机器学习非参数方法
- 格式:pptx
- 大小:801.71 KB
- 文档页数:73
非参数bootstrap方法
非参数bootstrap方法是一种统计学中的重采样技术,用于估计参数的分布或统计量的抽样分布。
它可以应用于各种统计学方法,包括回归分析、假设检验和置信区间估计等。
这种方法的基本思想是通过反复地从原始数据集中抽取子样本,并基于这些子样本来估计参数或统计量的分布。
每个子样本可以有放回地抽样或无放回地抽样,然后利用这些子样本来计算参数或统计量的估计值。
通过对多个子样本进行抽样和计算,可以得到参数估计值或统计量的抽样分布,从而得到参数的置信区间或进行假设检验。
非参数bootstrap方法的优点在于它不需要对数据的分布做出假设,因此适用于各种类型的数据。
它还可以提供对参数估计值或统计量的稳健性评估,可以帮助减少估计误差和提高结果的可靠性。
但是,非参数bootstrap方法的计算成本较高,尤其是对于大规模数据集来说,需要大量的计算资源和时间。
教学大纲《机器学习理论(双语)》教学大纲课程编号:111103A课程类型:□通识教育必修课□通识教育选修课□专业必修课■专业选修课□学科基础课总学时:48 讲课学时:32 实验(上机)学时:16学分:3适用对象:投资学专业先修课程:金融计算机语言、金融计量学、量化金融学(双语)一、教学目标当代投资学越来越多的采用人工智能技术解决复杂投资决策问题。
人工智能的理论和技术在当代投资中的地位越来越重要,甚至已有取代传统投资决策和方法技术之趋势,因此投资学专业学生需要系统的学习人工智能理论在金融投资中的应用。
人工智能的理论和技术主要来自于机器学习理论。
本课程系统的向学生讲授机器学习理论。
机器学习理论与计算机编程、统计学以及计量经济学有密切的联系,因此学生在学习本课程前需要有足够的背景知识。
本课程将通过介绍机器学习理论,让学生了解如何利用机器学习理论以及人工智能技术进行金融问题研究和进行量化投资决策。
该课程是专业必修课中的一门重要课程,是一门跨学科的复合型课程,因此需要学生对各先修学科有扎实的基础,本课程突出学习前沿人工智能理论知识与应用相结合,重点培养学生综合运用跨学科知识进行量化投资。
学生在学好本课程后,将对其后续课程以及毕业论文设计帮助巨大,也将增强学生在大数据人工智能时代的就业竞争优势。
目标1:掌握主流和前沿的机器学习理论目标2:熟练运用机器学习理论结合投资学知识解决具体问题目标3:融会贯通投资学、统计学、计量经济学、计算机编程以及机器学习理论,提升处理复杂投资决策问题的能力。
目标4:充分了解投资学发展的前沿,了解人工智能与投资学发展逻辑联系。
二、教学内容及其与毕业要求的对应关系(一)教学内容《机器学习理论》涉及三大板块知识。
即基础理论知识介绍、上机实习和综合运用。
在基础知识模块主要介绍和讲授机器学习理论的主要知识框架,包括:监督学习、无监督学习和强化学习,其中监督学习中的若干模型属于精讲内容,无监督学习属于细讲的内容,而强化学习属于粗讲的内容。
参数方法非参数方法参数方法和非参数方法是统计学中两种常用的数据分析方法。
参数方法是指在数据分析过程中,需要预先对数据的分布做出假设,并基于假设建立参数模型。
参数模型可以用来估计总体参数,并使用统计推断方法进行假设检验。
常见的参数方法包括t检验、方差分析、回归分析等。
t检验是一种用于比较两个样本均值是否有显著差异的参数方法。
在t检验中,我们需要预先假设样本数据服从正态分布,并且方差齐性成立。
通过计算样本均值的差异与预期均值差异之间的差异大小,得出结论是否拒绝原假设。
方差分析是一种用于比较两个或多个样本组均值差异是否显著的参数方法。
它假设样本数据服从正态分布,且不同样本组的方差相等。
