二次型的几何分类及其应用
- 格式:doc
- 大小:1.54 MB
- 文档页数:35
二次型的应用在数学的学习和应用中,二次型的理论是十分重要的.它不仅是代数中的重要理论,更是连接代数与几何的有力桥梁事实上,二次型的理论就起源于解析几何中二次曲线、二次曲面方程的化简问题.学习和理解二次型的理论不但可以对数学中的代数定理有深刻地理解,也可以对几何有更为形象的认识.因此,掌握二次型理论的有关应用问题是十分必要的.应用一 二次型理论在二次曲面分类上的应用1. 应用实例例1 判别方程124322=++z xy x 所代表的二次曲面的类型.解 方程左边为一三元二次型,不妨设22(,,)342f x y z x xy z =++,则f 的矩阵⎪⎪⎪⎭⎫ ⎝⎛=200002023A易求得A 的特征值为1,2,4321-===λλλ.由(8)式知所求曲面的标准方程为()()11212121221221=-+zy x 因此,该曲面是单叶双曲面,如图1.图1 二次曲面变换前(左图)、后(右图)的图形例2 判别方程0122222=-+-++y x yz xz xy 所代表的二次曲面的类型.解 记 ⎪⎪⎪⎭⎫ ⎝⎛=011101110A,0B ⎛ = ⎪ ⎪ ⎪⎝⎭,x U y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭则原方程可写为10T T U AU B U +-=A 的特征值及对应的标准正交特征向量分别为:21=λ,)11,1,1T Q =;)(12二重-=λ,)21,1,0T Q =-,)31,1,2TQ =-令()123,,0Q Q Q Q ⎫⎪⎪⎪==⎪⎪ 则有)1,1,2(--=diag AQ Q T ,(0,2,0)T B Q d =-作正交变换U QV =,其中111(,,)T V x y z =,则(9)式化为(2,1,1)10T V diag V dV --+-=即01221212121=----y z y x配方,得0)1(2212121=-+-z y x作平移变换12x x =,112+=y y ,12z z =,得02222222=--z y x这就是原曲面方程的标准方程,它表示一个顶点在原点,旋转轴为x 轴的圆锥面,如图2.图2 二次曲面变换前(左图)、后(右图)的图形应用二 二次型理论在多元函数极值问题中的应用应用实例例1 求函数32(,)31512f x y x xy x y =+--的极值 解 (,)f x y 的几何描述如图3.图3 的几何图形),(y x f(,)f x y 在2R 上有定义,且有连续的一阶、二阶偏导数.求解方程组⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00yfx f即⎩⎨⎧=-=-+01260153322xy y x 得到四个驻点:(2,1),(-2,-1),(2,1),(-1,-2) .进一步计算得x yfy y x f x x f 6,6,622222=∂∂=∂∂∂=∂∂即63()36x y H X y x ⎛⎫= ⎪⎝⎭矩阵()1262,1612H ⎛⎫= ⎪⎝⎭是正定矩阵,故(2,1)是极小值点,此时极值为-28;矩阵126(2,1)612H --⎛⎫--= ⎪--⎝⎭是负定矩阵,故(-2,-1)是极大值点,此时极值为28;矩阵612(1,2)126H ⎛⎫= ⎪⎝⎭,612(1,2)126H --⎛⎫--= ⎪--⎝⎭都是不定矩阵,故(1,2),(-1,-2)都不是极值点.例2 求函数222(,,)23264f x y z x y z x z y =+++-+的极值.解 (,,)f x y z 在3R 上有定义,且有连续的一阶、二阶偏导数.求解方程组000fx fy f z⎧∂=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩ 即220440660x y z +=⎧⎪+=⎨⎪-=⎩得到驻点为(-1,-1,1). 