价铬钝化工艺规范
- 格式:doc
- 大小:49.00 KB
- 文档页数:7
六价铬钝化三价铬钝化无铬钝化一、六价铬钝化六价铬钝化是一种表面处理方法,适用于不锈钢,铬镍钢及一些铸铁及铜合金等材料,通过对表面形成一层具有一定透氧性的覆盖膜,减缓金属材料的腐蚀速度。
六价铬钝化的工艺较为成熟,处理后的材料表面光洁度好,具有较强的耐蚀性。
六价铬钝化能够达到以下效果:1.提高不锈钢的耐腐蚀性能,使金属表面获得更强的抗腐蚀性;2.六价铬钝化层颜色均匀且美观,可以在表面形成一层具有一定透氧性的覆盖膜;3.减缓金属材料的腐蚀速度,延长材料的使用寿命。
但六价铬钝化也存在一些问题:1.处理过程较为复杂,需要专业的设备和工艺;2.六价铬钝化液对环境和人体有一定的危害,需要严格控制。
二、三价铬钝化三价铬钝化技术是利用三价铬生成活化膜为金属材料表面提供耐腐蚀保护的一种表面处理方法。
与六价铬钝化相比,三价铬钝化工艺更加环保,对人体和环境的危害更小。
三价铬钝化相较于六价铬钝化,可以减少对环境的污染,是目前广泛应用的一种防锈方式。
三价铬钝化具有以下优点:1.具有较强的耐蚀性,能有效地减缓腐蚀速度;2.符合环保要求,对环境和人体的危害较小;3.能够提高材料的使用寿命,延长产品的寿命。
但也需要注意的是,三价铬钝化还有待改进的地方:1.处理效果相对六价铬钝化略有差异,对一些特殊情况需要特殊处理;2.处理成本相对较高,需要经过一定的投入。
三、无铬钝化无铬钝化是一种新型的环保钝化技术,主要通过对金属材料表面进行特殊处理,形成覆盖膜以达到耐蚀的效果。
无铬钝化技术在未来被认为是一种趋势。
无铬钝化技术遵循“无污染、无危害、无排放”的理念,可以有效地减少对环境和人体的危害。
无铬钝化的优势在于:1.符合环保要求,对环境和人体的危害极小;2.具有良好的防腐蚀性能,能够保护材料表面不受氧化和腐蚀。
不过,无铬钝化技术也存在一些问题:1.目前技术还不够成熟,需要不断改进和完善;2.处理成本相对较高,仍然需要进一步降低。
结语六价铬钝化、三价铬钝化和无铬钝化各有优缺点。
简介:ZT-441是一种不含六价铬的三价蓝色钝化剂,具有耐蚀性以及夜色鲜艳的蓝色皮膜,而这种钝化膜一般在0.1μm以下。
特点:1.可在常温下使用.2.具有色彩均一蓝色.3.挂镀和滚镀都可以使用.4.耐蚀性挂镀192h,滚镀为96h.产品特性:使用方法:1.处理工序:管理方法:1.补充添加方法:由于处理液的浓度,处理时间,搅拌,液体带出量等作业条件不同,选用标准开缸,标准处理的情况下,按以下方法进行补给。
(1)根据PH测定补给为了维持开缸浓度的PH值,补给下列混合液。
对于15L的容器,ZT-441A,68%硝酸,水的配比约为2.9:4.6:7.5(2)根据处理面积补给(液体带出量是1.5ml/dm2时)(ZT-441C)补充用混合液22dm2/ml (0.05ml/dm2)2.3.根据混合液的补给,PH值下降添加混合液1ml/L时,PH约下降0.24.钝化液的更新:随着钝化液中锌浓度的提高,会导致处理件的颜色不均一和耐蚀性下降。
钝化液中的锌浓度升到8g/L需全部更新钝化液。
锌的溶解量约6mg/dm2(标准开缸A剂25-45ml/L,25℃-10-30S处理)约处理到500dm2/L的时候就需要更换。
注意事项:1.电镀电镀层厚,需要在5μm以上。
因电镀药水和光泽剂的不同,皮膜色调以及耐蚀性会有差别。
