 C.直径2.一个圆形花坛的周长是30米,在它的边上每隔3米摆一盆花,一共需要()盆花。
A.11 B.10 C.93.聪聪有一张圆形纸片,要想找到它的圆心,最少要将纸片对折()次。
A.1 B.2 C.3 D.44.用3根同样长的铁丝分别围成长方形、正方形和圆形,则围成的()面积最大。
A.长方形 B.正方形 C.圆形 D.无法比较5.自行车后轮的半径是前轮的1.5倍,后轮转动12周,前轮转了()周。
A.8 B.12 C.186.在一张长9厘米,宽6厘米的长方形纸上画一个圆,则圆规两脚间的距离不能超过()厘米。
第二十四章 圆类型一 确定圆的条件1.下列说法中,正确的是( ) A .三点确定一个圆B .三角形有且只有一个外接圆C .四边形都有一个外接圆D .圆有且只有一个内接三角形2.如图1,O 为锐角三角形ABC 的外心,四边形OCDE 为正方形,其中点E 在△ABC 的外部,则O 也是下列哪个三角形的外心( )A .△AED 的外心B .△AEB 的外心C .△ACD 的外心 D .△BCD 的外心图1类型二 弧、弦、圆心角与圆周角的关系3.如图2,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35° B .45° C .55° D .65°图2 图34.如图3,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC ︵上的点,若∠BOC =40°,则∠D 的度数为( )A .100°B .110°C .120°D .130°5. 同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是________. 6. 如图4,点A ,B ,C 在⊙O 上,∠A =40°,∠C =20°,则∠B =________°.图47.如图5,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠BCD . (1)求证:CB ∥PD ;(2)若BC =3,sin P =35,求⊙O 的直径.图5类型三 利用垂径定理进行计算 8.图6是某座天桥的设计图,设计数据如图所示,桥拱是圆弧形,则桥拱的半径为( ) A .13 m B .15 m C .20 m D .26 m图69.如图7,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC .若AB =8,CD =2,则EC 的长为( )A .215B ..213图710.如图8,A ,B 是⊙O 上两点,AB =12,P 是⊙O 上的动点(点P 与点A ,B 不重合),连接AP ,PB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF =________.图811.如图9,CD 为⊙O 的直径,CD ⊥AB ,垂足为F ,AO ⊥BC ,垂足为E ,CE =2.(1)求AB 的长; (2)求⊙O 的半径.图9类型四 弧长及扇形面积的计算12.2018·黄石 如图10,AB 是⊙O 的直径,D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD ︵的长为( )A.23πB.43π C .2π D.83π图10 图1113. 如图11,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .4π-4B .4π-8C .8π-4D .8π-814. 一个扇形的圆心角为135°,弧长为3π cm ,则此扇形的面积是________ cm 2. 15. 如图12,图①是由若干个相同的图形(图②)组成的美丽图案的一部分,图②中,图形的相关数据如下:半径OA =2 cm ,∠AOB =120°,则图②的周长为________ cm(结果保留π).图1216.用半径为10 cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________ cm.17.如图13①,AE 是⊙O 的直径,C 是⊙O 上的点,连接AC 并延长AC 至点D ,使CD =CA ,连接ED 交⊙O 于点B .(1)求证:C 是AB ︵的中点;(2)如图②,连接EC ,若AE =2AC =6,求阴影部分的面积.图13类型五 数学活动18.图14是小明制作的一副弓箭,A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60 cm.沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图②,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30 cm ,∠B 1D 1C 1=120°.(1)图②中,弓臂两端B 1,C 1的距离为______ cm.(2)如图③,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为__________ cm.图14答案1.B 2.B 3.C 4.B 5.50° 6.607.解:(1)证明:∵∠BCD =∠P ,∠1=∠BCD , ∴∠1=∠P ,∴CB ∥PD .(2)如图,连接AC . ∵AB 为⊙O 的直径, ∴∠ACB =90°. 又∵CD ⊥AB ,∴BC ︵=BD ︵, ∴∠P =∠CAB ,∴sin ∠CAB =sin P =35,即BC AB =35.又∵BC =3,∴AB =5,∴⊙O 的直径为5.8.A [解析] 如图,设桥拱所在圆的圆心为E ,作EF ⊥AB ,垂足为F ,延长EF 交圆于点H ,连接AE .由垂径定理,知F 是AB 的中点.