水塔水位控制系统PLC设计范本
- 格式:doc
- 大小:581.50 KB
- 文档页数:13
水塔水位plc自动控制用plc控制水位的自动控制原理水塔水位自动控制一、实验目的用PLC 构成水塔水位自动控制系统二、实验设备1)Dais-__ 可编程控制模拟实验仪2)计算机3)连接导线一套三、实验内容1、控制要求:当水塔水位低于水位界(S4 为ON 表示)时,电磁阀Y 打开,于是进水(S4 为OFF 表示水池水位高于水池低水界),当水池水位高于水池低水界(S3 为ON 表示),电磁阀Y 关闭。
1)I/O 分配表:输入输出SB4:X2 L2:Y1SB3:X32)输入下图的梯形图。
3)调试并运行程序,观察结果。
2、控制要求:当水池水位低于SB4 所指示的位置时,启动SB4 按钮,L2 所指示的电机工作,水池进水。
当水池水位达到SB3 所指示的位置时,启动SB3 按钮,使L2 所指示的电机关闭,停止进水;当水塔水位低于SB2 所指示的位置时,启动SB2 按钮,L1 所指示的电机工作,开始水塔进水。
当水塔水位达到SB1 所指示的位置时,启动SB1 按钮,使L1 所指示的电机停止工作。
1)I/O 分配表:输入输出SB1:X0 L1:Y0SB2:X1 L2:Y1SB3:X2SB4:X32)输入下图的梯形图。
用plc控制水位的自动控制原理3)调试并运行程序,观察结果。
四、编程练习1)当水池水位低于水位界时(S4 为ON),电磁阀Y 打开进水(S4 为OFF 表示水池水位高于水池低水界)。
当水位高于水池高水位界(S3 为ON 表示),阀门关闭。
当S4 为OFF 时,且水塔水位低于水塔低位界时,S2 为ON,电动机M 运转,开始抽水。
当水塔水位高于水塔高水位界时,电动机M 停止。
根据上述控制要求编制水塔水位自动控制程序,并上机调试运行。
2)当水池水位低于水位界时(S4 为ON 表示),电磁阀Y 打开进水(Y 为ON)定时器开始定时,2S 以后,如果S4 还不为OFF,那么阀Y 指示灯闪烁,表示阀Y 没有进水,出现故障,S3 为ON 后,阀Y 关闭(Y 为OFF)。
湖北工业大学可编程控制器技术课程设计(论文)题目:水塔水位控制系统院(系): 机械工程学院专业班级: 09机自职2班学号:0910113213学生姓名:张凯指导教师: 许万起止时间: 2012/11/26_--_2012/11/30目录第1章课程设计目的与要求ﻩ11.1 课程设计目的ﻩ11.2 课程设计的实验环境............................................................................................... 11.3 课程设计的预备知识ﻩ11.4课程设计要求 (1)第2章课程设计内容ﻩ32.1系统分析与I/O分配ﻩ32.2系统电路图设计........................................................................................................ 62.3 软件程序设计ﻩ7第3章课程设计的考核 (11)3.1 课程设计的考核要求 (11)113.2 课程性质与学分ﻩ参考文献ﻩ12第1章课程设计目的与要求1.1 课程设计目的本课程的课程设计实际是楼宇智能化专业学生学习完《电气控制设备》《传感器与数据采集》《可编程控制器技术》等课程后,进行的一次全面的综合训练,其目的在于加深对PLC控制系统开发与设计的基本方法的掌握。
1.2 课程设计的实验环境硬件要求能运行Windows 9.X操作系统的微机系统。
三菱FX可编程控制器和仿真软件、电子元件一套、工具一套。
1.3 课程设计的预备知识熟悉常用电子元件的使用;电路电子技术中的相关内容;电气控制;传感器与数据采集;可编程控制器原理与应用。
1.4 课程设计要求1、使用三菱F X系列PLC 为控制核心,选择电磁阀YV、交流接触器KM 、热继电器F R、按钮、水位检测开关SL 等作为外围控制器件,控制水泵启动和停止。