通过计算组间均方与组内均方之间的比值,得出结论是否拒绝原假设。
回归分析是一种用于探究变量之间关系的参数方法。
它假设因变量与自变量之间存在线性关系,并且误差项服从正态分布。
通过最小化误差平方和,估计出回归系数,从而得到模型的偏回归系数。
参数方法的优点是可以对总体参数进行估计和推断,结果具有精确性。
然而,参数方法对数据的分布假设要求较高,如果数据偏离了假设的分布,会导致统计推断结果的失真。
与之相反,非参数方法则不依赖于总体的分布假设,基于样本数据进行推断和分析。
非参数方法主要通过排序和秩次转换的方法,来对比样本之间的差异。
常用的非参数方法包括Wilcoxon符号秩检验、Kruskal-Wallis检验、Spearman相关分析等。
Wilcoxon符号秩检验是一种用于比较两个相关样本均值差异是否显著的非参数方法。
它将样本数据转换为秩次,通过对比秩次差异的大小,得出结论是否拒绝原假设。
Kruskal-Wallis检验是一种用于比较多个无关样本组均值差异是否显著的非参数方法。
它将样本数据转换为秩次,通过对比不同样本组秩次和的大小,得出结论是否拒绝原假设。
Spearman相关分析是一种用于探究变量之间关系的非参数方法。
它基于秩次转换的数据,计算出秩次之间的相关系数,从而推断变量之间的相关性。
非参数回归的介绍非参数回归是一种机器学习方法,用于建立数据之间的关系模型,而不依赖于预设模型的形式。
与传统的线性回归相比,非参数回归不对模型的形状施加任何限制,而是根据数据本身的分布情况来估计模型。
这使得非参数回归能够更好地适应各种类型的数据,包括非线性、非正态分布等等。
非参数回归的核心思想是基于样本数据的分布情况来估计目标函数。
传统的线性回归假设目标函数是线性的,并且通过最小二乘法来拟合数据和估计参数。
然而,这种假设可能无法满足真实世界中复杂的非线性关系,因此非参数回归通过灵活的模型拟合方法来解决这个问题。
在非参数回归中,我们通常使用核函数来逼近目标函数。
核函数是一个局部加权回归方法,它将目标函数估计为一些核函数在样本点附近的加权线性组合。
核函数的具体形式可以是高斯核、三角核、Epanechnikov核等。
这些核函数都有一个特点,即在样本点附近有较高的权重,而在样本点远离的地方权重则较低。
另一个非参数回归的优点是它不需要预先假设数据的分布。
线性回归通常假设数据是正态分布的,但在现实中往往无法满足这个假设。
非参数回归可以通过直接根据数据本身的分布情况进行估计,而不需要预设模型的形式。
这使得非参数回归更对真实数据的特点进行建模。
非参数回归还经常用于探索性数据分析和模型评估。
通过非参数回归,我们可以揭示变量之间的复杂关系,获得对目标函数的更深入的理解。
此外,在模型评估中,非参数回归可以用作基准模型,以便与其他模型进行比较和评估。
然而,非参数回归也存在一些局限性。
首先,非参数回归可能需要大量的计算资源,特别是对于大规模的数据集来说。
由于没有预设模型的形式,非参数回归需要在整个数据集上进行计算以估计模型参数,这在计算上是非常昂贵的。
此外,由于非参数回归没有对模型进行约束,可能容易出现过拟合问题。
为了解决这些问题,可以采取一些方法来提高非参数回归的性能。
一种方法是将非参数回归与其他技术结合使用,例如局部加权回归、岭回归等。
⾮参数估计——核密度估计(Parzen 窗) 核密度估计,或Parzen 窗,是⾮参数估计概率密度的⼀种。
⽐如机器学习中还有K 近邻法也是⾮参估计的⼀种,不过K 近邻通常是⽤来判别样本类别的,就是把样本空间每个点划分为与其最接近的K 个训练抽样中,占⽐最⾼的类别。
直⽅图 ⾸先从直⽅图切⼊。
对于随机变量X 的⼀组抽样,即使X 的值是连续的,我们也可以划分出若⼲宽度相同的区间,统计这组样本在各个区间的频率,并画出直⽅图。