2.活化、锌和铁的成分增加,会导致钝化膜颜色模糊,需要定期更新。
3.水洗活化后,要充分水洗,不可将火花也带入钝化液中。
4.钝化篮子或者挂具的材质和搅拌的强弱对钝化膜的色调会有影响,需要注意。
处理液中如果有调掉处理品,会使锌和铁的成分增加,需要及时打捞。
5.干燥对容易残留液体的部品,需要用气枪除去残留液体后再干燥。
三价铬钝化工艺
三价铬钝化工艺是一种常用的金属表面处理技术,可以有效提高金属的耐腐蚀性能和机械性能。
本文将介绍三价铬钝化的原理、工艺流程以及应用范围。
三价铬钝化是一种在金属表面生成一层三价铬化合物的化学处理方法,通过在金属表面形成一层致密的氧化膜来增强金属的耐蚀性。
相比于六价铬钝化,三价铬钝化更加环保,不会产生有害的六价铬物质,符合现代环保要求。
三价铬钝化的工艺流程主要包括表面预处理、钝化处理、后处理等步骤。
首先是对金属表面进行清洗和去油处理,以确保表面干净。
然后将金属件浸入含有三价铬盐的钝化液中,在适当的温度和时间条件下进行钝化处理。
最后进行后处理,包括清洗、干燥等步骤,以确保钝化膜的质量和稳定性。
三价铬钝化广泛应用于汽车、航空航天、电子等领域,可以提高金属零部件的抗腐蚀性能和装饰性能。
在汽车行业,三价铬钝化可以应用于发动机零部件、车身件等金属件的表面处理,提高其耐腐蚀性和耐磨性。
在航空航天领域,三价铬钝化可用于飞机结构件、发动机零部件等的表面处理,提高其抗氧化性能和机械性能。
在电子行业,三价铬钝化可用于电子元件、连接器等金属件的表面处理,提高其导电性和耐腐蚀性。
总的来说,三价铬钝化是一种重要的金属表面处理技术,具有环保、高效、经济的特点,广泛应用于各个领域。
随着人们对环保和品质要求的不断提高,三价铬钝化技术将会得到更广泛的应用和发展。
铝合金三价铬钝化铝合金三价铬钝化是一种常见的表面处理技术,用于提高铝合金的耐腐蚀性能和装饰性。
本文将介绍铝合金三价铬钝化的原理、应用及其优缺点,以及对环境的影响。
一、铝合金三价铬钝化的原理铝合金三价铬钝化是通过在铝合金表面形成一层氧化铬膜来实现的。
这层氧化铬膜具有良好的耐腐蚀性能,可以有效地防止铝合金在潮湿和腐蚀介质中的腐蚀。
同时,氧化铬膜还具有一定的装饰性,可以增加铝合金的外观质感和美观度。
铝合金三价铬钝化广泛应用于航空航天、交通运输、建筑装饰、电子电器等领域。
在航空航天领域,铝合金三价铬钝化是保护飞机、导弹等航天器材的重要手段。
在交通运输领域,铝合金三价铬钝化可以提高汽车、火车等交通工具的耐腐蚀性能。
在建筑装饰领域,铝合金三价铬钝化可以增加建筑材料的外观质感和光泽度。
在电子电器领域,铝合金三价铬钝化可以提高电子元器件的耐腐蚀性能。
三、铝合金三价铬钝化的优缺点铝合金三价铬钝化的优点是具有较高的耐腐蚀性能和装饰性,可以有效地保护铝合金材料,延长其使用寿命。
同时,铝合金三价铬钝化的工艺简单,成本低廉,易于操作和控制。
此外,铝合金三价铬钝化的废液可以回收利用,对环境的影响较小。
然而,铝合金三价铬钝化也存在一些缺点。
首先,铝合金三价铬钝化的耐腐蚀性能较差,无法满足一些特殊环境下的需求。
其次,铝合金三价铬钝化的装饰性有限,不能满足高端产品的外观要求。
此外,铝合金三价铬钝化的工艺还需要不断改进和完善,以提高其性能和应用范围。
四、铝合金三价铬钝化对环境的影响铝合金三价铬钝化的废液中含有铬离子,如果不妥善处理,会对环境造成污染。
铬离子是一种有毒物质,具有一定的生物毒性。