进一步计算得22222,0,0f f fx x y x z∂∂∂===∂∂∂∂∂22220,4,0f f fy x y y z ∂∂∂===∂∂∂∂∂ 22220,0,6f f fz x z y z∂∂∂===∂∂∂∂∂ 即200()040006H X ⎛⎫⎪= ⎪ ⎪⎝⎭而()H X 是正定的,所以(,,)f x y z 在(-1,-1,1)点取得极小值,此时极值为-6.(,,)f x y z 的几何描述如图4.图4 ),,(z y x f 的三维切面图应用三 半正定二次型在不等式证明中的应用举例该方法证明不等式的基本思路是:首先构造二次型,然后利用二次型半正定性的定义或等价条件.判断二次型(矩阵)为半正定,从而得到不等式[7].例1 设,a b R ∈,试证222a b ab +≥.证 要证明的不等式可写成2220a b ab +-≥,所以只需证矩阵1111A -⎛⎫= ⎪-⎝⎭半正定.由于A 的一阶、二阶主子式分别10>,0A =,所以A 半正定,从而二次型()22(,),2a f a b a b A a b ab b ⎛⎫==+- ⎪⎝⎭半正定.(,)f a b 的几何描述如图5.图5 ),(b a f 的几何图形例2 已知ABC ∆的三边分别为,,a b c ,面积为S ,试证222a b c ++≥. 证 利用余弦定理及面积公式,将问题转化为2222(,)2cos sin f a b a b a b ab C C =+++--22222(cos )a b ab C C =+-22224sin()6a b ab C π=+-+其矩阵为22sin()62sin()26C A C ππ⎛⎫-+ ⎪= ⎪ ⎪-+ ⎪⎝⎭由于A 的一阶、二阶主子式分别20>, 22664[1sin ()]4cos ()0A C C ππ=-+=+≥,所以A 半正定,从而二次型(,)f a b 半正定,即结论成立.例3(Cauchy 不等式) 设,(1,2,,)i i a b i n = 为任意实数,则))(()(121221∑∑∑===≤ni i ni i ni i i b a b a证 记22122112112122121)()(2)()(),(x b x x b a x a x b x a x x f ni i ni i i ni i ni i i ∑∑∑∑====++=+=因为对于任意1x ,2x ,都有0),(21≥x x f ,故关于1x ,2x 的二次型),(21x x f 是半正定的.因此,该二次型矩阵的行列式大于或等于0,即0121112≥∑∑∑∑====ni i ni ii ni ii ni ibb a ba a故得))(()(121221∑∑∑===≤ni i n i i n i i i b a b a .例4 证明2112)(∑∑==≥ni i ni i x x n .证 记221211(,,,)()n nT n i i i i f x x x n x x X AX ===-=∑∑ ,其中12(,,,)T n X x x x = ,111111111n n A n ---⎛⎫⎪---⎪= ⎪⎪---⎝⎭经过初等变换得:⎪⎪⎪⎪⎪⎭⎫⎝⎛--n n A 00000110~ , 于是A 的特征值为10,,,n n n -,于是A 为半正定矩阵,即二次型是半正定的,从而得12(,,,)0n f x x x ≥ ,即2112)(∑∑==≥ni i ni i x x n应用四 二次型在统计中的应用4.1 关于统计距离许多统计问题都涉及到样本点距某中心的距离,在大多数情况下,通常的欧氏距离是不能令人信服的[8].考察p 维变量12(,,,)T n X x x x = 对应p 维空间的点),,,(21p x x x M ,假设M 的位置可以变化,为了体现各个变量在变差大小上的不同以及有时存在的相关性,需要建立统计距离.定义 4.1 设p p B ⨯为正定矩阵,称12(0,)()Td M X BX =为一种距离,对于不同的B 的选择,可得到不同的统计距离.如回归诊断中使用较多的Mahalanabis 距离,Cook 距离等.为考虑问题的方便,考察2(0,)T d M X BX =,而T X BX 为正定矩阵B 的二次型.4.2 二次型在求自由度中的应用在统计学中,自由度是指总体参数估计量中变量值独立自由变化的个数.它产生于利用样本量估计参数的时候.实际上自由度也是对随机变量的二次型(也可以称为二次统计量)而言的.