下图是均值为0,⽅差为2.5的正态分布。
从分布中分别抽样了100000和10000个样本: 这⾥的直⽅图离散地取了21个相互⽆交集的区间:[x −0.5,x +0.5),x =−10,−9,...,10,单边间隔h =0.5。
h >0在核函数估计中通常称作带宽,或窗⼝。
每个长条的⾯积就是样本在这个区间内的频率。
如果⽤频率当做概率,则⾯积除以区间宽度后的⾼,就是拟合出的在这个区间内的平均概率密度。
因为这⾥取的区间宽度是1,所以⾼与⾯积在数值上相同,使得长条的顶端正好与密度函数曲线相契合。
如果将区间中的x 取成任意值,就可以拟合出实数域内的概率密度(其中N x 为样本x i ∈[x −h ,x +h ),i =1,...,N 的样本数):ˆf (x )=N xN ⋅12h 这就已经是核函数估计的⼀种了。
显然,抽样越多,这个平均概率密度能拟合得越好,正如蓝条中上⽅⼏乎都与曲线契合,⽽橙⾊则稂莠不齐。
另外,如果抽样数N →∞,对h 取极限h →0,拟合出的概率密度应该会更接近真实概率密度。
但是,由于抽样的数量总是有限的,⽆限⼩的h 将导致只有在抽样点处,才有频率1/N ,⽽其它地⽅频率全为0,所以h 不能⽆限⼩。
相反,h 太⼤的话⼜不能有效地将抽样量⽤起来。
所以这两者之间应该有⼀个最优的h ,能充分利⽤抽样来拟合概率密度曲线。
容易推理出,h 应该和抽样量N 有关,⽽且应该与N 成反⽐。
机器学习:参数⾮参数学习算法⼀、参数学习算法(parametric learning algorithm) 定义:假设可以最⼤程度地简化学习过程,与此同时也限制可以学习到是什么,这种算法简化成⼀个已知的函数形式,即通过固定数⽬的参数来拟合数据的算法。
参数学习算法包括两个步骤:选择⼀种⽬标函数的形式从训练数据中学习⽬标函数的系数 参数学习算法的⼀些常见例⼦包括:Logistic RegressionLDA(线性判别分析)感知机朴素贝叶斯简单的神经⽹络 参数机器学习算法的优点:简单:这些算法很容易理解和解释结果快速:参数模型可以很快从数据中学习少量的数据:它们不需要太多的训练数据,甚⾄可以很好地拟合有缺陷的数 参数机器学习算法的局限性:约束:这些算法选择⼀种函数形式⾼度低限制模型本⾝有限的复杂性:这种算法可能更适合简单的问题不适合:在实践中,这些⽅法不太可能匹配潜在的⽬标(映射)函数⼆、⾮参数学习算法(non-parametric learning algorithm) 定义:不对⽬标函数的形式作出强烈假设的算法称为⾮参数机器学习算法,通过不做假设,它们可以从训练数据中⾃由地学习任何函数形式,即参数数量会随着训练样本数量的增长的算法。
⾮参数学习算法的⼀些常见例⼦包括:KNN决策树,⽐如CART和C4.5SVM ⾮参数机器学习算法的优点:灵活性:拟合⼤量的不同函数形式能⼒:关于潜在的函数不需要假设(或者若假设)性能:可以得到⽤于预测的⾼性能模型 ⾮参数机器学习算法的局限性:更多的数据:需要更多的训练数据⽤于估计⽬标函数慢:训练很慢,因为它们常常需要训练更多的参数过拟合:更多的过度拟合训练数据风险,同时它更难解释为什么要做出的具体预测注: 局部加权线性回归其实是⼀个⾮参数学习算法(non-parametric learning algorithm); 线性回归则是⼀个参数学习算法(parametric learning algorithm),因为它的参数是固定不变的,⽽局部加权线性回归的参数是随着预测点的不同⽽不同。
效率评价参数和非参数方法1. 效率评价参数方法可以通过建立具体的数学模型来评估系统在资源利用上的效率,常用的方法包括DEA模型、SFA模型等。
2. DEA模型(Data Envelopment Analysis)是一种常用的效率评价参数方法,它能够分析多输入多输出的生产过程,通过比较不同决策单元之间的效率来评价其绩效。
