《概率论与数理统计》第二章 随机变量分析
- 格式:ppt
- 大小:3.57 MB
- 文档页数:73
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
第二章随机变量及其分布 ....................................................................................................... - 1 - 第一节随机变量及其分布函数 ..................................................................................... - 2 - 一随机变量概念 ....................................................................................................... - 2 -二随机变量的分布函数 ........................................................................................... - 3 -基础训练2.1 ............................................................................................................... - 6 - 第二节离散型随机变量及其概率分布............................................................................ - 6 - 一离散型随机变量及其概率分布............................................................................ - 6 -二常见的几种离散型随机变量及其分布................................................................ - 8 -基础训练2.2 ............................................................................................................. - 13 - 第三节连续型随机变量及其概率分布.......................................................................... - 13 - 一连续型随机变量及其分布的概念与性质.......................................................... - 14 -二常见的几种连续型随机变量及其分布.............................................................. - 16 -基础训练2.3 ............................................................................................................ - 21 - 第四节随机变量函数的分布 ......................................................................................... - 21 - 一离散型随机变量函数的分布.............................................................................. - 21 -二连续型随机变量的函数分布.............................................................................. - 22 -基础训练2.4 ............................................................................................................ - 25 - 综合训练二 ....................................................................................................................... - 25 - 内容小结及题型分析二 ................................................................................................... - 25 - 拓展提高二 ....................................................................................................................... - 25 - 阅读材料二 ....................................................................................................................... - 25 - 数学实验二 ....................................................................................................................... - 25 -第二章随机变量及其分布【本章导读】本章主要讲述随机变量与分布函数,一维离散型随机变量、连续型随机变量的概率分布,常见分布及函数的分布.【本章用到的先修知识】级数的运算,变限积分,分段函数的积分,无穷积分.【本章要点】随机变量的概念,分布函数,分布律,概率密度,常见随机变量的分布,函数的分布.在上一章中,我们用样本空间的子集,即基本事件的集合来表示随机试验的各种结果.这种表示的方式对全面讨论随机试验的统计规律性及数学工具的运用都有较大的局限. 在本章中,我们将介绍概率论中另一个重要的概念:随机变量. 随机变量的引入,使概率论的研究由个别随机事件扩大为随机变量所表征的随机现象的研究. 这样,不仅可更全面揭示随机试验的客观存在的统计规律性,而且可使我们用高等数学的方法来讨论随机试验.第一节 随机变量及其分布函数一 随机变量概念在第一章里,我们主要研究了随机事件及其概率,读者可能会注意到在随机现象中,有很大一部分问题与实数之间存在着某种客观的了解. 例如,在产品检验问题中,我们关心的是抽样中出现的废品数;在车间供电问题中,我们关心的是某时间段正在工作的车床数;在电话问题中关心的是某一段时间内的话务量等. 对于这类随机现象,其试验结果显然可以用数值来描述,并且随着试验的结果不同而取不同的数值。
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。
概率论与数理统计第二章知识点一、知识概述《概率论与数理统计第二章知识点》①基本定义:概率论与数理统计第二章通常会涉及随机变量及其分布相关知识。
随机变量简单来说,就是把随机试验的结果用一个数值来表示。
比如扔硬币这个随机试验,我们规定正面为1,反面为0,这个1或者0就是随机变量的值。
②重要程度:这部分知识在整个学科里可以说是根基般的存在。
就像盖房子的砖头,后面很多章节的知识,像期望、方差等都依赖这些内容进行构建。
③前置知识:得对基本的概率概念有认识,像样本空间、事件、古典概型等基础知识要掌握。
如果这些搞不清楚,那学随机变量就像没地基想盖楼。
④应用价值:在实际生活中有很多应用。
比如保险公司确定保险费用,不同人的健康情况这些不确定因素就可以看成随机变量,然后根据这些变量出现的概率分布来制定保险费。
二、知识体系①知识图谱:在学科中,这部分是承上启下的作用。
承接着概率基础,开启后面关于数字特征等更深层次知识的大门。
②关联知识:和第一章概率的基本概念联系紧密,同时也是后续关于多维随机变量、数字特征等知识的重要铺垫。
③重难点分析:掌握难度中等。
难点在于理解随机变量的分布函数概念,关键点是要理解分布函数在描述随机变量取值规律中的作用。
④考点分析:考试特别重要。
考查方式有让你根据已知条件求随机变量的分布函数、概率密度(如果是连续型随机变量)等。
三、详细讲解【理论概念类】①概念辨析:随机变量分为离散型和连续型两种。
离散型随机变量就是取值是可以一一列举出来的,像扔骰子得到的点数。
连续型随机变量取值是某个区间内的任意值,比如测量人的身高。
②特征分析:离散型随机变量有概率分布列,能清楚展示每个取值对应的概率。
连续型随机变量有概率密度函数,它的图形和面积有特殊意义,代表着取值在某个区间的概率。
③分类说明:从取值类型就是离散型和连续型区分。
从分布类型又有很多,像离散型的二项分布,在多次独立重复试验中出现的次数服从这个分布。
比如做10次抛硬币试验,正面出现的次数可能服从二项分布。