倒易点阵与衍射(西安交通大学)
- 格式:pdf
- 大小:595.96 KB
- 文档页数:29
倒易格子与衍射—1.倒易格子理论2.倒易格子与X射线衍射3.倒易点阵与电子衍射4.典型0层倒易面举例一、倒易格子概念及性质1. 倒易点阵的定义设有一正点阵,用三个基矢(a,b,c)描述,记为S=S(a,b,c)。
引入三个新基矢(a*,b*,c*)描述,记为S*=S(a*,b*,c*)。
二者之间的关系:a*•a=1a*•b=0 a*•c=0b*•a=0b*•b=1b*•c=0c*•a=0c*•b=0c*•c=1则S*称作S的倒易点阵(Reciprocal lattice)。
2. 正倒格子的关系:a*=(b×c)/V b*=(c×a)/V c*=(a×b)/V其中V= a•(b×c)正格子的体积或为:a=(b*×c*)/V*b=(c*×a*)/V* c=(a*×b*)/V*其中V*=a*•(b*×c*)倒格子的体积亦有:V* = 1/V正倒格子的角度换算:|a*| = bcsinα/V|b*| = casinβ/V |c*|= absinγ/V或:|a| = b*c*sinα*/V* |b| = c*a*sinβ*/V* |c|= a*b*sinγ*/V*上式中:cosα* = (cosβcosγ-cosα)/sinβsinγcosβ* = (cosγcosα -cosβ)/sinγsinαcosγ* = (cosαcosβ -cosγ)/sinαsinβ当晶体的对称中,α=β=γ=90°时|a*| = 1/a|b*| =1/b|c*| = 1/c单斜晶系时,α=γ=90°,β≠90°,即:α*=γ*=90°,β*=180°-β则:|a*| =1/asinβ |b*| = 1/b |c*| =1/csinβ图1-1.三斜晶系的倒易点阵如图1-1所示为三斜晶系的倒易点阵,其中a*在与bc平面垂直的方向,b*与ac平面垂直,长度为1/b,c*与ab平面垂直,长度为1/c。
第四章 倒易点阵及晶体衍射方向1. 布拉格定律一定波长的 X 射线或入射电子与晶体试样相互作用 , 可以用布拉格定律来表征产生衍射的条件。
图 4.1 布拉格定律的几何说明如图 4.1, 设平行电子束σ0入射到晶体中面间距为 d hkl 的晶体面网组 (hkl), 在人射波前 SS' 处 , 两电子波位相相同, 如果左边一支波经历波程 PA+AD = n λ,n 为包括零的整数 , 则两支波离开晶体后达到新波前 TT' 时 , 将具有相同的位相 , 相干结果可以达到衍射极大; 反之, 若 PA+AD ≠ n λ, 则达到TT' 时, 它们位相不同 , 不能相干得到衍射极大。
由图 4.1 可知,PA+AD =2d hkl sin θ=n λ (4.1)此即布拉格方程,n 称为衍射级数。
式(4.1)也可以写成:λθ=⎪⎭⎫⎝⎛sin 2n d hkl (4.1a)因为 d hkl /n=d nh, nk, hl ,故可把n 级 (hkl) 反射看成是与 (hkl) 平行 但面网间距缩小 n 倍的、 (nh, nk, nl) 的一级反射。
这样 , 布拉格方程可以写成一般形式 :λθ=sin 2hkl d (4.1a) 还可以写成下述形式:λθ/2/1sin hkld =(4.1b) 只要满足布拉格方程 , 就获得了产生衍射极大的条件。
式 (4.1a) 中 d hkl 为晶体中晶面组 (hkl) 的晶面间距;λ为入射电子束的波长;θ为人射电子束方向相对于晶面 (hkl) 的掠射角。
2. 倒易点阵2.1 倒易点阵定义 (1)倒易点阵:若已知晶体点阵的单位矢量 a 、b 、c, 可以定义倒易点阵的单位矢量a *、b *、c *,该点阵的方向矢量垂直于同名指数的晶体平面, 它的大小等于同名指数晶面间距的倒数,该点阵称为倒易点阵。