3. 在DEA模型中,效率评价的参数是根据已有的输入和输出数据来计算各个决策单元的效率得分,同时还可以确定最优的生产边界。
4. SFA模型(Stochastic Frontier Analysis)是另一种效率评价参数方法,它基于随机前沿函数,通过考虑随机误差和非随机误差来评估生产单位的效率水平。
5. SFA模型评价效率时,需要估计模型的参数,包括技术效率、随机误差等,以便通过比较估计值和观测值来计算输出的效率。
6. 非参数方法是一种不依赖于特定函数形式的效率评价方法,常用的包括Malmquist 指数、贝叶斯方法等。
7. Malmquist指数是一种非参数方法,通过计算两个时间点之间的生产率变化来评价效率,可以包括技术变动和效率变动两个方面。
8. 贝叶斯方法是一种基于贝叶斯统计理论的非参数方法,通过对目标函数的先验分布进行估计,获得参数的后验分布,从而评价效率的分布情况。
9. 非参数方法的优点在于不需要对函数形式进行假设,能更灵活地适应真实数据的特点,但同时需要更多的数据来进行评价。
10. 效率评价参数方法和非参数方法都可以用于不同领域的效率评价,如生产、运营、金融等,可以根据具体情况选择合适的方法来进行评估。
11. 在实际应用中,效率评价参数方法和非参数方法可以结合使用,以充分发挥各自的优势,提高效率评价的精准度和准确性。
12. 效率评价参数方法和非参数方法在评价指标选择、模型构建、数据处理等方面的差异,需要根据具体问题进行综合考量和选择。
13. 效率评价参数方法的局限性在于对函数形式的假设,可能会受到数据分布和噪声的影响,需要谨慎选择和处理数据。
非参数方法非参数方法是一种统计学中的重要技术,它与参数方法相对应,可以在不对总体分布做出任何假设的情况下进行统计推断。
非参数方法在实际应用中具有广泛的适用性,尤其在样本量较小或者总体分布未知的情况下,非参数方法能够提供更加稳健和可靠的统计推断结果。
非参数方法的特点之一是它不依赖于总体的具体分布形式,而是通过对数据的排序、秩次转换等方式进行统计推断。
这种方法的优势在于可以避免对总体分布形式的假设,从而更加灵活地适用于不同类型的数据分析。
另外,非参数方法也不受异常值的影响,能够更好地处理一些特殊情况下的数据。
在实际应用中,非参数方法常常用于假设检验、方差分析、回归分析等统计推断问题。
例如,在假设检验中,非参数方法可以用于检验总体分布的位置参数、尺度参数等,而不需要对总体分布形式做出具体的假设。
在方差分析中,非参数方法可以用于处理样本量较小或者方差齐性未知的情况,从而得到更加稳健的统计推断结果。
在回归分析中,非参数方法可以用于处理自变量与因变量之间的非线性关系,从而更加准确地描述数据之间的关联性。
除了在统计推断中的应用,非参数方法也在数据挖掘、机器学习等领域得到了广泛的应用。
例如,在无监督学习中,非参数方法可以用于聚类分析、密度估计等问题,从而发现数据中的隐藏模式和结构。
在监督学习中,非参数方法可以用于构建非线性模型,从而更好地拟合复杂的数据关系。
总之,非参数方法作为统计学中的重要技术,具有广泛的适用性和重要的理论意义。
它不仅可以在不对总体分布做出任何假设的情况下进行统计推断,还可以更好地处理异常值和特殊情况下的数据。
在实际应用中,非参数方法已经成为了统计学和数据分析中不可或缺的重要工具,为研究人员和决策者提供了更加稳健和可靠的统计推断结果。
希望本文对非参数方法有所帮助,谢谢阅读!。
基于高斯过程回归的机器学习算法研究随着人工智能技术的发展,各种机器学习算法被广泛应用于数据分析、预测和决策等领域。
其中,高斯过程回归是一种常用的非参数机器学习算法,具有高度的预测精度和灵活性。
