直流-直流变换器
- 格式:ppt
- 大小:2.04 MB
- 文档页数:52
dc-dc变换器原理
DC-DC变换器是一种电力电子设备,它可以将直流电压转换为不同电压等级的直流电压输出。
其工作原理基于电感和电容的储能特性。
当输入电压施加在变换器的输入端口上时,输入电流开始流过电感。
由于电感的特性,电流变化率有限,电感中的电能会增加。
然后,输入电压被关闭,使电感的磁场崩溃,导致电感中的电流减小。
由于电感的自感特性,电压会增加,从而产生一个与输入电压不同的输出电压。
在DC-DC变换器中,电容被用于平滑输出电压。
当电感储能结束时,电容开始释放其储存的能量,以供应输出负载。
通过控制开关频率和占空比,可以实现对输出电压的调节。
DC-DC变换器还运用了反馈控制系统,通过监测输出电压与期望电压之间的差异来调整开关频率和占空比,从而实现对输出电压的稳定控制。
多种DC-DC变换器拓扑结构和控制策略被用于不同应用场景中,以满足不同的功率转换需求和效率要求。
总之,DC-DC变换器利用电感和电容的储能特性,通过控制开关操作,实现对直流电压的转换和稳定调节。
这使得它在许多电子设备中得到广泛应用,如电源适配器、电动汽车、太阳能系统等。
简述直流pwm变换器电路的基本结构直流PWM(脉冲宽度调制)变换器是一种将直流电源转换为可变直流电压的电路,在许多电力电子应用中被广泛使用,如直流-直流转换器、直流-交流变换器、直流-无刷驱动器等。
其基本结构包括开关器件、变压器、滤波器和控制器等组成。
开关器件是直流PWM变换器的核心部件,通常是功率MOSFET(金属-氧化物-半导体场效应晶体管)或IGBT(绝缘栅双极型晶体管),用于将输入直流电压通过开关控制转换成脉冲电压。
变压器是直流PWM变换器中非常重要的部件,用于升降电压以适应不同的负载需求。
它由输入绕组和输出绕组组成,通过调整绕组的匝数比可以实现输入电压到输出电压的变换。
滤波器是直流PWM变换器中的关键部件,用于滤除开关器件产生的高频脉冲,并提供稳定的输出电压。
典型的滤波器包括电容器和电感器组成的LC滤波器,其工作原理是通过电容器储存电能和电感器释放电能来抑制高频噪声。
控制器是直流PWM变换器的智能部件,用于监测负载和输入电压,并相应地控制开关器件的开关频率和占空比,以稳定输出电压。
控制器通常由比较器、反馈电路和脉宽调制(PWM)信号发生器组成,其中比较器用于比较输出电压和参考电压,反馈电路用于将误差信号反馈给PWM信号发生器,进而调整开关频率和占空比。
基本上,直流PWM变换器可以分为两种类型:降压型和升压型。
降压型直流PWM变换器的输入电压大于输出电压,通过控制开关器件的导通和截止来实现将输入电压降低到较低的输出电压。
当开关器件导通时,输入电压通过变压器传导到输出端,产生输出电压;当开关器件截止时,变压器中的能量通过二极管的反向恢复到输入端。
升压型直流PWM变换器的输入电压小于输出电压,通过控制开关器件的导通和截止来实现将输入电压升高到较高的输出电压。
当开关器件导通时,输入电压经过变压器升压到输出电压;当开关器件截止时,变压器中的能量通过电感器的反向恢复到输出端。
在实际应用中,直流PWM变换器的运行稳定性和效率是非常重要的考虑因素。
第3章 直 流 变 换 器直流变换器,即直流-直流变换器,是将一种直流电源变换为另一种具有不同输出特性的直流电源。
直流变换是为解决系统效率,特别是大功率系统的效率而提出的解决方案。
它是一种将直流电能变换成负载所需的电压或电流可控的直流电能的电力电子装置。
它通过对电力电子器件的快速通、断控制而把恒定直流电压斩成一系列的脉冲电压,通过控制比的变化来改变这一脉冲序列的脉冲宽度,以实现输出电压平均值的调节,再经输出滤波器滤波,在被控负载上得到电压或电流可控的直流电能。
直流变换器按照电路拓扑可以分为基本的不带隔离变压器的直流变换器和带隔离变压器的直流变换器两大类。
基本的直流变换器是通过开关管,再经电容、电感等储能滤波元件将输入的直流电压变换为符合负载要求的直流电压或电流。
这种变换器适用于输入输出电压等级相差不大,且不要求电气隔离的应用场合。
基本的直流变换器有多种电路接线形式,根据其电路结构及功能分类,本章将讨论以下四种基本类型:(1)Buck 直流变换器;(2)Boost 直流变换器;(3)Buck-Boost 直流变换器;(4)Boost-Buck 直流变换器。
其中,(1)、(2)两种是直流变换器最基本的结构;(3)、(4)是前两种基本结构的组合形式。
本章将详细分析上述四种变换器的基本原理和稳态工作特性,分析过程中,为便于理解把变换器中的功率器件看作理想开关,并且对电路中电感和电容的损耗忽略不计。