∑ji j i ij x x ,α的秩的大小反映了n 个变量中能自由变动的无约束变量的多少,因此我们所说的自由度就是二次型的秩[9].例1 求统计量∑=-ni i x x 12)(的自由度.解∑∑==-=-ni i n i i x n x x x 12212)(21121⎪⎭⎫ ⎝⎛-=∑∑==n i i ni i x n x∑∑==-+-=n i j i ni i x x n x n 112)1()11(AXX T其中)(21n x x x X =,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=n n nn n n n n nA 111111111111我们可以通过矩阵的初等变换求得A 的秩为1-n ,所以统计量∑=-ni i x x 12)(的自由度为1-n .应用五 二次型理论在耦合谐振子问题中的应用在量子力学、固体物理、量子光学、分子光谱等领域,经常遇到一系列的耦合谐振子问题,因此,研究耦合谐振子的解也就显得尤为重要,解决此类问题的关键是使体系的哈密顿量退耦,可以利用二次型理论构造一幺正交变换矩阵精确求解质量和频率均不相同的双膜双耦合谐振子体系的能谱[10].质量和频率均不相同的双膜双耦合谐振子体系的哈密顿量为2121222212112221212222p p x x m x m m p m p H γλωω+++++=式中λ和γ分别为坐标耦合强度和动力耦合强度,上式的哈密顿量就是一个二次型.H 的矩阵为122112121202120020022002m A m m m γγωλλω⎛⎫ ⎪⎪⎪= ⎪⎪⎪⎝⎭ 关于H ,详细的分析和讨论请参阅参考文献[10].。
二次型的几何分类及其应用田金慧内容摘要:通过对二次型的基本概念与基本理论的阐述,重点讨论了二次型的五种分类:正定二次型、半正定二次型、负定二次型、半负定二次型和不定二次型,通过具体的实例给出了分类问题的几何描述。
其次,分析并列举了二次型相关理论在实际中的一些应用,其中包括二次型标准型在二次曲面分类上的应用,由此得到了十七种二次曲面标准方程,并对典型方程给出了图形描述;同时包括二次型正定性用于求解多元函数极值问题的应用实例;还包括以实例展示半正定二次型用于不等式证明的步骤和方法。
最后,作为二次型理论应用广泛的例证,阐述了它在统计学中关于统计距离、参数估计量的自由度求解以及量子物理中关于耦合谐振子问题的应用。
在问题的研究中,采用理论分析与实例应用相结合,充分发挥数学应用软件的优势,将二次型(实)理论的内涵形象、直观、清晰地给予展现。
关键词:二次型;几何描述;正定性;实际应用1导言在数学的学习和应用中,二次型的理论是十分重要的,它不仅是代数中的重要理论,更是连接代数与几何的有力桥梁。
事实上,二次型的理论就起源于解析几何中二次曲线、二次曲面方程的化简问题。
学习和理解二次型的理论不但可以对数学中的代数定理有深刻地理解,也可以对几何有更为形象的认识。
因此,掌握二次型理论的有关应用问题是十分必要的。
但是,在现有的教材中,都只是对二次型理论的代数性质进行了一定的介绍,并没有对它的几何意义加以阐述;即使有一些书籍对它的几何性质稍有涉及,但也只是点到为止,并没有给出形象的表示,关于二次型可能的应用问题更是很少提及,然而在数学的很多分支以及一些其他学科中都或多或少地涉及到二次型有关理论的应用,如解析几何、统计学和量子物理等。
本文以二次型分类为切入点,以几何描述为主线,充分发挥数学软件的优势,将二次型有关理论的内涵加以展现。
当然,这里所讨论的二次型理论只是其中的基础,关于它的深入研究请参阅参考文献[1]。
2 二次型及其标准型所谓二次型就是一个二次齐次多项式。
数学中的二次型和正交矩阵的应用数学作为一门抽象的学科,涉及到各种各样的数学概念和数学工具。
其中,二次型和正交矩阵在数学中具有很重要的作用,可以应用于各种各样的问题中。
一、二次型二次型是指形如 $q(x) = x^TAx$ 的二次多项式,其中 $A$ 是一个 $n \times n$ 的实数矩阵,$x$ 是一个 $n$ 维实向量。
二次型在各种领域中都有广泛应用,例如在物理学中,二次型被用于描述能量函数和拉格朗日方程;在经济学中,二次型被用于描述效用函数和收益函数。