因此,在铝合金三价铬钝化的过程中,需要严格控制废液的排放,采取合适的处理措施,以减少对环境的影响。
总结起来,铝合金三价铬钝化是一种常见的表面处理技术,具有良好的耐腐蚀性能和装饰性。
它广泛应用于航空航天、交通运输、建筑装饰、电子电器等领域,可以有效地保护铝合金材料,延长其使用寿命。
目录三价铬钝化的提出三价铬钝化技术的进展三价铬钝化剂的组成和成膜机理三价铬钝化的特点三价铬钝化工艺要点1. 1.p H的调整2. 2.氧化剂的调整3. 3.不同零件封闭剂的调整4. 4.铸件及酸性镀锌三价铬彩色钝化展开三价铬钝化的提出三价铬钝化技术的进展三价铬钝化剂的组成和成膜机理三价铬钝化的特点三价铬钝化工艺要点1. 1.p H的调整2. 2.氧化剂的调整3. 3.不同零件封闭剂的调整4. 4.铸件及酸性镀锌三价铬彩色钝化展开三价铬钝化的提出传统的六价铬钝化工艺具有成熟稳定、价格低廉、品种多样、高的耐蚀性和钝化膜的自修复能力等优点得到广泛的应用。
但是六价铬是强致癌物质,对环境与人体健康会造成严重危害。
我国在锌层上进行无六价铬钝化工艺的研究工作已进行了很久,主要集中搞无铬钝化和三价铬钝化两个方面。
前者在二十多年前就进行了很多研究,主要是采用钛酸盐、钼酸盐、钨酸盐、稀土、硅酸盐等。
因外观与耐蚀性不好,未用于工业生产,致使无六价铬钝化技术主要依赖三价铬钝化工艺的开发应用。
三价铬钝化技术的进展(1)第一代三价铬钝化络合剂主要为氟化物,而氟化物Cr(III)络合比较稳定,膜层薄,所以形成的膜层颜色一般为银白色、蓝白色,耐蚀性差,中性盐雾试验不超过8~16h。
(2)第二代三价铬钝化技术第二代三价铬钝化剂的共同特点是采用有机络合剂,并加入其他金属,耐蚀性大大提高,并可以得到不同钝化膜的颜色,如蓝色、彩色、黑色。
操作条件要求相对较低。
(3)第三代三价铬钝化技术是在第二代钝化液中直接加入封孔剂,例如酸性硅溶胶、纳米 Si氧化物,它们被填充在钝化膜的骨架中,克服了三价铬钝化无自愈能力的缺点,大大提高膜层的耐蚀性。
三价铬钝化剂的组成和成膜机理三价铬钝化剂一般含有以下成分。
①三价铬Cr(Ⅲ) 钝化膜的主成分来源,三价铬可取氯化铬、硫酸铬、硝酸铬、磷酸铬、醋酸铬和硫酸铬钾等,还可以使用铬酸和重铬酸的还原产物。
②氧化剂产生锌离子,促使钝化膜形成。
电镀锌镍合金三价铬钝化工艺摘要:科学技术和现代工业的发展对防护性镀层的质量要求越来越高,传统的防护性镀锌层已不能完全满足要求。
近十多年来,锌镍合金的应用越来越广泛,锌镍合金电镀工艺的优点是镀液分散能力和覆盖能力优良,对电镀设备的腐蚀性小,镀层氢脆小,适合高强钢、钢铁铸件、冲压制件、热处理件及较复杂的零部件电镀。
本文介绍了锌镍合金电镀的工艺,比较了酸性镀液体系与碱性镀液体系的特点。
关键词:电镀;锌镍合金;三价铬;工艺电镀锌镍合金是近一二十年兴起的一种钢铁阳极型防护镀层。
通常所指的锌镍合金是含镍量在20 %以下的低镍含量合金,此范围内的合金镀层不仅耐蚀性7一10 倍于镀锌层,更是拥有良好的上漆性、可焊性和成型性,因此得以广泛的应用于汽车、航天航空、轻工、家电等领域的钢铁防护。
另外由于锌镍合金具有高耐蚀和低氢脆的优点,其可以作为良好的代锅镀层在航空工业中使用。
一、电镀锌镍合金工艺酸性镀液酸性体系主要为硫酸盐体系和氯化物体系2种。
氯化物体系是由酸性氯化物镀锌液转化而来,因具有导电能力好、分散能力较好、电流效率高、沉积速度快、氢脆性低、镀层耐蚀性、光亮度较碱性镀液好、易实现常温操作等特点而研究较多。
