基因操作原理孙明
- 格式:pptx
- 大小:6.24 MB
- 文档页数:525
《基因工程》课程教学大纲课程类别:专业课课程性质:必修英文名称:Gene Engineering总学时:48 讲授学时:48学分:3先修课程:生物化学、分子生物学、微生物学、细胞生物学适用专业:生物工程、生物技术开课单位:医学院生物化学与分子生物学教研室一、课程简介本课程是生物工程专业必修的专业主干课程,它是生物工程(包括基因工程、细胞工程、酶工程、发酵工程)中最重要的课程之一,它是以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段而建立起来的一门技术学科。
基因工程就是在生物体外,通过对DNA分子进行人工剪切和拼接,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产物或定向的创造生物的新性状,使之稳定地遗传给子代。
要求学生掌握基因工程中的基础知识和基本理论,掌握基因工程中的基本研究手段和实验方法,了解基因工程中的最新研究进展和动态,能够灵活运用基因工程的基本理论知识和实验方法,对整个生物工程有一个更新的认识,使学生受到基本科学思维和科学实验能力训练,同时使学生学会学习,具有自我开拓可获得知识和利用信息的能力,以达到融知识传授、能力培养和素质提高于一体的教学目的。
二、教学内容及基本要求(一)绪论(2学时)教学内容:基因工程概况;基因工程研究内容;基因工程展望。
教学要求:1.掌握基因工程的概念。
2.了解基因工程的主要研究内容、发展简史。
3.了解当前基因工程研究的总趋势与重点领域。
授课方式:讲授、自学(-)分子克隆工具酶(6学时)教学内容:限制性内切酶;甲基化酶;DNA聚合酶;依赖于DNA的RNA聚合酶;连接酶;T4多核昔酸激酶;碱性磷酸酶;核酸酶。
教学要求:1.掌握限制性核酸内切酶的概念、功能、影响酶活性的因素及操作注意事项、限制性核酸内切酶的星活性概念及产生的原因。
2.掌握同裂酶和同尾酶的概念。
3.掌握DNA连接酶、DNA聚合酶、反转录酶和碱性磷酸酶的功能。
红河学院《基因工程》理论课程教学大纲一、课程基本情况与说明(一)课程代码:(二)课程英文名称: Genetic Engineering(三)课程中文名称: 基因工程(四)授课对象:生物技术专业生物科学专业(五)开课单位:生命科学与技术学院(六)教材:《基因工程》,孙明主编,高等教育出版社,2006(七)参考书目[1] 《基因工程》,楼士林,北京科学出版社;[2] 《基因工程原理与应用》,陈宏,中国农业出版社;[3] 《基因工程》,刘祥林、聂刘旺,科学出版社。
(八)课程性质《基因工程》是生物技术专业的专业必修课程,同时也是生物科学专业的专业选修课。
其以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段而建立起来的一门技术学科。
基因工程兴起于20世纪70年代初,它的问世带动了生物技术的兴起和发展,是现代生物技术的核心内容。
基因工程课程的主要内容包括基因的分离、基因的克隆、基因的表达、植物基因工程、动物基因工程、药物基因工程和基因治疗等。
它是生命科学学院生物技术专业本科生的主干专业课程之一,它是生物工程(包括基因工程、细胞工程、酶工程、发酵工程)中最重要的课程,其它三大工程是建立在基因工程基础之上的,同时也为生物技术制药等后继学科奠定了重要的理论基础。
(九)教学目的1.使学生对基因工程基本原理及其主要操作技术有比较全面、系统的认识;2.使学生通过学习能够清楚基因工程的实质及发展现状;3.调动学生对基因工程技术的兴趣,使学生能运用所学的基本理论、知识和技能,分析和解决生产实践中相关的一般问题。
(十)教学基本要求要求学生通过本课程的学习了解并掌握基因操作基本原理和操作技术,清楚基因工程的实质和发展现状,并能够在实际的生产实践中较灵活的运用。