水塔水位的PLC控制设计院系名称:机电学院班级:机自074学号:200700314416指导教师:靳继勇姓名:石亚罕日期:2010 年9 月16一、目录一、目录 (2)二、前言 (3)三、设计任务书 (4)四、控制方案的选择 (6)6、硬件的选择 (6)(1)确定Plc的cpu的型号 (6)(2)液位传感器的选用 (6)7、信号指示的设计 (6)8、采用顺序启动 (6)五、输入输出的分配 (7)六、PLC接线图 (9)七、主线路原理图 (10)八、控制电路 (11)九、操作面板 (12)十、系统操作说明 (13)十一、系统的调试说明以及注意事项 (13)10、调试说明 (13)11、注意事项 (14)十二、参考书目 (14)十三、附录1:系统梯形图 (15)十四、附录2:主程序 (19)十五、课设小结 (26)二、前言在工业控制过程中, 继电接触器控制系统因其没有运算、处理、通讯等功能, 而不能完成复杂的控制方式, 20 世纪60 年代PLC 控制系统应运而生, 它综合了计算机技术、自动控制技术和通信技术等现代科技, 是当今工业自动控制的标准设备之一; 20 世纪70年代以后, 又相继出现了集散控制系统DCS、现场总线控制系统FCS, 现在以及今后很长一段时间内三种控制方式将并存。
可编程序控制器( P rogrammab le LogicCon t ro ller 简称PLC) 是一种专为在工业环境应用而设计的数字运算电子系统, 它将计算机技术、自动控制技术和通讯技术融为一体, 成为实现单机、车间、工厂自动化的核心设备, 具有可靠性高、抗干扰能力强、组合灵活、编程简单、维修方便等诸多优点。
随着技术的进步, 其控制功能由简单的逻辑控制、顺序控制发展为复杂的连续控制和过程控制, 成为自动化领域的三大技术支柱(PLC、机器人、CADö CAM ) 之一。
其主要应用的技术领域有: 顺序控制、过程控制、位置控制、生产过程的监控和管理、结合网络技术等。
轻工职业技术学院PLC课程设计名称:水塔水位控制PLC课程设计院系:机电工程系班级:普高11机电(2)班姓名:涛目录1.课程设计目的 (3)2.课程设计题目和要求 (3)2.1设计题目 (3)2.2控制要求 (3)3.设计容 (3)3.1PLC的构成 (3)3.2PLC的工作原理 (4)3.3梯形图程序设计及工作过程分析 (6)3.4水塔水位控制系统PLC软件设计 (7)3.41工作过程 (7)3.42程序流程图 (8)3.43梯形图 (9)3.44水塔水位控制系统梯形图的对应指令表 (10)4.设计总结 (11)参考文献 (11)1.课程设计目的(1)通过对工程实例的模拟,熟练的掌握PLC的编程和程序调试方法。
(2)进一步熟悉PLC的I/O连接。
(3)熟悉水塔水位控制的编程方法。
2.课程设计题目和要求2.1设计题目水塔水位控制系统2.2控制要求1.因电动机功率较大,为减少起动电流,电动机采用定子串电阻降压启动,并要错开起动时间(间隔时间为5s)。
2.为防止某一台电动机因长期闲置而产生锈蚀,备用电动机可通过预置开关随意设置。
如果未设置备用电动机组号,则系统默认为5号电动机组为备用。
3.每台电动机都有手动和自动两种控制状态。
在自动控制状态时,不论设置哪一台电动机作为备用,其余的4台电动机都要按顺序逐台起动。
4.在自动控制状态下,如果由于故障使某台电动机组停车,而水塔水位又未达到高水位时,备用电动机组自动降压起动;同时对发生故障的电动机组根据故障性质发出停机报警信号,提醒维护人员及时排除故障。
当水塔水位达到高水位时,高液位传感器发出停机信号,各个电动机组停止运行。
当水塔水位低于低水位时,低液位传感器自动发出开机信号,系统自动按顺序降压起动。
5.因水泵房距离水塔较远,每台电动机都有就地操作按钮和远程操作按钮。
6.每台电动机都有运行状态指示灯(运行、备用和故障)。
7.液位传感器要有位置状态指示灯。