近年来还出现了一些直接将氯化物镀锌溶液转化为锌镍合金镀液的应用,运用于工业生产,酸性体系镀液的应用也日趋成熟。
同时还出现了无铵的氯化物镀液,使得此体系更加易于维护,废液处理更加简单。
除了氯化物主盐之外,镀液中还有配位剂、添加剂等成分,对镀层起着决定性作用。
配位剂。
在氯化钾-氯化铵型镀液中,铵根离子既起着导电盐又起着配位锌镍离子的作用,一般不另外添加配位剂。
在无铵的氯化物镀液中,添加剂中的某些有机成分起着配位剂的作用。
这些光亮剂大多含有R-SO3,R-SH,RN =NR,ROH,RCOO-等基团。
添加剂。
一般酸性电沉积锌镍合金中,镍含量为13%左右,比锌含量少,故光亮锌镍合金电镀所用添加剂大多沿用或者是改进酸性光亮镀锌添加剂。
铝材三价铬钝化液配方-概述说明以及解释1.引言1.1 概述:在工业生产中,铝材表面处理是非常重要的一环,其中铝材三价铬钝化液配方作为一种环保型表面处理工艺备受关注。
本文旨在探讨铝材三价铬钝化液配方的制备方法及其在铝材表面处理中的重要性。
铝材三价铬钝化液通过改善铝材表面的耐蚀性、耐磨性和美观度,提高其使用寿命和质量稳定性,同时具有环保、节能的特点。
了解铝材三价铬钝化液的配方和工艺步骤,对于提高铝材表面处理的效率和质量具有重要意义。
本文将从配方的重要性、成分及比例、钝化工艺步骤等方面进行详细介绍,希望能为相关领域的研究和生产提供参考和指导。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分中,将对铝材三价铬钝化液配方进行概述,介绍文章的结构和目的。
正文部分将重点介绍铝材三价铬钝化液配方的重要性,配方成分及比例,以及钝化工艺步骤。
最后在结论部分,将总结关键要点,展望其应用前景,并得出结论。
通过这样的结构安排,读者可以清晰地了解铝材三价铬钝化液配方的相关信息,同时也便于阅读和理解整篇文章的内容。
1.3 目的本文的主要目的是介绍铝材三价铬钝化液配方,探讨其在工业生产中的重要性。
通过深入分析配方成分及比例,以及钝化工艺步骤,帮助读者了解如何制备和应用铝材三价铬钝化液,提高工艺品质和产量。
同时,展望该钝化液在未来的应用前景,为相关行业的发展和技术创新提供参考和支持。
通过本文的阐述,旨在促进铝材表面处理技术的进步,推动工业生产的可持续发展。
2.正文2.1 铝材三价铬钝化液配方的重要性铝材三价铬钝化液是一种用于表面处理铝材的化学处理液,其配方的设计和优化对于提高铝材的耐腐蚀性、机械性能和外观质量具有重要意义。
铝材在工业生产中被广泛应用,但铝材表面的氧化膜不仅影响其美观度,也会影响其耐腐蚀性和机械性能。
因此,通过钝化处理可以有效地改善铝材的性能,延长其使用寿命。
铝材三价铬钝化液的配方设计需要考虑到多种因素,如PH值、温度、时间等,以确保最佳的钝化效果。
锌镍合金三价铬蓝色钝化液的制备工艺锌镍合金是一种常见的金属材料,它具有良好的耐腐蚀性和强度,被广泛应用于汽车、航空航天和电子工业等领域。
然而,锌镍合金表面容易受到氧化和腐蚀的影响,因此需要进行钝化处理以提高其耐腐蚀性能。
本文将介绍锌镍合金钝化液中的一种特殊类型——三价铬蓝色钝化液的制备工艺。
一、三价铬蓝色钝化液的原理和优点三价铬蓝色钝化液是一种基于铬盐和配比的钝化液,其中三价铬起着主要的钝化作用。