此外还假定变换器的直流输入电源为理想的恒压电压源。
直流变换器输出端所带负载常用一等效电阻来表示。
而在直流电机驱动中,电机负载可表示为直流电压与绕组电阻和电感的串联等效电路。
3.1 基本直流变换器3.1.1 Buck 直流变换器Buck 变换器(又称作降压变换器)就是将直流输入电压变换成相对低的平均直流输出电压。
它的特点是输出电压比输入的电压低,但输出电流比输入电流高。
它主要用于直流稳压电源中,在这些应用场合,变换器的输出电压可根据输入电压和负载阻抗进行调节。
直流-直流(DC/DC)变换器DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
还有Sepic、Zeta电路。
上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。
直流-直流变换器功能模块介绍直流-直流变换器(DC-DC converter)内部一般具有PWM(脉宽调制)模块,E/A(差错放大器模块),比较器模块等几大功能模块。
直流-直流变换器工作原理其工作原理为:输出经过FB(反馈电路)接到FB pin,反馈电压VFB与设定好的比较电压Vcomp比较后,产生差错电压信号,差错电压信号输入到PWM模块,PWM根据差错电压的大小调节占空比,从而达到控制输出电压的目的,振荡器的作用是产生PWM工作频率的三角波,三角波经过斩波电压斩波后,产生方波,其方波就是控制MOSFET的导通时间从而控制输出电压的。
直流变换器调制方法开关管导通时,输出电压等于输入电压Ud;开关管断开时,输出电压等于0。
输出电压波形如上图所示,输出电压的平均值Uo为(4-1)式中Ts—开关周期D—开关占空比, 变负载端输出电压有3种调制方法:1.开关周期Ts保持不变,改变开关管导通时间ton。
也称为脉宽调制(PWM)。
2.开关管导通时间ton保持不变,改变开关周期Ts。
3. 改变开关管导通时间ton,同时也改变开关周期Ts。
方式1的PWM是最常见的调制方式,这主要是因为后2种方式改变了开关频率,而输出级滤波器是根据开关频率设计的,显然,方式1有4-2(a)是脉宽调制方式的控制原理图。
dcdc电路设计
dcdc电路设计,指的是直流/直流变换器的电路设计。
它是一种利用半导体器件来实现电压转换的电路,其中由放大器、滤波器、开关元件等组成的复杂电路结构,能够完成将输入输出之间的电压和电流,从而满足应用需要。
DC-DC变换器是一种经典的多用途电子设备,在工业、航空航天、医疗、安防等领域都有广泛的应用。
它们可以在不同的电压和功率范围内进行输入和输出转换,保证系统正常工作,满足设备的需求。
dcdc电路设计的主要目的是通过控制输入和输出电压来实现电压的转换,从而使系统能够正常运行,并达到理想的效果。
DC-DC变换器的电路设计主要包括以下几个方面:
1. 选择合适的电路元件,如开关元件、放大器、滤波器等;
2. 选择合适的变换器结构,如单端输入、双端输入、三端输入等;
3. 确定电路的额定电压、额定功率、频率等参数;
4. 分析和优化电路的纹波、噪声、谐振、负载特性等性能参数;
5. 选择合适的电路板材料,确定电路的布局及尺寸。
DC-DC变换器的电路设计是一个非常复杂的系统工程,需要综合考虑多个因素,才能实现理想的效果。
在设计电路时,必须根据应用场景选择合适的电路元件,同时明确额定参数,确保电路性能稳定可靠,满足系统应用需求。
双向DCDC变换器设计双向直流-直流(DC-DC)变换器是一种电力电子设备,能够实现两个不同电压等效电路之间的能量转换和传输。
这种变换器常用于电池系统、节能转换系统和电网隔离系统等应用中。
本文将介绍双向DC-DC变换器的设计原理、工作原理和性能评估。
一、设计原理双向DC-DC变换器可以分为两个部分:升压变换器和降压变换器。
升压变换器将低电压输入提升为较高电压输出,而降压变换器则将高电压输入降压为较低电压输出。
这两个变换器可以通过一个可调节的开关来实现输出电压的控制。
在实际应用中,通过PWM(脉宽调制)技术来控制开关的导通时间,从而实现输出电压的调节。
二、工作原理双向DC-DC变换器的工作原理如下:1.当升压变换器开关导通时,输入电压经过电感储能,同时输出电容储能开始将能量传递到输出端。
2.当升压变换器开关断开时,储能元件的电感和电容开始释放储存的能量,使输出电压保持稳定。
3.当降压变换器开关导通时,输入电压先通过输出电容释放能量,同时电感储能元件开始储存电能。
4.当降压变换器开关断开时,储能元件释放储存的能量,实现输出电压的稳定。
三、性能评估设计双向DC-DC变换器时需要评估以下几个关键性能参数:1.效率:双向DC-DC变换器的效率主要取决于开关的损耗和传输效率。