由题意,知FH =10-2=8,AE =EH ,EF =EH -HF .由勾股定理,得AE 2=AF 2+EF 2=AF 2+(AE -HF )2,解得AE =13 m.9.D [解析] 如图,∵⊙O 的半径OD ⊥弦AB ,∴AC =12AB =4.设⊙O 的半径为r ,则OC=r -2.在Rt △AOC 中,OA 2=AC 2+OC 2,即r 2=42+(r -2)2, 解得r =5,∴AE =2r =10,OC =3. 连接BE ,则BE =2OC =6.在Rt △BCE 中,CE =BE 2+BC 2=62+42=213.故选D.10.6 [解析] ∵P 是⊙O 上的动点(点P 与点A ,B 不重合),OE ⊥AP 于点E ,OF ⊥PB 于点F ,∴根据垂径定理,知AE =EP ,BF =PF , 即E 为AP 的中点,F 为PB 的中点, ∴EF 为△APB 的中位线. 又∵AB =6,∴EF =12AB =12×12=6.11.解:(1)∵CD ⊥AB ,AO ⊥BC ,∴∠AFO =∠CEO =90°. 在△AOF 和△COE 中, ⎩⎪⎨⎪⎧∠AFO =∠CEO ,∠AOF =∠COE ,AO =CO ,∴△AOF ≌△COE , ∴CE =AF . ∵CE =2, ∴AF =2.∵CD 是⊙O 的直径,CD ⊥AB , ∴AF =BF =12AB ,即AB =4.(2)∵AO 是⊙O 的半径,AO ⊥BC , ∴CE =BE =2. ∵AB =4,∴BE =12AB .∵∠AEB =90°,∴∠A =30°. 又∵∠AFO =90°, ∴cos A =AF AO =2AO =32,∴AO =43 3,即⊙O 的半径是43 3.12.D [解析] 连接OD .∵∠ABD =30°,∴∠AOD =2∠ABD =60°,∴∠BOD =120°,∴BD ︵的长=120π×4180为8π3.13.A [解析] 利用对称性可知阴影部分的面积=扇形AEF 的面积-△ABD 的面积=90×π×42360-12×4×2=4π-4.14.6π [解析] 设扇形的半径为R cm.∵扇形的圆心角为135°,弧长为3π cm ,∴135π×R 180=3π,解得R =4,所以此扇形的面积为135π×42360=6π(cm 2).15.8π3 [解析] 由图①得AO ︵的长+OB ︵的长=AB ︵的长.∵半径OA =2 cm ,∠AOB =120°,则图②的周长为2×120π×2180=8π3.16.103 [解析] 设圆锥的底面圆半径为r ,依题意,得2πr =120π×10180,解得r =103 cm.17.解:(1)证明:如图①,连接CE .∵AE 是⊙O 的直径,∴CE ⊥AD . ∵AC =CD ,∴AE =ED , ∴∠AEC =∠DEC ,∴BC ︵=AC ︵, 即C 是AB ︵的中点.(2)如图②,连接BC ,OB ,OC .∵AE =2AC =6,∠ACE =90°,∴∠AEC =30°,⊙O 的半径为3,∴∠AOC =60°. ∵BC ︵=AC ︵,∴∠BOC =60°,∴∠EOB =60°. ∵OB =OC ,∴△OBC 是等边三角形,∴∠OBC =60°,则AE ∥BC ,∴S △OBC =S △EBC , ∴S 阴影=S 扇形OBC =60π×32360=32π.18.(1)30 3 (2)(10 5-10)[解析] (1)在图①中,连接B 1C 1交DD 1于点H . ∵D 1A =D 1B 1=30 cm ,∴D 1∵AD 1⊥B 1C 1,∠B 1D 1H =12∠B 1D 1C 1=60°,∴B 1H =C 1H =30×sin60°=15 3(cm), ∴B 1C 1=30 3 cm ,即弓臂两端B 1,C 1的距离为30 3 cm.(2)在图②中,连接B 1C 1交DD 1于点H ,连接B 2C 2交DD 2于点G . 设半圆的半径为r cm ,则πr =120×π×30180,∴r =20,∴AG =GB 2=20 cm ,GD 1=30-20=10 (cm),在Rt △GB 2D 2中,GD 2=302-202=10 5(cm),∴D 1D 2=(10 5-10)cm. 故答案为30 3,(10 5-10).。
专题01 对圆的基本认识一、圆的定义1.圆的旋转定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.2.圆的集合定义:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.3.圆心与半径:固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.二、与圆有关的几个概念1.弦:连接圆上任意两点的线段叫做弦。
2.直径:过圆心的弦叫做直径。
直径是圆内最长的弦.概念规律重在理解注意:(1)弦和直径都是线段.(2)直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.3.圆弧:圆上任意两点间的部分叫做圆弧,简称弧。