(2)正点阵与倒易点阵和基矢量的相互关系:图4.2 正点阵与倒易点阵和基矢量的相互关系取一晶体单胞 , 如图 4.2, 晶体点阵的单位矢量为 a 、b 和 c , 相应点阵的 6 个参数是a 、 b 、 c 、α、β和 γ。
3 倒易点阵与电子衍射1.电子波的波长电子束的波长很短,因此根据布拉格方程,其衍射角度2θ也特别小。
波长C射线衍射仪0.1--100电子显微分析0.0251(200kV)2.晶体形状与倒易点形状的关系3.倒易格子与倒易球因为电子束的波长很短,只有一半X射线波长的1%,因此倒易球的半径很大,能与倒易球直接相交的一般只能是0层倒易面(即在垂直入射光束的方向倒易原点所在的平面)。
另外,由于电子衍射时,样品制作成为很薄的片状,因此,倒易点阵中的各倒易点体现为棒状,可以有更多的0层倒易点与倒易球相交。
图4-1.倒易点阵图4-2倒易点阵与倒易球图4-3.0层的棒状倒易点与倒易球相交产生点阵衍射4.电子衍射方程如图所示,倒易点G与倒易球相交,产生的衍射效果记录在胶片的G'点。
图4-4电子衍射方程的推导因为电子波长很短,倒易球的半径很大,在倒易原点附近,倒易球面非常接近平面,因此,O1O/O1O'=OG/OG'1/λ/L=1/d/RRd=Lλ在恒定的实验条件下,Lλ是一个常数,即衍射常数(单位:mm.nm)。
此即电子衍射的衍射方程。
由以上分析可知,单晶电子衍射花样可视为某个(uvw)*方向的0零层倒易平面的放大像[(uvw)*的0层平面法线方向[uvw]近似平行于入射束方向(但反向)]。
因而,单晶电子衍射花样与二维(uvw)*的0层平面相似,具有周期性排列的特征。
5.单晶电子衍射花样的标定标定是指确定衍射花样中各斑点的指数(hkl)及其晶带轴方向[UVW],并确定样品的点阵类型和位向。
(1)对斑点进行指标化如图所示,晶带轴方向[uvw],指向与入射电子束方向相反,属于该晶带的0层倒易面为[uvw]*0,记录的衍射花样相当于0层倒易面面的放大象。
中心为倒易点阵原点(000),图4-5记录的衍射花样与倒易点阵的关系图4-6一例典型的电子衍射花样图4-7衍射斑点的矢量关系如图4-7所示,表达衍射花样周期性的基本单元(可称特征平行四边形)的形状与大小可由花样中最短和次最短衍射斑点矢量R1与R2描述,平行四边形中3个衍射斑点连接矢量满足矢量运算法则:R3=R1+R2|R3|2=|R1|2+|R2|2+2|R1||R2|cosφ(φ为R1,R2夹角)同理:R4=R1+2R2|R4|2=|R1|2+|2R2|2+2|R1||2R2|cosφ=|R1|2+4|R2|2+4|R1||R2|cosφR5=R1-R2|R5|2=|R1|2+|R2|2-2|R1||R2|cosφ若5个向量终点的衍射斑点衍射指标分别为(h1k1l1),(h2k2l2),(h3k3l3),(h4k4l4),(h5k5l5),则斑点指标之间有如下关系:h3=h1+h2k3=k1+k2l3=l1+l2h4=h3+h2k4=k3+k2l4=l3+l2h5=h1-h2k5=k1-k2l5=l1-l2假定(h1k1l1),(h2k2l2)倒易指数为(100)和(010),则上图中各点的指标化结果如下:图4-8衍射斑点的指标化结果如果晶体是面心结构的,则其衍射效果要满足面心结构的衍射消光规律,即衍射指标要全奇或全偶(见图),体心结构的晶体,衍射指标要符合h+k+l=偶数(见图),因此,可根据电子衍射图的指标化结果确定空间格子类型。
倒易点阵:晶体点阵结构与其电子衍射斑点之间可以通过另外一个假想的点阵很好地联系起来,这就是~零层倒易截面:电子束沿晶带轴的反向入射时,通过原点的倒易平面只有一个,我们把这个二维平面叫做~消光距离:透射束或衍射束在动力学相互作用的结果,在晶体深度方向上发生周期性的振荡,这种振荡的深度周期叫做~明场像:通过衍射成像原理成像时,让透射束通过物镜光阑而把衍射束挡掉形成的图像称为明场像。