3主要容3.1 PLC的构成根据物理结构形式不同,PLC分为整体式和组合式(模块式)两种。
水塔水位控制系统P L C设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】水塔水位控制系统PLC设计1、水塔水位控制系统PLC硬件设计、水塔水位控制系统设计要求水塔水位控制装置如图1-1所示控制装置水塔水位的工作方式:当水池液位低于下限液位开关S4,S4此时为ON,水阀Y打开(Y为ON),开始往水池里注水,定时器开始定时,4秒以后,若水池液位没有超过水池下限液位开关时(S4还不为OFF),则系统发出报警(阀Y指示灯闪烁),表示阀Y没有进水,出现故障;若系统正常,此时水池下限液位开关S4为OFF,表示水位高于下限水位。
当水位液面高于上限水位,则S3为ON,阀Y关闭(Y为OFF)。
当S4为OFF时,且水塔水位低于水塔下限水位时(水塔下限水位开关S2为ON),电机M开始工作,向水塔供水,当S2为OFF时,表示水塔水位高于水塔下限水位。
当水塔液面高于水塔上限水位时(水塔上限水位开关S1为OFF),电机M停止。
(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动)水塔水位控制系统主电路水塔水位控制系统主电路如图1-2所示:图1-2 水塔水位控制系统主电路、I/O接口分配水塔水位控制系统PLC的I/O接口分配如表1-1所示。
这是一个单体控制小系统,没有特殊的控制要求,它有5个开关量,开关量输出触点数有8个,输入、输出触点数共有13个,只需选用一般中小型控制器即可。
据此,可以对输入、输出点作出地址分配,水塔水位控制系统的I/O接线图如图1-3所示。
图1-3 水塔水位控制系统的I/O接线图2、水塔水位控制系统PLC软件设计程序流程图水塔水位控制系统的PLC控制流程图,根据设计要求,控制流程图如图2-1所示。
图2-1 水塔水位控制系统的PLC控制流程图梯形图程序设计及工作过程分析梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。
安康学院可编程逻辑控制PLC设计报告书课题名称:水塔水位自动控制系统姓名:学号:院系:专业:指导教师:时间:设计项目成绩评定表设计报告书目录一、设计目的 (1)二、设计思路 (1)三、设计过程 (1)3.1、系统论证 (1)3.2、模块设计 (3)四、系统结果 (5)五、课程设计体会与建议 (6)5.1、设计体会 (6)5.2、设计建议 (6)六、参考文献 (6)一、设计目的1、了解PLC实验箱结构及其接线方法。
2、利用PLC构成水塔水位自动控制系统。
3、了解自动控制原理在日常生活中的应用4、熟悉水塔自动控制系统的设计与制作。
二、设计思路1、按水塔水位的控制要求,设计PLC外部电路;2、连接PLC外部(输入、输出)电路,编写用户程序;3、输入、编辑、编译、下载、调试用户程序;4、运行用户程序,观察程序运行结果。
三、设计过程水塔水位控制系统是我国住宅小区、工厂企业广泛应用的供水系统。
为了达到节能的目的,提高供水系统的质量,考虑采用可编程控制器(PLC)、继电器、传感器技术和数据采集,设计一套实用水位控制方案,使系统实现自动控制,以提高控制精度、可靠性和供水质量。
并通过模拟仿真来验证程序编写的正确性。
3.1、系统方案其工作原理为:按下启动按钮,当水槽水位低于下限,补水阀答开。
高于上限时,补水阀关闭,同时,当水塔水位低于下限时,并且水槽水位高于下限时,抽水泵打开,当水塔水位高于上限时,抽水泵关闭。
水塔自动控制总体方框图如图1所示:图1 总体控制方框图3.2、模块设计水塔水位模拟图如图2所示:图2 水塔水位模拟图该电路完成两个功能:一是为水池补水;二是为水塔注水。
I/O分配表如表1所示:表1 I/O分配表输入继电器输入变量名输出继电器输出变量名X0 控制开关Y0 电磁阀X1 水塔上限液位开关Y1 电动机MX2 水塔下限液位开关X3 水池下限液位开关X4 水池上限液位开关工作过程:1)初始状态:水箱没有水,液位开关S4断开(S4为OFF)。