通过合理选择开关元件和功率传输电路,可以提高变换器的效率。
2.响应时间:双向DC-DC变换器需要能够快速响应输入电压和输出负载的变化。
降低电路和控制系统的响应时间可以提高变换器的动态性能。
3.稳定性:双向DC-DC变换器需要具有良好的稳定性,以确保输出电压在不同负载条件下保持稳定。
在设计过程中应考虑噪声抑制和滤波技术。
4.安全性:在设计双向DC-DC变换器时,需要考虑过电流、过压和过温等保护功能,以防止电路损坏和事故发生。
在实际设计过程中,还需要考虑其他因素,如电路拓扑选择、元件选择、控制算法和布局布线等。
针对不同的应用需求,可能需要做出不同的设计决策。
直流变换器工作原理小伙伴们!今天咱们来唠唠直流变换器这个超有趣的东西。
直流变换器呢,就像是一个超级魔法师,能把一种直流电压变成另外一种直流电压。
这可太酷了,就好像把一个小盒子里的东西变个模样再放到另一个小盒子里一样。
那它到底是怎么做到的呢?这得从它的内部结构说起啦。
直流变换器里面有好多小零件,它们就像一个小团队一样合作得特别默契。
咱们先来说说电感这个小成员。
电感呀,就像是一个小仓库,它可以储存能量呢。
当电流通过电感的时候,电感就开始储存电能啦,就像小松鼠储存松果一样,把电能一点一点地攒起来。
还有电容这个小可爱。
电容就像是一个小水库,它可以储存电荷。
当直流变换器工作的时候,电容就起到了稳定电压的作用。
如果电压有波动,就像小水波动荡一样,电容就能把这些波动给抚平,让电压变得更稳定。
那在直流变换器里,还有一个非常重要的东西,那就是开关管。
这个开关管就像一个小门卫,它一会儿打开,一会儿关上。
当开关管打开的时候,电流就可以通过电感流向负载,同时电感开始储存能量。
这时候,电容也在旁边帮忙稳定电压呢。
可是当开关管突然关上的时候,有趣的事情就发生了。
电感因为之前储存了能量,它可不想就这么把能量憋在自己肚子里呀。
于是,电感就会释放它储存的能量,继续给负载供电。
这个过程就像是一个接力赛,开关管和电感配合得超级好。
你看,通过这样不断地打开和关闭开关管,直流变换器就能够把输入的直流电压进行调整,变成我们想要的直流电压啦。
而且呀,直流变换器还有不同的类型呢。
有一种是降压型的直流变换器,就像是把一个高高的台阶变成矮矮的台阶一样,把高的直流电压降下来,变成比较低的直流电压。
这种在很多电子设备里都很常见呢,比如说手机充电器,它就把家里的高电压变成手机能接受的低电压,这样手机才能安全地充电呀。
还有一种是升压型的直流变换器。
这就像是把小土坡变成大山一样,把低的直流电压升高。
像有些移动电源,当它给一些需要高电压的设备充电的时候,就会用到升压型的直流变换器,把它自身的低电压升高到合适的数值。
C-D C变换器原DC/DCConverterPrinciple池输出的是直流电,是不是可直接作为直流电源使用呢,对于对电压没有准确要求的微、小型用电设备是可以的,如计算器、玩具等。
太阳电池输出电压伏器件的连接方式与数量,并与负载大小与光照强度直接有关,不能直接作为正规电源使用。
通过DC-DC变换器可以把太阳电池输出的直流电转换成稳电压的直流电输出。
DC-DC变换器就是直流——直流变换器,是太阳能光伏发电系统的重要组成部分,下面就其原理作简单介绍。
-DC变换基本原理换电路主要工作方式是脉宽调制(PWM)工作方式,基本原理是通过开关管把直流电斩成方波(脉冲波),通过调节方波的占空比(脉冲宽度与脉冲周期之比电压。
压斩波电路波电路简单,是使用广泛的直流变换电路。
图1左上部是一个斩波基本电路,Ud是输入的直流电压,V是开关管,UR是负载R上的电压,开关管V把d斩成方波输出到R上,图1右上部绿线为斩波后的输出波形,方波的周期为T,在V导通时输出电压等于Ud,导通时间为ton,在V关断时输出电压等关断时间为toff,占空比D=ton/T,方波电压的平均值与占空比成正比。
图1下部绿线为连续输出波形,其平均电压如红线所示。
改变脉冲宽度即可改变输,在时间t1前脉冲较宽、间隔窄,平均电压(UR1)较高;在时间t1后脉冲变窄,平均电压(UR2)降低。
固定方波周期T不变,改变占空比调节输出PWM)法,也称为定频调宽法。
由于输出电压比输入电压低,称之为降压斩波电路或Buck变换器。
图1?DC-DC变换基本原理冲不能算直流电源,实际使用要加上滤波电路,图2是加有LC滤波的电路,L是滤波电感、C2是滤波电容、D是续流二极管。
当V导通时,L与C2蓄能R输电;当V关断时,C2向负载R输电,L通过D向负载R输电。
输出方波选用的频率较高,一般是数千赫兹至几十千赫兹,故电感体积很小,输出波大。
图2?降压型DC-DC变换电路输出电压UR=DUd,D是占空比,值为0至1。