暗场像:通过衍射成像原理成像时,让衍射束通过物镜光阑而把透射束挡掉形成的图像称为暗场像。
衍射衬度:由于样品中不同位向的晶体的衍射条件不同而造成的衬度差别叫~质厚衬度:是建立在非晶体样品中原子对入射电子的散射和透射电子显微镜小孔径角成像基础上的成像原理,是解释非晶态样品电子显微图像衬度的理论依据。
二次电子:在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫~吸收电子:入射电子进入样品后,经多次非弹性散射能量损失殆尽,然后被样品吸收的电子。
透射电子:如果被分析的样品很薄,那么就会有一部分入射电子穿过薄样品而成为透射电子。
结构消光:当Fhkl=0时,即使满足布拉格定律,也没有衍射束产生,因为每个晶胞内原子散射波的合成振幅为零。
这叫做~分辨率:是指成像物体(试样)上能分辨出来的两个物点间的最小距离。
焦点:一束平行于主轴的入射电子束通过电磁透镜时将被聚焦在轴线上一点。
焦长:透镜像平面允许的轴向偏差.景深:透镜物平面允许的轴向偏差.磁转角:电子束在镜筒中是按螺旋线轨迹前进的,衍射斑点到物镜的而一次像之间有一段距离,电子通过这段距离时会转过一定的角度.电磁透镜:透射电子显微镜中用磁场来使电子波聚焦成像的装置。
透射电子显微镜:是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率,高放大倍数的电子光学仪器。
弹性散射:当一个电子穿透非晶体薄样品时,将与样品发生相互作用,或与原子核相互作用,或与核外电子相互作用,由于电子的质量比原子核小得多,所以原子核入射电子的散射作用,一般只引来电子改变运动方向,而能量没有变化,这种散射叫做弹性散射。
材料现代研究方法X射线衍射方法 综合热分析 紫外光谱 红外光谱 XPS光电子能谱2倒易点阵1. 倒易点阵的定义; 2. 倒易点阵与正点阵的倒易关系; 3. 倒易点阵参数;倒易点阵Questions: 1. 什么是倒易点阵?天下本无事,庸人自扰之? ☺ 非常有用!2. 倒易点阵有用吗? 3. 为什么要引入倒易点阵概念?能简化(1)晶面与晶面指数表达;(2)衍射原理的表 达;(3)与实验测量结果直接关联,尤其是电子衍射部 部分。
晶体X射线衍射的核心,是对晶体中各个晶面的研 究,如果能把晶面作为一个点来研究,何乐不为!5倒易点阵晶体XRD衍射图谱 晶体电子衍射花样我们所观察到的衍射花样(或者衍射图谱)实际上是满 足衍射条件的倒易阵点的投影。
61.倒易点阵的定义倒易点阵是在晶体点阵的基础上按照一定的对应关系 建立起来的空间几何图形。
每种空间点阵都存在着与其相对应的倒易空间点阵, 它是晶体点阵的另一种表达方式。
用倒易点阵处理衍射问题时,能使几何概念更清楚, 数学推演简化。
晶体点阵空间称为正空间,结点为阵点。
倒易空间中 的结点称为倒易点。
71.倒易点阵的定义简单点阵001 101简单点阵的倒易点阵011 111010 100 110点阵: 原点、基矢量、 阵点、晶向、晶面倒易点阵: 原点、倒易基矢量、 8 倒易点、倒易矢量、倒易面1.倒易点阵的定义1)倒易矢量倒易矢量的定义 从倒易点阵原点向任一倒易阵点 所连接的矢量叫倒易矢量,表示 为: r* = ha* + kb* + lc*2)倒易矢量的两个基本性质1)倒易矢量的方向垂直于正点阵中的(hkl)晶面。
2)倒易矢量的长度等于(hkl)晶面的晶面间距dhkl的倒数。
倒易阵点用它所代表的晶面的面指数(干涉指数)标定。
91.倒易点阵的定义晶面族所对应的倒易点a/2 上图画出了(100)、(200)晶面 (100) 族所对应的倒易阵点,因为 (200)的晶面间距d200 是d100 的一 半,所以(200)晶面的倒易矢量 长度为(100)的倒易矢量长度的 000 C* 二倍。