小于半圆的弧叫做劣弧,如图中的;大于半圆的弧叫做优弧.如图中的以A、B 为端点的弧记作,读作“圆弧AB”或“弧AB”.4.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.5.等圆:能够重合的两个圆叫做等圆.等圆是两个半径相等的圆.6.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.等弧仅仅存在于同圆或者等圆中.三、圆的周长和面积1.圆的周长公式:c=2πr.2.圆的面积公式:S=πr2四、对圆的认识需要注意的几个问题1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例解析掌握方法【例题1】(2021江苏徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A .27倍B .14倍C .9倍D .3倍【答案】C 【解析】设OB=x ,则OA=3x ,BC=2x ,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.由圆和正方形的对称性,可知:OA=OD ,OB=OC ,∵圆的直径与正方形的对角线之比为3:1,∴设OB=x ,则OA=3x ,BC=2x ,∴圆的面积=π(3x)2=9πx 2,正方形的面积=()2122x =2x 2, ∴9πx 2÷2x 2=9142π≈,即:圆的面积约为正方形面积的14倍,【例题2】如图.(1)请写出以点A为端点的优弧及劣弧;(2)请写出以点A为端点的弦及直径.;(3)请任选一条弦,写出这条弦所对的弧。
专题14 圆中的两解及多解问题(分类讨论思想)归类集训(解析版)类型一讨论弦上某点或端点的位置1.在半径为10的⊙O中,弦AB的长为16,点P在弦AB上,且OP的长为8,AP长为 .思路引领:作OC⊥AB于点C,根据垂径定理求出OC的长,根据勾股定理求出PC的长,分当点P在线段AC上和当点P在线段BC上两种情况计算即可.解:作OC⊥AB于点C,∴AC=12AB=8,由勾股定理得,OC=OA2―AC2=6,∴PC=OP2―OC2=27,当点P在线段AC上时,AP=AC﹣PC=8﹣27,当点P在线段BC上时,AP=8+27,故答案为:8﹣27或8+27.总结提升:本题考查的是垂径定理的应用和勾股定理的应用,正确作出辅助线构造直角三角形、运用分情况讨论思想是解题的关键.2.(2021•无棣县模拟)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.25cm B.43cm C.25cm或45cm D.23cm或43cm思路引领:分两种情况,根据题意画出图形,先根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=OA2―AM2=52―42=3(cm),∴CM=OC+OM=5+3=8(cm),∴AC=AM2+CM2=42+82=45(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC=AM2+CM2=42+22=25(cm);综上所述,AC的长为45cm或25cm,故选:C.总结提升:本题考查的是垂径定理和勾股定理等知识,根据题意画出图形,利用垂径定理和勾股定理求解是解答此题的关键.3.(2020•黑龙江)在半径为5的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP = .思路引领:如图1,作OE⊥AB于E,OF⊥CD于F,连接OD、OB,如图,根据垂径定理得到AE=BE=12AB=2,DF=CF=12CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,则AE=BE=12AB=2,DF=CF=12CD=2,如图1,在Rt△OBE中,∵OB=5,BE=2,∴OE=OB2―BE2=1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC=12×1×1=12;如图2,同理:S△APC=12×3×3=92;如图3,同理:S△APC=12×1×3=32;故答案为:12或32或92.总结提升:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.类型二圆心在两弦之间或者两弦之外4.(2021•商河县校级模拟)一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?思路引领:分两种情形分别求解即可解决问题.解:作半径OD⊥AB交AB于C,连接OB,如图所示,由垂径定理得:BC=12AB=30cm,在Rt△OBC中,OC=502―302=40cm,当水位上升到圆心以下,水面宽80cm时,则OC′=502―402=30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.总结提升:本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.5.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 ;(2)在半径为1的⊙O中,弦AB,AC的长分别为3和2,则∠BAC的度数是 ;(3)已知圆内接△ABC中.AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,求腰长AB.思路引领:(1)根据垂径定理求得AD的长,再根据三角形函数可得到∠AOD的度数,再根据圆周角定理得到∠ACB的度数,根据圆内接四边形的对角互补即可求得∠AEB的度数;(2)连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可;(3)可根据勾股定理先求得BD的值,再根据勾股定理可求得AB的值.注意:圆心在内接三角形内时,AD=10cm;圆心在内接三角形外时,AD=4cm.解:(1)如图1,过O作OD⊥AB,则AD=12AB=12×3=32.∵OA=1,∴sin∠AOD=ADOA=32,∠AOD=60°.∵∠AOD=12∠AOB=60°,∠ACB=12∠AOB,∴∠ACB=∠AOD=60°.又∵四边形AEBC是圆内接四边形,∴∠AEB=180°﹣∠ACB=180°﹣60°=120°.故这条弦所对的圆周角的度数等于60°或120度.故答案为:60°或120度.