同济大学《高等数学》5.1节 定积分的概念与性质
- 格式:ppt
- 大小:6.17 MB
- 文档页数:89
§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。
注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。
5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。
定积分的定义和性质定积分是微积分中的重要概念,用以计算曲线下的面积或曲线所围成的图形的面积。
在本文中,我们将介绍定积分的定义和性质,并探讨其在数学和实际问题中的应用。
一、定积分的定义定积分是将曲线下的面积分成无穷多个无穷小的矩形,并对它们进行求和的过程。
它可用以下形式进行定义:设f(x)在区间[a, b]上连续,将[a, b]分成n个小区间,每个小区间的长度为Δx = (b - a)/n。
选择每个小区间上的任意一个点ξi,计算出相应的函数值f(ξi),然后将这些函数值与Δx相乘并求和,即可得到定积分的值:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx二、定积分的性质1. 可加性:对于函数f(x)在区间[a, b]上可积分,并且c位于该区间内,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx。
这意味着可以将区间进行分割,根据不同段的定积分值进行求和。
2. 线性性质:对于函数f(x)和g(x)在区间[a, b]上可积分,以及任意实数k,则有∫[a, b](kf(x) + g(x))dx = k∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
这表明可以将函数进行线性组合后再进行积分。
3. 区间可变性:如果函数f(x)在区间[a, b]上可积分,并且在区间[a,b']上也连续(其中b' > b),则有∫[a, b']f(x)dx = ∫[a, b]f(x)dx + ∫[b,b']f(x)dx。
这意味着可以扩展区间并计算新增部分的定积分值。
三、定积分的应用定积分在数学和实际问题中具有广泛的应用。
下面列举一些典型的应用场景:1. 面积计算:通过计算定积分可以求得曲线和坐标轴所围成图形的面积。
例如,可以利用定积分计算圆的面积、椭圆的面积等。
2. 弧长计算:通过计算定积分可以求得曲线的弧长。
这在工程学、物理学和几何学等领域中都有应用。
高等数学教学教案第5章 定积分及其应用,n ),每个小区间的长度记为,2,,n ),在()i f ξi x ∆,再求和1,2,,n ),,如果该极限存在,则称函数上可积,此极限值为)d x x ,即⎰称为被积函数,x()]d n f x ±±(bn af ⎰()d b ak f x x =⎰(区间可加性)设,,a b c )d c ax x f =⎰(保序性)若在区间[a )d x 0≥.授课序号02授课序号03授课序号04为A 的平板水平的放置在液体深为h 处,那么平板一侧所受的液体静压力方向垂直于物体表面,各点压强的大小与方向皆不变,则物体所受的总压力为PA F =.如果平板倾斜放置在液体中,那么,由于液体深度不同的点处压强P 不相等,平板一侧所受的液体压力就不能用上述方法计算.3. 引力由万有引力定律知,质量分别为21,m m ,相距为r 的两个质点间的引力大小为221r m m G F ⋅=,其中G 为万有引力系数,引力的方向沿着两质点的连线.举例说明怎样用定积分解决某些引力问题.4. 函数的平均值函数)(x f 在],[b a 上的平均值1()d b a y f x x b a=-⎰,恰好是定积分中值定理中的)(ξf . 四.例题讲解例1.求由两抛物线2y x =与2x y =所围成图形的面积A .例2.求由抛物线22y x =与直线4y x =-所围成图形的面积A . 例3.求椭圆⎩⎨⎧==,sin ,cos t b y t a x (0>a ,0>b )所围图形的面积.例4.计算心形线)cos 1(θρ+=a (0>a )所围图形的面积.例5.如图5.25,连接坐标原点O 及点(,)P h r 的直线, 直线x h =及x 轴围成一个直角三角形.将它绕x 轴旋转一周构成一个底半径为r ,高为h 的圆锥体.计算这个圆锥体的体积.图5.25例6.计算由椭圆22221x y a b+=所围成的图形分别绕x 轴、y 轴旋转一周而成的旋转体(叫做旋转椭球体)的体积.例7.计算由曲线3y x =,x 轴及直线2x =所围成的图形绕y 轴旋转而成的旋转体的体积.例8.一平面经过半径为R 的圆柱体的底圆中心并与底面交成α角,计算该平面截圆柱体所得立体的体积.(a) (b)图5.29例9.计算曲线3223y x =上相应于x 从a 到b 的一段弧的长度. 例10.计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩(0>a )的一拱(02)t ≤≤π的长度(图5.32). 例11.求阿基米德螺线θρa =(0>a )相应于θ从0到π2一段(图5.33)的弧长.例12.设在x 轴上的原点处放置了一个电量为1q +的点电荷,将另一带电量为2q +的点电荷放入由1q +形成的电场中,求电场力将2q +从x a =排斥到x b =时所做的功.例13.一个底半径为R 米,高为H 米的圆柱体水桶,盛满了水,问水泵将水桶内的水全部抽出来要做多少功 (水密度为33100.1m kg ⨯=ρ).例14.设半径为R 的圆形水闸门,水面与闸顶齐,求闸门一侧所受的总压力.图5.35例15.一个水平放置的线密度为μ,长度为l 的均匀细直棒,在其延长线上放置一个质量为m 的质点,该质点距细直棒最近端点的距离为r .求细直棒对质点的引力大小.Ox x yydyy +R2水面复合化成形加工方法及技术基础5.1 材料成形加工技术的复合化20世纪70年代开始,人们把信息、能源和材料誉为人类文明的三大支柱,20世纪80年代以来又把新材料技术与信息技术、生物技术一起列为高新技术革命的重要标志。