(十一)学时数、学分数及学时数具体分配学时数:54学时分数:3学分(十二)教学方式本课程是一门实践性很强的课程,理论课程与实验课程同步进行,在教学过程中,教师应充分利用现代教育技术,结合多媒体资料,使学生直观了解课程内容。
基因操作的原理和过程基因操作(Genetic engineering)是一种利用基因技术对生物体的遗传物质进行修改和重组的技术手段。
通过基因操作,可以对生物的基因进行剪接、修饰或移除,并向生物中引入新的基因或基因片段,从而改变生物的遗传特征和表现形式。
基因操作在农业、医学、生物工程等领域都有广泛的应用,它不仅可以提高生物的抗病性、耐性和产量,还可以用于研究基因的功能和调控机制。
基因操作的原理是基于对生物体的基因组进行修改和优化,具体分为以下几个步骤:1. 选择目标基因:首先需要确定要操作的基因,可以是现有生物体中的某个基因,也可以是外源基因。
有时也会选择修改某个特定区域的基因片段。
2. 基因克隆和构建载体:利用分子生物学技术,将目标基因从生物体中分离提取。
然后,将目标基因插入到载体DNA中,构建成重组载体。
常用的载体包括质粒和病毒。
3. 转化目标细胞:将构建好的重组载体导入到目标细胞中。
可以通过多种途径实现细胞的转化,如化学转化、电转化、冷冻复苏等。
4. 基因表达和筛选:在转化成功后,目标基因会在细胞内进行表达,从而改变生物的遗传特征和表现形式。
为了筛选出表达目标基因的细胞,可以在重组载体中引入选择标记基因,如抗生素抗性基因。
5. 验证和分析:在筛选出表达目标基因的细胞后,需要对其进行验证和分析。
可以通过PCR、酶切、同源重组等技术手段来验证基因操作的结果,并进一步分析基因的功能。
基因操作的过程中有一些关键技术和工具,如PCR技术、限制性内切酶、连接酶、DNA测序等。
这些技术和工具的应用使得基因操作的过程更加高效、准确。
基因操作的应用领域广泛,涉及农业、医学、生物工程等多个领域。
在农业领域,基因操作可以用于改良农作物的品质和产量,提高抗病虫害的能力,延长保存期限等。
比如,通过引入抗病虫害基因,使植物对害虫和病毒的侵害产生免疫反应。
在医学领域,基因操作可以用于治疗遗传性疾病、癌症等疾病。
比如,通过修正患者的遗传突变,可以恢复正常的基因功能。
《基因工程学》课程教学大纲(Genetic Engineering)一、课程说明课程编码:02200200课程总学时(理论总学时/实践总学时):48(48/0)周学时(理论学时/实践学时):4(4/0)学分:31.课程性质:专业必修课。
2.适用专业与学时分配:适用生物技术专业。
教学内容与学时分配3.课程教学目的与要求:本课程的授课对象是生物技术专业的本科生。
课程简介:《基因工程》是生物技术专业的专业必修课程。
其以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段而建立起来的一门技术学科。
基因工程兴起于20世纪70年代初,它的问世带动了生物技术的兴起和发展,是现代生物技术的核心内容。
基因工程课程的主要内容包括基因的分离、基因的克隆、基因的表达、植物基因工程、动物基因工程、药物基因工程和基因治疗等。
它是生命科学学院生物技术专业本科生的主干专业课程之一,它是生物工程(包括基因工程、细胞工程、酶工程、发酵工程)中最重要的课程,其它三大工程是建立在基因工程基础之上的,同时也为生物技术制药等后继学科奠定了重要的理论基础。
课程目标:设置本课程是为了让生物技术专业的学生理解和掌握基因工程的技术原理,通过本课程学习,掌握基因操作的工具酶,基因克隆常用载体,目的基因的分离与合成,重组体的构建,重组体向宿主细胞的导入,重组体克隆的筛选与鉴定以及克隆基因的表达,同时了解基因工程在生物学领域中的应用与发展前景。
对学生达到毕业要求贡献如下:1)了解基因工程学的历史、发展和前沿知识。
2)掌握基因工程学的基础理论、基本知识和基本技能;教学要求:学完基因工程学后,学生将具备以下能力:1)具有良好的自学能力;2)综合运用所掌握的基因工程学理论知识和技能、从事生物科学及其相关领域科学研究的能力。