(2)解:有两种情况:①如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=32,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图3所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=22,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°;(3)分圆心在内接三角形内和在内接三角形外两种情况讨论,如图4,假若∠A是锐角,△ABC是锐角三角形,连接OB,作AD⊥BC于D,连接OD,∵AB=AC,∴AD是BC的中垂线,∴OD也是BC的中垂线,∴A、O、D三点共线,∵OD=3cm,OB=7cm,∴AD=10cm,∴BD=OB2―OD2=210cm,∵OD⊥BC,∴BD=CD,∵AB=AC,∴AD⊥BC,∴AB=AD2+BD2=235cm;如图5,若∠A是钝角,则△ABC是钝角三角形,和图4解法一样,只是AD=7﹣3=4cm,∴AB=AD2+BD2=214cm,综上可得腰长AB=235cm或214cm.总结提升:本题主要考查了垂径定理和勾股定理,注意分圆心在内接三角形内和在内接三角形外两种情况讨论,解题的关键是根据题意作出图形,求出符合条件的所有情况.类型三讨论点在优弧上或劣弧上6.(2022秋•双城区期末)已知⊙O的半径为2,弦AB的长为23,则弦AB的中点到这条弦所对的弧的中点的距离为 .思路引领:由垂径定理得出AC,再由勾股定理得出OC,从而得出CD和CE的长.解:如图,∵C是弦AB的中点,AB=23,∴OC⊥AB,AC=12AB=3,∴AD=BD,AE=BE,在Rt△AOC中,OC=22―(3)2=1,∴CD=2﹣1=1cm,CE=2+1=3.故答案为:1或3.总结提升:本题考查了垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.8.(2021秋•凉州区校级期末)如图,AB、AC分别与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是 .思路引领:此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点.(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数;(2)如果当∠BPC为钝角,也就是∠BP2C时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点,(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°故答案为:65°或115°.总结提升:本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用.类型四弦所对的圆周角7.(2018秋•泗阳县期中)若圆的一条弦把圆分成度数的比为1:3的两条弧,则该弦所对的圆周角等于 .思路引领:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°.解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故答案为:45°,135°.总结提升:本题考查的是圆心角、弧、弦的关系及圆周角定理,在解答此类问题时要注意是在“同圆或等圆中”才适用,这是此类问题的易错点.9.(2020秋•溧阳市期末)已知△ABC是半径为2的圆内接三角形,若BC=23,则∠A的度数为( )A.30°B.60°C.120°D.60°或120°思路引领:首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23,∴BD=4,∴CD=BD2―BC2=2,∴CD=12 BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°﹣∠A=120°,∴∠A的度数为:60°或120°.故选:D.总结提升:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.类型五讨论圆内接三角形的形状10.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为 .思路引领:如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=2OB=52.解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD =32OB =532,∴BC =AB =53,如图2,当∠DOB =90°,∴∠BOC =90°,∴△BOC 是等腰直角三角形,∴BC =2OB =52,综上所述:若△OBD 是直角三角形,则弦BC 的长为53或52,故答案为:53或52.点睛:本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.101.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,求BC 边上的高.思路引领:从圆心向BC 引垂线,交点为D ,则根据垂径定理和勾股定理可求出,OD 的长,再根据圆心在三角形内部和外部两种情况讨论.解:连接AO 并延长交BC 于D 点,∵AB =AC ,∴AB =AC ,根据垂径定理得AD ⊥BC ,则BD =4,根据勾股定理得OD =3①圆心在三角形内部时,三角形底边BC 上的高=5+3=8;②圆心在三角形外部时,三角形底边BC 上的高=5﹣3=2.所以BC 边上的高是8或2.总结提升:本题综合考查了垂径定理和勾股定理在圆中的应用,因三角形与圆心的位置不明确,注意分情况讨论.