水塔水位控制PLC编程实例
水塔水位控制PLC编程实例
一、实验目的
用PLC构成水塔水位自动控制系统。
二、实验内容
当水池水位低于水池低水位界(S4为ON表示),阀Y打开进水(Y为ON)定时器开始定时,4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障,S3为ON后,阀Y关闭(Y为OFF)。
当S4为OFF时,且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。
当水塔水位高于水塔高水位界时电机M 停止。
三、水塔水位控制的实验面板图:图6-8-1所示
水塔水位控制面板
上图下框中的S1、S2、S3、S4分别接主机的输入点I0.0、I0.1、I0.2、I0.3,M、Y分别接主机的输出点Q0.0、Q0.1。
四、编制梯形图并写出实验程序
参考程序
表6-8-1所示
参考梯形图如下所示:
图6-8-2
五、实验设备
1、THSMS-A型、THSMS-B型实验装置或THSMS-1型、THSMS-2型实验箱一台
2、安装了STEP7-Micro/WIN32编程软件的计算机一台
3、PC/PPI编程电缆一根
4、锁紧导线若干。
毕业论文(设计)基于PLC的供水系统设计系部自动控制工程系专业名称电气自动化技术班级姓名学号2011年10月27日基于PLC的供水系统设计摘要随着社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高:再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、搞节能、能适应不同领域的恒压供水系统已成为必然趋势。
本设计是针对居民生活用水而设计的.由PLC、变频器、压力传感器等组成控制系统,调节水泵的输出流量。
电动机泵组由四台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组的速度和切换,是系统运行在最合理状态,保证按需供水.本设计介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节再经过PID运算,通过PLC控制变频于工频切换,实现闭环自动调节恒压变量供水.关键词:变频调速;恒压供水;PID调节;PLC;变频器The design of water supply system based on PLCAbstractWith the rapid development of social economy,people water quality and water supply to demand for improved system reliability:coupled with the current energy shortage,the use of advanced automation technology, control technology and communication technology, design high—performance, engage in energy conservation,to adapt Water Supply System in different fields has become an inevitable trend。
河南机电高等专科学校水塔水位PLC控制课程设计报告1. 课程设计目的(1)利用PLC构成水塔水位(液位)控制系统。
(2)了解自动控制的工作原理及设备在日常生活中的应用。
2.课程设计题目和要求水塔水位的模拟控制情况如图所示。
(1)初始状态:水箱没有水,液位开关S断开(S为OFF)。