本篇文章将对基于高斯过程回归的机器学习算法进行详细的研究。
一、高斯过程回归的基本原理高斯过程回归是一种基于贝叶斯统计学的非参数机器学习算法,用于对未知的连续函数进行预测和建模。
其基本思想是,给定一组输入和输出的数据点,通过建立一个高斯过程模型,来预测新的输入数据点对应的输出值。
具体来说,假设我们有一组输入和输出的数据点:$(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), ...,(\boldsymbol{x}_n, y_n)$,其中$\boldsymbol{x}_i \in\mathbb{R}^d$表示输入数据的d维特征向量,$y_i \in\mathbb{R}$表示对应的输出值。
我们的目标是建立一个函数$f(\boldsymbol{x}): \mathbb{R}^d \rightarrow \mathbb{R}$,用于预测新的输入数据点$\boldsymbol{x}^*$的输出值$y^*$。
为此,可以采用高斯过程回归模型,即假设$f(\boldsymbol{x})$服从一个高斯过程,即:$$ f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}),k(\boldsymbol{x},\boldsymbol{x}')) $$其中$m(\boldsymbol{x})$表示高斯过程的均值函数,$k(\boldsymbol{x},\boldsymbol{x}')$表示高斯过程的协方差函数。
在高斯过程回归中,通常采用一些常用的核函数,例如线性核函数、多项式核函数、高斯核函数等,用于计算不同输入数据点之间的协方差。
机器学习-决策树之ID3算法概述决策树(Decision Tree)是⼀种⾮参数的有监督学习⽅法,它是⼀种树形结构,所以叫决策树。
它能够从⼀系列有特征和标签的数据中总结出决策规则,并⽤树状图的结构来呈现这些规则,以解决分类和回归问题。
决策树算法容易理解,适⽤各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核⼼的各种集成算法,在各个⾏业和领域都有⼴泛的应⽤。
决策树的核⼼有三种算法:ID3:ID3 是最早提出的决策树算法,他就是利⽤信息增益来选择特征的。
C4.5:他是 ID3 的改进版,他不是直接使⽤信息增益,⽽是引⼊“信息增益⽐”指标作为特征的选择依据。
CART:这种算法即可以⽤于分类,也可以⽤于回归问题。
CART 算法使⽤了基尼系数取代了信息熵模型。
ID3算法是本教程的重点要讲的内容,其余两种算法将会后续推出。
数据集下⾯举个例⼦,会使⽤ID3算法帮助我们判断今天的天⽓适不适合出去打球。
进⾏判断之前,需要历史天⽓数据和打球活动数据,以下为历史数据集S。
天数天⽓⽓温湿度风⼒是否打球D1晴朗热湿弱否D2晴朗热湿强否D3⼤⾬热湿弱是D4⼩⾬中等湿弱是D5⼩⾬凉爽正常弱是D6⼩⾬凉爽正常强否D7⼤⾬凉爽正常强是D8晴朗中等湿弱否D9晴朗凉爽正常弱是D10⼩⾬中等正常弱是D11晴朗中等正常强是D12⼤⾬中等湿强是D13⼤⾬热正常弱是D14⼩⾬中等湿强否ID3算法ID3算法会选择当前信息增益最⼤的特征作为树中新的节点。
计算过程如下:步骤1假设S为完整的数据集,数据标签(数据类别)共有n个类别,分别为C1,...,Cn。
Si对应Ci类别下数据⼦集,因此,数据集S的信息熵计算如下:\[Entropy(S)=-\sum_{i=1}^{n}p_{i}\log_{2}{p_{i}} \]其中,pi是数据样本为Ci的概率,因此:\[p_i=\frac{|S_i|}{|S|} \]|Si|是类别Ci在数据集S中的数据数量,|S|是数据集S中的数据数量。