类型六讨论点与圆的位置关系12.(2020•南通模拟)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为 .思路引领:点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为a+b 2;当此点在圆外时,圆的直径是a﹣b,因而半径是a―b 2;故答案为:a+b2或a―b2.总结提升:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.13.已知点P到⊙O的最长距离为6cm,最短距离为2cm.试求⊙O的半径长.思路引领:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可解:①当P在⊙O外时,如图,∵P当⊙O的最长距离是为6cm,最短距离为2cm,∴PB=6cm,PA=2cm,∴AB=4cm,∴⊙O的半径为2cm';当P在⊙O内时,,此时AB=8cm,⊙O的半径为4cm.即⊙O的半径长为2cm或4cm.解题秘籍:本题考查了点和圆的位置关系,分类讨论是解此题的关键.类型七讨论直线与圆的位置关系14.(2021•崇明区二模)已知同一平面内有⊙O和点A与点B,如果⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,那么直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切思路引领:根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.总结提升:本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.15.(2021秋•信都区校级月考)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 ;若⊙C与AB边只有一个公共点,则r的取值范围为 .思路引领:如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=AC2+BC2=62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线相离,∴r的取值范围为r<24 5,∵⊙C与AB边只有一个公共点,∴r的取值范围为6<r≤8或r=24 5,故答案为:r<245,6<r≤8或r=245.总结提升:本题考查直线与圆的位置关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(衢州中考)如图,已知直线l的解析式是y=43x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l 相切时,则该圆运动的时间为( )A.3秒或6秒B.6秒C.3秒D.6秒或16秒思路引领:由y=43x﹣4可以求出与x轴、y轴的交点A(3,0)、B(0,﹣4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C 运动的距离和运动的时间.解:如图,∵x=0时,y=﹣4,y=0时,x=3,∴A(3,0)、B(0,﹣4),∴AB=5,当C在B上方,直线与圆相切时,连接CD,则C到AB的距离等于1.5,∴CB=1.5÷sin∠ABC=1.5×53=2.5;∴C运动的距离为:1.5+(4﹣2.5)=3,运动的时间为:3÷0.5=6;同理当C在B下方,直线与圆相切时,连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.故选:D.总结提升:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.17.(2018•浦东新区二模)已知l1∥l2,l1、l2之间的距离是3cm,圆心O到直线l1的距离是1cm,如果圆O 与直线l1、l2有三个公共点,那么圆O的半径为 cm.思路引领:根据题意可以画出相应的图形,从而可以解答本题.解:如下图所示,设圆的半径为r如图一所示,r﹣1=3,得r=4,如图二所示,r+1=3,得r=2,故答案为:2或4.总结提升:本题考查直线和圆的位置关系,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.18.(2021秋•新荣区月考)综合与实践问题情境:数学活动课上,老师出示了一个直角三角板和量角器,把量角器的中心O 点放置在AC 的中点上,DE 与直角边AC 重合,如图1所示,∠C =90°,BC =6,AC =8,OD =3,量角器交AB 于点G ,F ,现将量角器DE 绕点C 旋转,如图2所示.(1)点C 到边AB 的距离为 245 .(2)在旋转过程中,求点O 到AB 距离的最小值.(3)若半圆O 与Rt △ABC 的直角边相切,设切点为K ,求BK 的长.思路引领:(1)如图1,过点C 作CH ⊥AB 于点H ,利用勾股定理求得AB ,再利用AB •CH =AC •BC ,即可求得答案.(2)当CD ⊥AB 时,点O 到AB 的距离最小,再由OH =CH ﹣OC ,即可求得答案.(3)分两种情况:①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,运用勾股定理即可求得答案;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,运用勾股定理求得CK ,再利用勾股定理即可求得BK .