4.本门课程与其它课程关系:先修课程为生物化学、微生物学、分子生物学、细胞学等,具备基础理论知识及实验能力是基因工程学课程的基础。
基因操作原理知识点总结基因操作是一种在生物体内对基因进行修改或操作的技术,它的出现为生物学、医学和农业等领域带来了革命性的变革。
通过基因操作技术,科学家们可以改变生物体的一些性状,使得其具有更好的抗病性、生长速度、产量等特性,从而为人类生活和生产带来了巨大的便利和利益。
在这篇文章中,我将从基因操作的原理、技术、应用和风险等方面进行详细的介绍和讨论。
基因操作的原则基因操作的基本原理是对生物体的基因进行修改或操作,使得其具有某些特定的性状。
这是通过DNA重组技术来实现的,DNA重组技术是一种利用酶的作用或化学方法,将DNA片段进行切割、粘接、合成等操作,从而实现对基因的改变或移植。
利用这一技术,科学家们可以将某种物种的基因转移到另一种物种中,或者通过改变某个基因的表达方式来使得生物体产生一些新的性状。
基因操作的技术基因操作技术主要包括DNA重组技术、基因克隆技术、基因敲除技术、基因编辑技术等。
其中,DNA重组技术是最基本的技术,它通过切割、粘接、重组DNA片段来改变基因的结构和表达方式;基因克隆技术是一种通过细胞培养和分裂来复制基因的方法,可以用于大规模生产具有某些特定性状的生物体;基因敲除技术是一种通过干扰某个基因的表达来观察该基因在生物体中的功能和作用;基因编辑技术是一种通过精确的操纵基因序列来实现对基因的改变和操作。
基因操作的应用基因操作技术在农业、医学、生物工程等领域都有着广泛的应用。
在农业领域,基因操作技术可以用来改良作物的产量、抗病性、品质等性状,从而为农业生产提供更多的选择和可能;在医学领域,基因操作技术可以用来治疗或预防一些遗传疾病,为人类健康带来更多的希望和机会;在生物工程领域,基因操作技术可以用来生产某些特定的物质或药物,从而为生产和生活提供更多的可能性。
基因操作的风险尽管基因操作技术为人类带来了巨大的利益和希望,但是它可能也会带来一些潜在的风险和问题。
其中,最主要的风险包括对环境的影响和对人类健康的影响。
基因工程教学改革的探索与实践摘要:基因工程是生物技术专业的主干课程,也是一门理论和实践并重的专业基础课,为适应当今教育要求,必须以培养学生综合素质和能力为首要任务。
为此,本文在精选教学内容、改进教学方法、改进考核方式等方面进行了一些探索,旨在提高基因工程教学质量和效果,为培养适应新时代要求的高素质人才提供科学保证。
关键词:基因工程;教学改革;探索中图分类号:g42 文献标识码:a文章编号:1009-0118(2012)04-0108-0221世纪是生命科学的世纪,分子生物学作为最前沿的生命科学,主要从分子水平研究生命活动的现象与本质,如dna的复制、基因的表达与调控、遗传与变异等。
随着分子生物学研究的深入与发展,除了在分子水平上了解生命的特征外,在分子水平进行更有效的生物学研究以及在分子水平进行物种改造是生物学界共同关心并十分重视的问题,在这种情况下,基因工程应运而生。
基因工程是生命科学的前沿,它的发展带动了以其为核心的生物技术体系的发展[1],并且已成为当今生命科学研究领域中最具生命力最引人注目的前沿学科之一[2]。
基因工程技术作为生物学的前沿技术,在社会生产生活中发挥着越来越重要的作用,随之而来的是此方面人才的短缺,迫切需要在相关高校加大生物技术人才尤其是基因工程技术人才的培养力度。
作者所在学院(浙江海洋学院海洋科学学院)于2007年新增了生物技术专业,希望能为国家培养这方面的人才。
基因工程技术的发展日新月异,基因工程课程内容繁杂、抽象,如何能在有限的课时里让学生既能学习到基因工程必备的理论知识和技术手段,又能把基因工程技术最新的研究成果给学生加以介绍成为当前基因工程教学亟待解决的问题。
在当前教育体制下,深化教学内容、改变教学方法以提高教学效率成为解决此问题的唯一途径。
鉴于此,我们参考其他高校的经验,同时结合本校教学实际对基因工程教学内容、手段、方法及考核方式进行了探索式改革,希望能在有限的课时里让学生对基因工程技术有一个全面的认识和深入的理解,为以后的深造打下良好的基础。
