常微分方程积分曲线
- 格式:ppt
- 大小:782.56 KB
- 文档页数:40
求 曲 线1、求过点(1,2)的曲线,其上每点的切线,从原点到切点的向径和x 轴围成以x 轴为底的等腰三角形。
2、3、456、设曲线L 的极坐标方程为(),(,r r M r θ=若极径0OM ,OM 与曲线L 的一半,求曲线L 的方程。
7、设函数()(0)y x x ≥二阶可导,且'()y x (,)P x y 作该曲线的切线及x 1S ,区间[0,]x 上以()y y x =为曲边的曲边梯形面积记为2S ,并设122S S -恒为1,求此曲线()y y x =的方程。
8、设()y y x =是一向上凸的连续曲线,其上任意一点(,)x y ,且此曲线上点(0,1)处的切线方程为1y x =+,求该曲线的方程,并求函数()y y x =的极值。
9、求xoy 平面上的一曲线,使其过每点的切线同该点的向径及oy 轴一起构成一个等腰三角形。
10、求一曲线,它的切线在坐标轴间的线段长等于常数a 。
11、设曲线y=f (x)上任意点M(x,y )到坐标原点的距离等于曲线在M 点切线的纵截距,已知曲线过(1,0)点,求此曲线的方程。
求 曲 线 答 案1、解:设曲线上一点(x,y )则切线与x 轴的交点为(2x,0) y从而切线斜率为∴y y x x y x y ''=-=-414即 A (x,y ) 从而xy=c 又过点(1,2),故xy =22、解:设曲线上任取一点(x,y )则点的切线与y 轴的截点为(0,2x ) 于是∴yy xxyxy''=-=-414即故y e c e dx x c x c x xdxxdxxdx=⎰-⎰=-⎰=--⎰111444[][][ln]3、解:设曲线上任取一点(x,y)则该点的切线与y轴的截点为(0,x)于是∴yy xxyxy''=--+=3130即故y e c e dx x c x c x xdxxdxxdx=⎰-⎰=-⎰=--⎰111333[][][ln]4、解:设曲线上任取一点(x,y)则该点的切线与y轴的截点为(0,3x)于是∴yy xxyxy''=--+=3130即故y e c e dx x c x c x xdxxdxxdx=⎰-⎰=-⎰=--⎰111333[][][ln]5、解:设曲线上任取一点(x,y)y则点的切线与y轴的截点为(0,4x)于是∴yy xxyxy''=-=-414即故y e c e dx x c x c x xdxxdxxdx=⎰-⎰=-⎰=--⎰111444[][][ln]6、解:由已知条件得2001122r dθθθθ=⎰⎰*)两边对θ求导得2r=,即'r=±,从而dθ=±。
常微分课后答案第一章yx C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故xCx C y ωωsin cos 21+=为方程的解.(6)yB x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxyd ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解:(1)xxy sin =,x y y x cos =+'; (2)212x Cy -+=,xxy y x2)1(2=+'-(C 是任意常数);(3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)xe y =,xx xe ye y ey 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y yy ;(6)xy 1-=,1222++='xy y x y x ; (7)12+=xy ,xy x yy 2)1(22++-=';(8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos x xx x y -=',所以xxxx x x x y y x cos sin sin cos =+-=+'.(2)由于21xCx y --=',故xx C x xCx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于xCe y =',xCe y ='',于是022=+-=+'-''x x x Ce Ce Ce y y y .(4)由xe y =',因此xx x x x x x x e e e e e e ye y e y 22212)(2-=⋅-+⋅=-+'--.(5)因为x y cos =',所以cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y . (6)从21xy =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到xy x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='.4.给定一阶微分方程x dx dy 2=, (1)求出它的通解; (2)求通过点)4,1(的特解; (3)求出与直线32+=x y 相切的解;(4)求出满足条件210=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 Cx xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=xy .(3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=xy .(4)由231)31()(131210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=xy .(5)如图1-1所示.-3-2-1123x24681012y图1-15.求下列两个微分方程的公共解: (1)422x x yy -+=';(2)2422y y x xx y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即 022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则B Ay -=',代入原方程有02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或)(22=-++B AB C x B A BA ,所以,⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C B AB A ,得到⎩⎨⎧==0,0C A 或B C A -==.