(2)控制要求:本装置上电后,按动启动按钮,电动阀Y通电(Y为ON),水箱开始注水;当水箱水位达到S4高度后,液位开关S4闭合(S4为ON),当水箱水位达到S3高度(水满)时,液位开关S3闭合(S3为ON),注水电动阀Y断电(Y为OFF),水箱停止注水;此后,随着水塔水泵抽水过程的进行,水箱液面逐渐降低,液位开关S3(S3=OFF)复位;随着抽水过程的继续进行,水箱液面继续降低,当液面低于开关S时,液位开关S4复位(S4为OFF),电动阀Y再次通电(Y为ON),水箱(自动)注水,当水位达到S时再次停止注水。
如此循环,使水箱水位保持在S3~S4之间。
当水箱水位高于S液位,并且水塔水位低于水塔最低允许液面开关S(液位开关S2为OFF)时,水泵电动机M开始运行,向水塔抽水;当液面达到最高液位开关S1时,水塔电动机M停止抽水(M为OFF)。
此循环控制使得水塔水位自动保持在S1~S2之间3.设计内容3.1、PLC的介绍可编程控制器是60年代末在美国首先出现的,当时叫可编程逻辑控制器PLC (ProgrammableLogicController),目的是用来取代继电器。
以执行逻辑判断、计时、计数等顺序控制功能。
提出PLC概念的是美国通用汽车公司。
PLC的基本设计思想是把计算机功能完善、灵活、通用等优点和继电器控制系统的简单易懂、操作方便、价格便宜等优点结合起来,控制器的硬件是标准的、通用的。
根据实际应用对象,将控制内容编成软件写入控制器的用户程序存储器内,使控制器和被控对象连接方便。
70年代中期以后,PLC已广泛地使用微处理器作为中央处理器,输入输出模块和外围电路也都采用了中、大规模甚至超大规模的集成电路,这时的PLC已不再是仅有逻辑(Logic)判断功能,还同时具有数据处理、PID调节和数据通信功能。
基于plc水塔水位自动控制系统设计(毕业论文)基于PLC的水塔水位自动控制系统设计摘要:本论文设计了一种基于PLC(可编程逻辑控制器)的水塔水位自动控制系统。
该系统通过PLC对水塔水位进行实时监测和控制,实现了水塔水位的稳定控制和节约水资源的目标。
本论文详细介绍了系统的硬件组成、软件设计和系统调试,为读者提供了一种实用的水塔水位自动控制方案。
一、引言水塔是城市供水中重要的基础设施之一,它起到了调节和储存水的作用。
传统的水塔水位控制主要依靠人工操作,存在着很多问题,如操作不及时、水资源浪费等。
因此,设计一种基于PLC的水塔水位自动控制系统,可以提高水塔的运行效率和水资源利用率。
二、系统需求分析本系统需要实现以下功能:1.实时监测水塔水位;2.根据水位自动控制水泵的启停;3.实现水塔水位的自动调节;4.防止水泵过载和干运转等异常情况;5.实现远程监控和管理。
三、系统设计1.硬件组成2.本系统主要由PLC、水位传感器、水泵、电动阀门、通信模块等组成。
其中,PLC作为核心控制单元,负责数据处理和控制输出;水位传感器监测水塔水位;水泵和电动阀门负责水流的控制;通信模块实现数据传输和远程监控。
3.软件设计4.本系统的软件设计主要包括PLC程序设计和上位机监控软件设计。
PLC程序主要实现数据采集、逻辑控制和水泵启停等功能;上位机监控软件则通过组态软件实现数据的实时显示、参数设置和远程控制等功能。
5.系统调试6.在系统调试过程中,我们进行了硬件和软件的测试,验证了系统的稳定性和可靠性。
同时,我们还对系统的节能效果进行了评估,结果表明本系统可以有效地节约水资源。
7.系统功能完善与优化8.针对实际应用中出现的问题和不足,我们提出了相应的改进措施:首先,增加了水泵的故障检测功能,提高了系统的安全性;其次,优化了控制算法,提高了水塔水位的控制精度;最后,完善了上位机监控软件的功能,提高了系统的可操作性。
9.经济效益分析10.本系统的应用带来了显著的经济效益。
某居民住宅小区内生活水塔,高40米,由设在水塔附近的三台水泵为其供水。
水泵电动机功率为33KW,额定电压380V。
水塔正常水位变化2.15M,由安装在水箱内的上、下水位开关S1、S2进行控制。
为反映各水泵工作是否正常,在每台水泵的压力出口处设置压力继电器SP1—SP3,将其常开触点作为PLC输入,检测出水压力是否正常。