通过浸泡锌镍合金在这种钝化液中,可以形成一层颜色为蓝色的钝化膜,这层钝化膜不仅能够提供优异的耐腐蚀性能,还可以改善材料的外观。
相比于传统的六价铬钝化液,三价铬蓝色钝化液具有以下几个优点:1. 环境友好:三价铬蓝色钝化液中所含的六价铬含量较低,符合环保要求,无需专门处理废液。
2. 钝化速度快:相比于传统的六价铬钝化液,三价铬蓝色钝化液的钝化速度更快,在短时间内就能形成均匀且致密的钝化膜。
3. 良好的沉积性:三价铬蓝色钝化液在锌镍合金表面形成的钝化膜具有良好的沉积性,能够均匀地附着在整个表面,提高钝化效果。
二、锌镍合金三价铬蓝色钝化液的制备工艺下面将详细介绍锌镍合金三价铬蓝色钝化液的制备工艺,主要包括原料准备、液体配制和钝化处理三个步骤。
1. 原料准备制备锌镍合金三价铬蓝色钝化液的原料主要包括硝酸铬、硝酸锌和一些辅助添加剂。
硝酸铬和硝酸锌是钝化液的主要成分,辅助添加剂可以调节钝化液的PH值、粘度等性质。
在进行实际制备前,需要确保原料的纯度和质量。
2. 液体配制将一定比例的硝酸铬和硝酸锌按照特定的配方加入到蓝色钝化液的配制槽中。
辅助添加剂可以根据实际应用需要适量添加。
用适量的纯水将配制槽补满至所需的液位。
在此步骤中,需要注意安全操作和按照正确的配方比例进行配制。
3. 钝化处理将锌镍合金放入装有三价铬蓝色钝化液的钝化槽中,控制钝化时间和温度。
一般情况下,钝化时间为10-20分钟,温度控制在20-30摄氏度之间。
一、六价铬钝化处理锌的化学性质活泼,在大气中容易氧化变暗,最后产生“白锈”腐蚀。
镀锌后经过铬酸盐处理,以便在锌上覆盖一层化学转化膜,使活泼的金属处于钝态,这就叫锌层铬酸盐钝化处理。
这层厚度只有0.5μm以下的铬酸盐薄膜,能使锌的耐蚀性能提高6倍~8倍,并赋予锌以美丽的装饰外观和抗污能力。
目前钝化主要有六价铬钝化与三价铬钝化。
铬酸盐钝化不仅作为防护层,而且在一些低档产品上经白钝化,或者白钝化经有机料着色,可作为防护-装饰用途。
铬酸盐钝化液由铬酸、活化剂和无机酸组成,锌与钝化液发生作用,导致锌溶解、六价铬还原成三价铬,并在反应中消耗氢离子,当锌和溶液界面上的pH值上升到3以上时,产生一系列的成膜反应,凝胶状钝化膜就在锌界面上形成。
关于钝化膜形成的机理和膜层的化学组成仍有争论。
一般认为锌层钝化膜是由碱式铬酸铬、碱式铬酸锌和水合三氧化铬等组成的水合物。
经分析膜中三价铬含量占28.2%,六价铬占8.68%,水分占19.3%。
其中三价铬是钝化膜的骨架,六价铬靠吸附、夹杂和化学键力填充于三价铬的骨架之中,故六价铬的含量直接影响钝化膜的耐蚀性。
当钝化膜受到磕、划、碰伤时,在潮湿空气中六价铬可溶于水膜内,在破损处成膜给予自动修复,这是铬酸盐膜的重要优点之一。
长期以来人们认为钝化膜的彩虹色是由于化学组成决定的。
三价铬呈淡绿色和绿色;六价铬呈橙红至红色;不同价态和不同量的铬相混合就出现了五颜六色。
这就是化学成色学说。
但是它不能解释从不同角度看颜色各异;不同钝化手法可得到有层次的色阶;随钝化膜厚度增加颜色的变化规律同所见光光波所显示的颜色相同;以及干燥过程色彩变化等现象。
如是我国研究者提出了物理成色即光波干涉成色的学说。
根据光波干涉原理,入射光到达钝化膜表面一部分被反射,一部分透过钝化膜由锌层表面再反射出来,于是从外表面和从内表面反射出来的光产生光程差。
当光层差等于某颜色的光波之半或它的奇数倍时,就会发生光波干涉而抵消一部分,我们肉眼所见只是该色的辅色。