在矩阵理论中,二次型的概念很重要。
它可以用来描述和分析矩阵的性质,例如矩阵的正定性、半正定性和负定性等。
当二次型 $q(x)$ 是正定的时,表示 $A$ 是正定的。
当二次型 $q(x)$ 是半正定的时,表示 $A$ 是半正定的。
当二次型 $q(x)$ 是负定的时,表示 $A$ 是负定的。
这些性质在数学和物理中都有很多应用。
二、正交矩阵正交矩阵是指一个 $n \times n$ 的实数矩阵 $Q$,满足$Q^TQ=I$,其中 $Q^T$ 表示 $Q$ 的转置矩阵,$I$ 表示 $n$ 维单位矩阵。
正交矩阵被用于描述线性变换,它可以将一个向量从一个余弦系转化成另一个余弦系中。
例如,在三维空间中,我们可以将一个坐标系转换为另一个坐标系中,通过引入一个正交矩阵,从而将向量在不同坐标系中的表示互相转换。
这种转换在计算机图形学中非常重要,可以用来进行三维旋转和平移等操作。
正交矩阵还有一个非常重要的性质,就是它保持向量的长度和角度不变。
也就是说,如果一个向量在一个正交矩阵的作用下变换为另一个向量,那么这两个向量之间的长度和角度是不变的。
这个性质在很多领域中都有应用,例如在图像处理中,我们可以用正交矩阵来描述图像的旋转和平移操作,从而实现图像的变形和缩放。
三、应用实例二次型和正交矩阵在各种领域中都有广泛的应用。
例如,在量子力学中,二次型被用于描述自由粒子的能量函数和哈密顿量;在统计学中,二次型被用于描述方差和协方差矩阵;在机器学习中,正交矩阵被用于描述特征之间的相关性和协方差矩阵,从而可以进行特征选择和降维。
二次型的几何分类及其应用田金慧内容摘要:通过对二次型的基本概念与基本理论的阐述,重点讨论了二次型的五种分类:正定二次型、半正定二次型、负定二次型、半负定二次型和不定二次型,通过具体的实例给出了分类问题的几何描述。
其次,分析并列举了二次型相关理论在实际中的一些应用,其中包括二次型标准型在二次曲面分类上的应用,由此得到了十七种二次曲面标准方程,并对典型方程给出了图形描述;同时包括二次型正定性用于求解多元函数极值问题的应用实例;还包括以实例展示半正定二次型用于不等式证明的步骤和方法。
最后,作为二次型理论应用广泛的例证,阐述了它在统计学中关于统计距离、参数估计量的自由度求解以及量子物理中关于耦合谐振子问题的应用。
在问题的研究中,采用理论分析与实例应用相结合,充分发挥数学应用软件的优势,将二次型(实)理论的内涵形象、直观、清晰地给予展现。
关键词:二次型;几何描述;正定性;实际应用1导言在数学的学习和应用中,二次型的理论是十分重要的,它不仅是代数中的重要理论,更是连接代数与几何的有力桥梁。
事实上,二次型的理论就起源于解析几何中二次曲线、二次曲面方程的化简问题。
学习和理解二次型的理论不但可以对数学中的代数定理有深刻地理解,也可以对几何有更为形象的认识。
因此,掌握二次型理论的有关应用问题是十分必要的。
但是,在现有的教材中,都只是对二次型理论的代数性质进行了一定的介绍,并没有对它的几何意义加以阐述;即使有一些书籍对它的几何性质稍有涉及,但也只是点到为止,并没有给出形象的表示,关于二次型可能的应用问题更是很少提及,然而在数学的很多分支以及一些其他学科中都或多或少地涉及到二次型有关理论的应用,如解析几何、统计学和量子物理等。
本文以二次型分类为切入点,以几何描述为主线,充分发挥数学软件的优势,将二次型有关理论的内涵加以展现。
当然,这里所讨论的二次型理论只是其中的基础,关于它的深入研究请参阅参考文献[1]。
2 二次型及其标准型所谓二次型就是一个二次齐次多项式。
定义 在数域F 上,含有n 个变量12,,,n x x x 的二次齐次函数22212111222(,,,)n nn n f x x x a x a x a x =+++n n x x a x x a 11211222+++ +n n n n x x a 112--+ (1)称为n 元二次型,简称二次型【2】。
当ij a 为复数时,),,,(21n x x x f 称为复二次型;当ij a 为实数时,),,,(21n x x x f 称为实二次型。
本文仅讨论实二次型。