所求直线积分曲线为0=y 和1+=x y . 7.微分方程32224xy y y x=-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是),(=--y x F .由于),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xyy y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代yx ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y yx -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由100C 冷至60C ,那么,在多久的时间内,这个物体的温度达到30C ?假设空气的温度为20C . 解 设物体在时刻t 的温度为)(t u u =,20=au,微分方程为)(au u k dtdu --=,解得ktaCe u u -+= ,根据初始条件10000===u ut ,得80=-=a u uC ,因此 kta a e u u u u --+=)(0,根据60,201===uu t ,得到ka a e u u u u2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t e u 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到30C .9.试建立分别具有下列性质的曲线所满足的微分方程:(1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ;(3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ;(4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分;(5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项;(7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-yy x 和y x y '-).解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为yy x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有2y x y y '-=,或0=+'y y x .(5)由(2),2xy xy='-.(6)同样由(2),2yxy xy +='-,或xy xy='-2.(7)易得kxy='(k为常数且0>k).。
常微分方程课程总结第一章 绪论§1.2微分方程的基本概念(1)常微分方程偏微分方程微分方程:凡含有未知函数的导数或微分的方程叫微分方程。
常微分方程:未知函数为一元函数的微分方程。
()(),dyaxy a dxdy p x y Q x dx=+=为常数 偏微分方程:未知函数为多元函数,从而出现偏导数的微分方程。
()22,22242u uf x y x y u u y x ∂∂+=∂∂∂∂=∂∂(2)线性与非线性一般n 阶线性微分方程具有形式:(等式左面全是一次有理整式)()(1)11()()()().n n n n y a x y a x y a x y f x --'++++=(3)解和隐式解微分方程的解:代入微分方程能使方程成为恒等式的函数. 隐式解:Φ(x,y )=0 (4)通解和特解通解:微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数同.) 特解: 确定了通解中任意常数以后的解. 初始条件:用来确定任意常数的条件.初值问题: 求微分方程满足初始条件的解的问题.(5)积分曲线:微分方程任一特解的图形都是一条曲线,称为微分方程的积曲线。
第二章 一阶微分方程的初等解法§2.1 变量分离方程与变量变换2.1.1、变量分离方程)()(y x f dxdyϕ= ⎰⎰+=c dx x f y dy )()(ϕ 2.1.2、可化为变量分离方程的类型1.形如)(x y g dx dy =,称为齐次微分方程,令u =xy ,即y =ux ,于是dx dy =x dx du +u ,代入原方程,变形为x dx du +u =g (u ),整理得dx du =xuu g -)(2.形如222111c x b x a c x b x a dx dy ++++= 的方程也可经变量变换化为变量分离方程(1)常数)(212121k c c b b a a ===,方程化为dxdy =k ,有通解c kx y += (2)≠==k b b a a 212121c c 情形,令u =y b x a 21+,这时有dx du =dx dy b a 22+=2122c u c ku b a +++是分离变量方程 (3)2121b b a a ≠情形,若21c c 、不全为零,方程右端分子、分母都是x 、y 的一次多项式,因此111c x b x a ++=0,222c y b x a ++=0,交点(),βα,令X =x -α,Y =y -β,化为011=+Y b X a , 022=+Y b X a 。
什么叫做积分曲线引言在数学中,积分曲线是一个重要的概念,它在微积分和几何学中发挥着关键作用。
积分曲线是由一个给定的微分方程定义的曲线,能够帮助我们理解函数的性质和行为。
本文将介绍积分曲线的概念、性质和应用,并探讨它在数学领域中的重要性。
什么是积分曲线积分曲线是一个给定微分方程dy/dx=f(x,y)的解曲线。
换句话说,它是通过微分方程描述的一族曲线,满足在每一点的切线斜率等于f(x,y)。
积分曲线可以帮助我们理解微分方程的解在平面上的表现。