解:(1)如图1,过点C 作CH ⊥AB 于点H ,∵∠ACB =90°,BC =6,AC =8,∴AB =AC 2+BC 2=62+82=10,∵CH ⊥AB ,∴AB •CH =AC •BC ,∴CH =AC ⋅BC AB=6×810=245,即点C 到边AB 的距离为245,故答案为:245.(2)∵O 为AC 的中点,∴OC =12AC =12×8=4,当CD ⊥AB 时,点O 到AB 的距离最小,∴OH =CH ﹣OC =245―4=45,∴点O 到AB 距离的最小值为45.(3)①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,∴BK =BC ﹣CK =6―7;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,在Rt △BCK 中,BK =BC 2+CK 2=62+(7)2=43;综上所述,BK 的长为7或43.解题秘籍:本题是几何综合题,考查了圆的性质,切线的性质,旋转变换的性质,勾股定理,三角形面积,解题关键是熟练掌握旋转变换的性质等相关知识,运用分类讨论思想解决问题.。
类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最的方程.小的圆类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例6、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
类型三:弦长、弧问题 例7\直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 例8、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长 类型四:直线与圆的位置关系 例9、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例10 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?11、 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ). 12:直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是类型五:圆与圆的位置关系例12:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
1,求与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程.2\若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 .类型六:圆中的对称问题例13、圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是例14 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.类型七:圆中的最值问题例15:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例16 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.№例17:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .1:已知点),(y x P 在圆1)1(22=-+y x 上运动.(1) 求21--x y 的最大值与最小值;(2)求y x +2的最大值与最小值. 类型八:轨迹问题例18,基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.例19,已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.例20 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.图。
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。
圆的基本类型训练
1.(苏州市)已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C .
①求证:AB =AC ;
②若tan ∠ABE =
21,(ⅰ)求BC AB 的值;(ⅱ)求当AC =2时,AE 的长.
2.(广州市)如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.
3.(河北省)已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB =2︰3,AC =10,求sin B 的值.
4.(北京市海淀区)如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于点D ,若tan B =2
1,PC =10cm ,求三角形BCD 的面积.
5.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.
6.(四川省)已知,如图,以△ABC 的边AB 作直径的⊙O ,分别交AC 、BC 于点D 、E ,弦FG
∥AB ,ABC CDE S S ∆∆:=1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积.
7.(贵阳市)如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,
PA =10,PB =5,求:
(1)⊙O 的面积(注:用含π的式子表示);
(2)cos ∠BAP 的值.。