若取ij ji a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成12,1(,,,)nT n ij iji j f x x x a x xX AX ===∑ (2)其中,111212122212n n n n nn a a a a a a A aa a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,12n x xX x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,A 为实对称矩阵,称为二次型f 的矩阵也把f 叫做对称矩阵A 的二次型;同时A 的秩也称为二次型f 的秩。
定义 仅含有平方项的二次型222121122(,,,)n n n f y y y d y d y d y =+++ (3)称为二次型的标准形。
对于二次型,主要问题是:如何寻求一个可逆的线性变换⎪⎩⎪⎨⎧+++=+++=n nn n n nnn yc y c y c x y c y c y c x221112121111 (4) 将其化为标准型。
定理 任意n 元实二次型12(,,,)T n f x x x X AX =都可经正交变换X PY =化为标准形12221122T n n n f y y y Y Y λλλλλ⎛⎫ ⎪=+++=⎪ ⎪⎝⎭其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值。
例2.1 利用正交变换化二次型1212(,)2f x x x x =化为标准型。
解 二次型f 的矩阵为⎪⎪⎭⎫ ⎝⎛=0110A特征多项式为:()()211111E A λλλλλλ--==-=-+-所以A 的特征值为1,121-==λλ。
当11=λ时,解()10E A x -=得线性无关的特征向量()T1,11=ξ,单位化得T P )1,1(211=。
当12-=λ,解()10E A x --=得线性无关的特征向量()T1,12-=ξ,单位化得T P )1,1(212-=。
令()12,P P P ⎫⎪⎪== 则P 为正交矩阵。
于是,正交变换X PY =,即⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛212121212121y y x x 化二次型为标准型2221y y f -=二次型变换前后的几何描述如图1。
图1 二次型变换前(左图)、后(右图)3 二次型的分类对二次型进行分类,在理论和应用上都有重要的意义。
依二次型的正定性,可以将二次型分为以下几类:正定二次型、负定二次型、半正定二次型、半负定二次型和不定二次型等。
3.1 正定二次型和负定二次型定义3.1.1 设实二次型12(,,,)T n f x x x X AX =,(i ) 如果对于任意一组不全为零的实数n c c c ,,,21 ,都有0),,,(21>n c c c f ,称该二次型为正定二次型,且称矩阵A 为正定矩阵。
(ii )如果对于任意一组不全为零的实数n c c c ,,,21 ,都有12(,,,)0n f c c c <,称该二次型为负定二次型,且称矩阵A 为负定矩阵。
二次型正定与负定的几何描述如图2、图3。
图2 一元、二元正定二次型图3一元、二元负定二次型定理3.1.1 对于实二次型12(,,,)T n f x x x X A X =,下列条件等价:(i ) f 是正定的;(ii ) f 的标准型是2221122(0,1,2,,)n n i d y d y d y d i n +++>=;(iii ) 存在可逆实矩阵C ,且12(0,1,2,,)T i n d d C AC d i n d ⎛⎫⎪⎪=>= ⎪ ⎪⎝⎭;(iv ) 存在可逆实矩阵C ,使得C C A T =; (v ) A 的全部特征值皆大于零; (vi ) A 的各级顺序主子式皆大于零,即11110,(1,2,,)kk k kk a a A k n a a =>=。