基因操作的主要技术原理1.核酸的凝胶电泳(Agarose & Polyacrylamide)将某种分子放到特定的电场中,它就会以一定的速度向适当的电极移动。
某物质在电场作用下的迁移速度叫作电泳的速率,它与电场强度成正比,与该分子所携带的净电荷数成正比,而与分子的磨擦系数成反比(分子大小、极性、介质的粘度系数等)。
在生理条件下,核酸分子中的磷酸基团是离子化的,所以,DNA和RNA实际上呈多聚阴离子状态(Polyanions)。
将DNA、RNA放到电场中,它就会由负极→正极移动。
在凝胶电泳中,一般加入溴化乙锭(EB)--ethidium bromide染色,此时,核酸分子在紫外光下发出荧光,肉眼能看到约50ng DNA所形成的条带。
DNA的脉冲电泳技术 :PFGE-Pulse-field gel electrophoresis2.核酸的分子杂交技术在大多数核酸杂交反应中,经过凝胶电泳分离的DNA或RNA分子,都是在杂交之前,通过毛细管作用或电导作用按其在凝胶中的位置原封不动地"吸印" 转移到滤膜上的。
常用的滤膜有尼龙滤膜、硝酸纤维素滤膜,叠氮苯氧甲基纤维素滤纸(DBM)和二乙氨基乙基纤维素滤膜(DEAE)等。
核酸分子杂交实验包括如下两个步骤:将核酸样品转移到固体支持物滤膜上,这个过程特称为核酸印迹(nucleic acid blotting)转移,主要有电泳凝胶核酸印迹法、斑点和狭线印迹法(dot and slot blotting)、菌落和噬菌斑印迹法(colony and plaque blotting);将具有核酸印迹的滤膜同带有放射性标记或其它标记的DNA或RNA探针进行杂交。
所以有时也称这类核酸杂交为印迹杂交。
3.细菌的转化所谓细菌转化,是指一种细菌菌株由于捕获了来自另一种细菌菌株的DNA,而导致性状特征发生遗传改变的生命过程。
这种提供转化DNA的菌株叫做供体菌株,而接受转化DNA的寄主菌株则称做受体菌株。
第一章1. Gene manipulation基因操作。
将在细胞外产生的核酸(物质)分子插入到病毒,质粒或其它载体系统中,再整合到特定的宿主中,从而形成一种新的可连续繁殖的有机体。
2. Interrupted genes间断基因。
序列中间插入有与氨基酸编码无关的DNA 间隔区,使一个基因分隔成不连续的若干区段。
我们称这种编码序列不连续的基因为间断基因。
3 .Promotor启动子。
DNA 分子可以与RNA 聚合酶特异结合的部位,也就是使转录开始的部位。
4. Subcloning亚克隆。
当初始克隆中的外源DNA 片段较长,含有许多目的基因以外的DNA 片段时,在诸如表达、序列分析和突变等操作中不便进行,将目的基因所对应的一小段DNA 找出来,这个过程叫“亚克隆”。
第二章1.Restriction and modification限制和修饰。
宿主特异性地降解外源遗传物质(DNA)的现象称为限制。
外源遗传物质通过甲基化等作用避免宿主的限制作用称为修饰。
2. Matched ends匹配末端。
识别位点为回文对称结构的序列,经限制酶切割后,产生的相同的,互补的末端称为匹配粘端,亦即粘性末端(cohesive end)。
3. Blunt ends平末端。
在回文对称轴上同时切割DNA 的两条链,产生的没有碱基突出的末端称为平末端。
4. Isoschizomer :同裂酶。
识别相同序列的限制酶称同裂酶,但它们的切割位点可能不同。
5. Isocaudiners :同尾酶。
来源不同、识别序列不同,•但产生相同粘性末端的酶。
6.Site preferences :位点偏爱。
某些限制酶对同一介质中的不同位置的同一个识别序列表现出不同的切割效率的现象称为位点偏爱。
7.Star activity 星星活性。
在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特殊性称星星活性。
8. Nicking enzyme 切口酶。