积分曲线的性质•唯一性:对于给定的初始条件,微分方程通常会有唯一的积分曲线与之对应。
这意味着通过给定的初始点,我们可以确定唯一的积分曲线。
•存在性:在一些特殊条件下,不存在唯一的积分曲线。
这取决于微分方程的性质以及初值问题的设定。
•解析性:积分曲线通常是通过数值方法求解微分方程得到的,但在一些简单的情况下,我们可以找到解析解析解,即用一个公式表示积分曲线。
积分曲线的应用积分曲线在数学和物理学中有着广泛的应用,例如:•物理建模:在物理学中,我们经常需要解决微分方程来描述自然现象。
积分曲线能够帮助我们理解这些微分方程的解以及物理系统的行为。
•工程应用:在工程和技术领域,积分曲线可以用来建立模型、预测系统行为等。
例如,用微分方程描述电路中的电流变化,通过积分曲线来解决这些问题。
•数值计算:积分曲线也可以通过数值方法求解,为我们提供了一种近似解法,尤其是在复杂微分方程的求解中。
积分曲线的重要性积分曲线是微分方程的重要解之一,它们不仅帮助我们理解微分方程的解析性质,还能够应用于现实世界的问题中。
通过研究积分曲线,我们可以深入理解微分方程的解的性质,并为应用数学和物理学提供有效的工具。
结论积分曲线在数学领域中扮演着重要的角色,它通过微分方程的解来描述曲线的特性和性质。
在现实世界中,积分曲线也有着广泛的应用,帮助我们解决各种复杂的问题。
通过学习和理解积分曲线,我们能够更深入地理解微积分和微分方程的应用,为解决各种问题提供有力的数学工具。
高等数学2知识点总结和例题高等数学2课程主要包含了微积分的高级内容,如多元函数微积分、向量场、曲线积分、面积积分、常微分方程等。
本文将对这些知识点进行总结,并提供一些例题和解答,以供大家参考。
1. 多元函数微积分1.1 偏导数多元函数的偏导数定义:设函数z=f(x,y),在点(x0,y0)的邻域内,当y=y0时,f(x,y)关于x的导数存在,则称该导数为函数f(x,y)在点(x0,y0)处的偏导数,记为fx(x0,y0)。
偏导数的计算方法:对于多元函数z=f(x,y),求其在点(x0,y0)处的偏导数fx(x0,y0)时,将y视为常数,对x求一阶导数即可。
1.2 全微分全微分的定义:设函数z=f(x,y)在点(x0,y0)连续且存在偏导数,则称与∆z=f(x,y)-f(x0,y0)满足的关系式∆z=A∆x+B∆y+o(∆r),其中A=fx(x0,y0),B=fy(x0,y0),∆r=√[(∆x)^2+(∆y)^2]称作函数z=f(x,y)在点(x0,y0)处的全微分。
全微分的计算方法:计算函数z=f(x,y)在点(x0,y0)处的全微分时,首先求出其偏导数,然后用偏导数构造微分式,即dz=fx(x0,y0)dx+fy(x0,y0)dy。
1.3 链式法则链式法则的定义:设函数z=f(x,y)在点(x0,y0)有连续的偏导数,并且u=g(x,y)在点(u0,v0)有连续的偏导数,则复合函数z=f[g(x,y)]在点(x0,y0)具有偏导数,且有:∂z/∂x = (∂z/∂u)·(∂u/∂x) + (∂z/∂v)·(∂v/∂x)∂z/∂y = (∂z/∂u)·(∂u/∂y) + (∂z/∂v)·(∂v/∂y)其中(∂u/∂x)、(∂u/∂y)、(∂v/∂x)、(∂v/∂y)可以由u=g(x,y)的偏导数求得,而(∂z/∂u)、(∂z/∂v)可以由z=f(u,v)的偏导数求得。
习 题 2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂x Q , 所以 xQy P ∂∂≠∂∂ 即 原方程不是恰当方程.2.0)2()2(=+++dy y x dx y x解:,2),(y x y x P += ,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂x Q 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax (a,b 和c 为常数). 解:,),(by ax y x P += ,),(cy bx y x Q +=则,b y P =∂∂,b x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -= ,),(cy bx y x Q -=则,b y P -=∂∂,b x Q =∂∂ 因为 0≠b , 所以xQ y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P += u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye x x x解: xy e y x Q y e ye y x P x x x 2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e x Q x +=∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e x x x 两边积分得:.)2(2C xy e y x =++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则02)ln (2=-++ydy dx x xdy dx xy两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy x Q =∂∂ 所以 当xQy P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212t s s Q -=∂∂ 所以xQ y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.10.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy x Q '=∂∂ 所以xQy P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22 (其中F 为f 的原积分).习 题 2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::(1)yx dx dy 2=解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .(2))1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .(3)0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .(4)221xy y x dxdy+++=; 解:原方程即为:2(1)1dyx dx y=++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. (5)2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. (N k ∈) (6)21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ② 1±=y 也是方程的解.(7).yxe y e x dx dy +-=- 解.原方程即为:dx e x dy e y xy)()(--=+两边积分得:c e x e y x y ++=+-2222, 原方程的解为:c e e x y x y =-+--)(222.2. 解下列微分方程的初值问题.(1),03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即 c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y .(2).0=+-dy ye xdx x, 1)0(=y ;解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x .(3).r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln , 因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.(4).,1ln 2yx dx dy+= 0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=(5).321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. (1).x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:(2).ay dxdy=, (常数0≠a ); 解:①当0≠y 时,原方程即为:dx aydy= 积分得:c x y a +=ln 1,即 )0(>=c ce y ax②0=y 也是方程的解. 积分曲线的简图如下:y(3).21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:(4).n y dx dy =, )2,1,31(=n ; 解:①0≠y 时,ⅰ)2,31=n 时,原方程即为 dx ydyn =, 积分得:c y n x n=-+-111.ⅱ)1=n 时,原方程即为dx ydy=积分得:c x y +=ln ,即)0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意及导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln 21y b y b b y b b b x ----++=.5. 设微分方程)(y f dxdy=(2.27),其中f(y) 在a y =的某邻域(例如,区间ε<-a y )内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程(2.27)的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)((发散). 证明:(⇒)首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点(00,y x )恰有方程(2.13)的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. (*) 这些积分曲线彼此不相交. 其次,域1R (2R )内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
对于微分方程初值问题()=x y dy f dx,, ()00y x =y的解在x y 平面上是一条曲线,称为该微分方程的积分曲线。
积分曲线上一点(),x y 的切线斜率等于函数f 在点(),x y 的值,从初始点()000,P x y 出发,向该点的切线方向推进到下一个点()111,P x y ,然后依次做下去,得到后面的未知点。
一般地,若知道(),n n n P x y 依上述方法推进到点()111,n n n P x y +++,则两点的坐标关系为:()11,n n nn n ny y fxy x x ++-=-即()1,n n n n y y hf x y +=+这种方法就是欧拉(Euler )方法。
当初值0y 已知,则n y 可以逐步算出()1000,y y hf x y =+ ()2111,y y hf x y =+()111,n n n n y y hf x y ---=+对微分方程()=x y dy f dx,从n x 到1n x +积分,那么有()()()()11,n nx n n x y x y x f t y t dt ++=+⎰【3】现在用左矩形公式()(),n n hf x y x 代替()()1,n nx x f t y t dt +⎰,n y 代替()n y x ,1n y +代替()1n y x +就得到了欧拉方法。
如果用右矩形公式()()11,n n hf xy x ++去代替右端积分,则得到另外一个公式,该方法就称为后退的欧拉方法,其公式为()111,n n n n y y hf x y +++=+【4】欧拉公式与后退的欧拉公式的区别在于欧拉公式是关于1n y +的一个直接计算公式,然而后退的欧拉公式右端含有1n y +,所以它实际上是关于1n y +的一个函数方程。
接下来考察后退的欧拉法的迭代公式。