定理3.1.2 对于实二次型=),,(21n x x x f x A x T ,下列条件等价: (i ) f 是负定的;(ii ) f 的标准型是2221122(0,1,2,,)n n i d y d y d y d i n +++<=;(iii ) 存在可逆实矩阵C ,使得C C C E C A T T =-=)(; (iv ) A 的全部特征值皆小于零;(v ) A 的奇数阶顺序主子式为小于零,而偶数阶主子式为大于零[3],即1111(1)(1)0,(1,2,,)kk kk k kk a a A k n a a -=->=。
例3.2.1 判别二次型222123123121323(,,)55484f x x x x x x x x x x x x =+++--的正定性。
解 二次型f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=524212425A01,01,052221121111>=>=>=A a a a a a根据定理3.1.1,知f 为正定二次型。
f 的几何描述如图4。
图4 f 的三维切面图例3.1.2 判别二次型222(,,)56444f x y z x y z xy xz =---++的正定性。
解 二次型f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=402062225A080,026,052221121111<-=>=<-=A a a a a a根据定理3.1.2,知f 为负定二次型。
f 的几何描述如图5。
图5 f 三维切面图3.2 半正定二次型和半负定二次型定义3.2.1 设实二次型12(,,)T n f x x x X AX =,(i ) 如果对于任意一组不全为零的实数n c c c ,,,21 ,都有12(,,,)0n f c c c ≥,称该二次型为半正定二次型,且称矩阵A 为半正定矩阵。
(ii ) 如果对于任意一组不全为零的实数n c c c ,,,21 ,都有12(,,,)0n f c c c ≤,称该二次型为半负定二次型,且称矩阵A 为半负定矩阵。
二次型半正定与半负定的几何描述如图6(二元二次型)。
图6二元半正定(左图),二元半负定(右图)定理3.2.1 对于实二次型12(,,)T n f x x x X A X =,下列条件等价:(i ) f 是半正定的;(ii )f 的标准型是2221122(0,1,2,,)n n i d x d x d x d i n +++≥=;(iii ) 存在可逆实矩阵C ,且12(0,1,2,,)T i n d d C AC d i n d ⎛⎫⎪⎪=≥= ⎪ ⎪⎝⎭;(iv )存在实矩阵C ,使得C C A T =; (v ) A 的全部特征值皆大于或等于零; (vi )A 的所有主子式皆大于或小于零。
定理3.2.2 对于实二次型12(,,)T n f x x x X A X =,下列条件等价[3]:(i ) f 是半负定的;(ii )存在实矩阵C ,使得C C C E C A T T =-=)(; (iii ) A 的全部特征值皆小于或等于零;(iv )A 的奇数阶主子式皆小于或等于零,而偶数阶主子式皆大于或等于零[3],即),,2,1(,0)1(1111n r a a a a rrr rr=≥-。
3.3 不定二次型定义3.3.1 设实二次型12(,,)T n f x x x X A X =,如果f 既不是正定的,也不是负定的,则称该二次型为不定二次型。
例3.3.1 判定二次型2222(,),0,0x y f x y a b a b=->>的正定性。
解 易知所给二次型为不定二次型,其几何描述如图7。
图7 3,4a b ==时的几何图形例3.3.2 判定二次型(,)f x y xy =的正定性。
解 易知所给二次型为不定二次型,其几何描述如图8。
图84 二次型理论在二次曲面分类上的应用4.1 理论分析二次曲面方程的一般形式[4]为2221122331212121232222220a x a y a z a xy a xz a yz b x b y b z c +++++++++= (5)令)(ij T a A A ==,(,,)T U x y z =,123(,,)T B b b b =,则上述方程可以写为20T T U AU B U c ++= (6)其中(,,)T f x y z U AU =就是一个二次型。