三价铬钝化工艺的规范准则自从上个世纪七十年代以来,六价格钝化膜的替代选择就已存在。
一些替代选择是基于毒性较小的三价铬化合物,而且主要局限于性能低的亮蓝型涂膜。
由于这些替代镀液的配制价格相对低廉,因而维护/故障处理都不存在问题,而且这些镀液更换(倾倒)较频繁。
在过去的几年里,业界对不含六价格工艺的兴趣日益增加。
部分原因是由于新颁布的废旧汽车(ELV)指令和废旧电子电器设备指( WEEE)令,这些指令要求在欧洲销售的汽车和电子零件不能再含有六价铬。
此外,人们正在寻找仅通过三价铬转镀膜就能达到的强化的性能特性。
现在,要求钝化膜必须提供较高的腐蚀保护性、耐热冲击性、染料和面涂吸收特性(同时保持外面的美观)以及成本有效性。
因此,正确的配制、维护和故障处理技术已经变得极为重要。
下面介绍影响三价铬转镀膜性能的一些常见因素和一些鲜为人知的因素以及故障处理方案。
介绍内容包括:钝化时间、温度和浓度的影响;溶液搅拌;溶液的pH值;金属污染;镀层厚度;预浸镀溶液(出光液);水的质量;烘干温度。
常见的因素三个[度“T”]在金属精饰操作中最广为了解的三个因素被称为三个[度“T”]:时间长度、温度和浓度。
正像大多数工艺方案一样,必须将这些因素(变量)紧密地控制在具体的参数范围内,才能获得理想质量的表面。
时间长度正确的沉浸时间是钝化工艺中最重要的一个变量。
当镀锌工件沉浸在钝化溶液中,金属被溶解,并生成转镀膜。
溶液与电镀工件接触时间越长,发生转镀的机会也越多,而且在大多数情况中会导致较厚的钝化膜。
三价铬钝化液生成转镀膜的速度一般比六价铬钝化的慢。
因此,对于一个厚膜转镀工艺需要60秒或以上的沉浸时间就一点也不奇怪了。
这样,设备、过程周期等必须能够适应比过去更长的沉浸时间。
沉浸时间太短,会导致钝化膜厚度不够,因而使腐蚀保护性差。
沉浸时间太长将导致过度消耗镀层,同样也使腐蚀保护性差。
与六价铬不同,你通常不能通过简单的视察来确定转镀膜厚度。
所以,操作工必须在过程中一直监控沉浸时间。
在工件一进入处理溶液时转镀膜就开始形成,而且直到工件进入第一个漂洗池时才停止形成转镀膜。
只要钝化液与被镀金属保持著接触,锌就持续溶解且转镀膜持续生成。
当这个过程发生在实际的工艺池外面时,那么过程的进行就没有利用到热、搅拌以及工件界面上的正确的溶液转移。
因而生成质量差的转镀膜。
为了尽可能减少这种情况,停留时间特别是钝化池和第一个漂洗池之间,应保持尽可能短的停留时间。
温度除了较长的沉浸时间外,高厚度/高性能的钝化膜通常在较高的温度下进行。
在没有强矿物酸的情况下,这些类型的系统通常依赖热量来为转工艺的进行提供“热量”。
因此,看到工作温度高达140-160℉也就很正常了。
在把温度考虑为一个可能的故障点时,重要的是对工件界面上的溶液而不是远离工件的溶液进行温度测定。
这种温度差异可能很大,特别是在大型工件刚入钝化溶液时。
在某种情况中,在钝化前,工件要在一个漂洗池中预热。
大多数情况下推荐使用聚四氟乙烯、特氟龙或石英浸入式电加热器。
为了保证最佳的性能也建议使用自动温控器和溶液搅拌。
浓度钝化液浓度是与旧的工艺差别很大的另一个因素,而且在排除故障时必须一直考虑这个因素。
尽管六价铬钝化通常在1-5%体积浓度在运行,但高性能的三价铬钝化一般在10%或以上体积浓度下进行。
与温度的情况非常相似,需要这些较高的浓度来给镀液提供“能量”,生成理想的转镀膜。
利用一个折射计可方便的测量池边浓度,而且应当通过湿分析或通过仪器进行确认。
经常被问到“是否这三个因素之一可用于补偿另一个因素”。
例如:较高的浓度是否能补偿沉浸时间太短几乎在所有情况中,答案是否定的。
在时间长度、温度、浓度存在一个精确的平衡,这个平衡点可以使转镀膜在一个受控的速率下形成。
如果工艺溶液的工作超出了制造商推荐的范围,那么几乎都会形成质量不良的转镀膜。
其他的因素除这些“主要”的因素(变量)影响转镀膜工艺外,还有鲜为人知的其它工作参数,但却同样需要重要考虑。
搅动溶液正确运动对于生成优质转镀膜是非常必要的。
这可以通过空气、溶液(通过泵工作)或工件的运动来实现。
不论采用哪种方法,重要的是在工件界面上具体合适的溶液交换。
在钝化过程中,发生许多化学变化。
在有酸和三价铬错再得情况下锌很容易被氧化,结果导致在锌和钝化溶液街面上的pH值发生较大的升高。
这会引起氢氧化三铬在表面上析出,因而生成转镀膜。
如果没有正确的搅动,溶液很快就用尽了,因而不能生成足够的转镀膜。
搅动的常用方法是利用一个低压鼓风机将空气迫入溶液。
空气是从一个穿孔的管道(位于转镀池底附近)中泵出的,从而生产一个翻滚的运动。
一定不要使用压缩机,因为它们不可避免地会使溶液受到灰尘及机油的污染。
甚至使用一个鼓风机,也建议在进气管道上装一个过滤器。
大量电镀的零部件,在钝化过程中通常会有足够的搅动,因而通常不需要空气。
pH值pH值是工艺控制的一个重要方面,但常被忽视。
厚膜三价铬钝化在非常窄的pH值窗口内进行,而且常常需要调整,不但在新配制时调整而且在正常工作过程中也需要调整。
如果实际工作的pH值超过推荐的工作范围,那么会阻碍转镀膜的形成,因而导致转镀膜太薄。
pH值太低则会导致钝化膜快速地生成和剥离,同样形成的转镀膜厚度小,不能提供足够的盐雾保护。
可以利用仪表或者试纸来控制pH值。
pH值在范围时推荐使用非滤取型试纸。
在正常工作条件下,钝化液的pH值将随时间而升高。
可以向溶液中添加产品或稀释的硝酸来降低pH值。
钝化溶液的pH值的下降是很少见的,一般是由于大量的拖带引起的。
向溶液中添加稀释的苛性钠可提高pH值。
推荐在钝化处理前使用体积比0. 5%至1%的硝酸预浸工件可提高镀锌的活性。
金属污染金属污染的程度对钝化膜的性能可产生很大的影响。
金属可能是通过工件的正常加工而被引入的(对于锌或铁),可能来自于外部源(例如紧固工件时所用的铜金属)或者可能是专利配方的一个组成部分(如钴)。
不论金属污染的来源是什么,所有这些金属都会对钝化膜性能带来有害影响。
锌和铁是三价铬钝化中最常见的两种金属污染物。
在这两种金属污染物中,铁污染的问题最大。
目前的技术趋向于比以前更加能容忍锌的溶解。
经常能看到在锌浓度高于5000ppm的情况下钝化溶液仍能很好地工作。
另一方面,铁对腐蚀性能产生很大的冲击,甚至是在铁浓度低至100ppm时。
由于钝化液配方本身具有酸性,因此溶液持续地与意外进入钝化液的工件发生反应。
这就导致在钝化液中的积聚,最终会降低钝化液的寿命,增加了运作支出。
为了避免这种情况,那些已从吊具上吊下来或从筐或桶中调出来的工件应被尽快取出。
钴是常被忽视的一种金属污染来源,因为它是作为专利配方的一个组成部分而被引入的。
当钴金属以正确数量添加时,它起催化剂的作用,大大增加钝化膜厚度并提高腐蚀保护。
如果钴和铬的比率太高,则钝化膜的形成受到阻碍,腐蚀保护性受到影响。
金属污染的程度过重的症状很难探查,但可以从钝化膜的变色或“混浊性”看出来。
推荐对某些钝化液进行过滤,因为这有助于去除金属污染。
也可以通过提高溶液浓度使金属污染的问题得到暂时为轻。
还有一些专利添加剂,可用于将金属沉淀或抑制金属的溶解。
在某些情况中,过滤钝化液去除金属杂质,可有助于延长溶液的寿命。
通常利用一个20-50微米的盘或筒式过滤器可完成过滤。
推荐使用内衬聚丙烯的过滤泵。
推荐每小时将溶液周转一次。
镀层厚度一般来讲,对于一个优质的转镀涂覆需要锌的最小厚度为6微米。
厚钝化膜可除去多达1-2微米的锌镀层。
锌金属厚度小将导致FRR性能不良,在极端情况下会将电镀金属完全除去。
在低电流密度区这种情况特别明显,因为在这些区域厚度趋向于达到最低。
酸预浸在钝化前,表面不均匀或表面活性差都可能是影响转镀性能的因素。
为了提供一个光亮、活性表面,通常先使用酸预浸工序然后紧接著进行转镀过程。
当使用这个共序时,重要的是,要正确控制预浸液的化学组成,而且所用的酸要与钝化溶液兼容。
水的状态钝化前和钝化后漂洗水的状态是一个很重要但常被忽略的变量。
工艺池含有许多成分,如果它们被引入到钝化溶液中将是有害的。
来自电镀池的锌金属、氯化物或氢氧化物,以及来自预浸工序的矿物酸,都将大大降低钝化液的寿命。
硬水盐也可以扮演金属污染物的角色,缩短钝化液的寿命。
因此,应当将硬水软化或用去离子水、去矿物质水或反渗透水来替代硬水,然后才能将这些水用于制备钝化溶液。
钝化后的漂洗质量也是同样重要的。
厚钝化膜通常具有较高的固体含量和表面张力,因而使漂洗水快速的被污染。
随著漂洗液中浓度的增加,溶液开始越来越多地具有钝化液性质了。
结果是,在现有的转镀膜上又生成了质量差的转镀膜,这就大大减弱了总体性能。
在解决任何钝化工艺故障时,要确信漂洗水的流速、搅动和沉浸时间都是足够用来提供足够的漂洗的。
烘干温度当六价铬钝化膜受到高热时,它们通常在盐雾测试中表现不良。
这是因为,六价铬系统一受到热就发生脱水并产生裂缝,因而露出下面的镀金属。
所以白色锈蚀出现的相当快。
试验显示,锌、锌-铁、锌-钴镀层上的六价铬钝化膜在接触到高温后将丧失多达90%的原始腐蚀保护。
耐热性是某些三价铬钝化膜的主要优点,但并不是所有系统都有这个优点。
影响耐热能力的因素包括:水和作用的水平、是否存在面漆以及铬络合物的具体形式。
测试显示,某些高性能三价铬系统在经受150℃的高温后,其腐蚀性能并没有恶化。
然而,较长的烘干时间以及较高的烘干温度都会对性能产生不利影响。
处置即使对工艺进行了最有力的控制,最终钝化溶液也会达到其寿命终点。
而且必须废弃。
不存在六价铬,就使处置工作变得更加简单,因为三价铬很容易作为氢氧化物被沉淀出来。
偶尔地,三价铬钝化溶液可能含有有机酸,有机酸会将某些金属络合。
在这些情况中,添加铁(以硫酸铁的形式)可便于金属沉淀出来。
典型的废物处理循环可如下所示:1.用水以1:1(1:更多)的比例稀释工作溶液。
2.添加%硫酸铁(液体50%等级)。
3.给铁一定的时间使其在低pH值()下与钝化液发生反应。
机械混合或空气搅动30分钟对这个过程有帮助。
4.利用液体苛性钠将溶液中和到pH值达到,使用一个正确校准的pH仪表测量。
5.添加足够的聚合电解质絮凝剂,同时伴随轻微的混合。
6.发生絮凝和沉淀。
在采用任何废物处理的建议前,用户需要先了解当地/州/联邦有关现场或非现场的废物处理法规,因为这些法规可能要求获得处理废物的许可。
如果有矛盾,要以这些法规为准。
故障处理指南。