具体控制要求如下:(1)三台电动机均为降压启动,以减小启动电流的冲击,启动时间为t1。
(2)电动机启动时间错开,上台电动机全压运行t2后,下一台台才能启动(3)三台电动机均设置有过载保护(4)三台水泵正常运行时采用两用一备,为防止备用泵长期闲置锈蚀,要求备用机组可用按钮任意切换。
(5)设手动/自动转换开关SAC。
手动时,可由操作者分别启动每一台水泵,各水泵不进行联动;自动时,由上、下水位开关对水泵的起停自动控制,且启动时要联动。
(6)若运行中任一台水泵出现故障,备用机组立即投入运行。
设计任务:1.具体设计内容包括:(1)系统设计方案的确定及说明(2)PLC选型及I/O分配(3)主电路设计及绘制(4)PLC硬件系统(5)设计梯形图并进行功能说明,实现所要求的功能2.应完成的技术资料有:(1)PLC控制系统主电路及电气原理图(2)PLC控制程序及其说明一份(3)PLC外部接线图一份(4)主要设备、材料清单一份由于上传不了太多的图片(就3张),先把第二张的梯形图图片传在这里(此张图片里我已把端口分配好,在图片右边蓝框里),其他图片我把它传到了我的空间“水塔控制梯形图”里,并每张图片的梯形图都背上了解释(如果不是太懂的话,可以给我信息,我一般晚上8点在线),在此选用的是西门子的S7-200 PLC,由于电机运行的主电路很容易找到(不过如果你什么都不懂的话,可能会沸点时间,不过还是可以解决的),在此没有给出,而对于报告什么的这我不能帮你解决,这只能靠你解决了,如果有什么疑问,可给我留言或给我信息)在此现将STL语句表贴在下面,然后是梯形图:STL;Network 1LD SM0.1S M0.3, 1Network 2LD I0.3= M0.2Network 3LDN I0.3A I1.1LD M0.0AN I0.3 OLDAN I1.0O M0.2= M0.0Network 4LD M0.0AN I0.3A T37LD Q0.0AN I0.3 OLDAN I1.0LD M0.0A I0.3A T37A I0.0OLD= Q0.0Network 5LD I0.0LDN I0.3A M0.0 OLDTON T37, +10Network 6LDN I0.3A T38A T39LD Q0.1AN I0.3 OLDAN I1.0LD I0.3A T39A I0.1OLD= Q0.1Network 7LDN I0.3A Q0.0 TON T38, +30Network 8LD I0.1LDN I0.3A T38OLDTON T39, +10Network 9LD SM0.5 AN I0.3LD I0.3CTU C0, 20Network 10LD Q0.0A Q0.1= M0.1 Network 11LD M0.1R M0.3, 1 Network 12LD C0A M0.3AN I0.3AN Q0.2= Q0.3 Network 13LDN I0.3A Q0.3O I0.2TON T40, +10Network 14LDN I0.3A T40LD Q0.2AN I0.3AN Q0.0AN Q0.1 OLDAN I1.0LD I0.3A T40A I0.2LD I0.4A T41OLDOLD= Q0.2Network 15LD I0.4TON T41, +10 梯形图:。
PLC控制水塔液位及温度控制程序设计
一:设计目的:
1、用PLC构成水塔液位和温度的自动控制系统。
2、了解PLC在实际生活中的应用。
二:控制要求:
(1)闭合水池低液位开关,驱动电磁阀打开,开始进水同时进行加热和搅拌,使水受热均匀,当水位到达水池高液位时,停止加水,但还可以加热,直到加热到温度为20度到30度之间为止,同时驱动蜂鸣器发出声音提醒。
(2)在蜂鸣器提醒的期间可以打开水塔低液位开关,启动抽水电机向水塔抽水并同时停止加热和搅拌。
直到到达水塔的高液位停止抽水。
三:设计参考:
1、输入:
2、输出:
X1 水塔高液位控制开关S1 Y0 电磁阀
X2 水塔低液位控制开关S2 Y1 抽水电动机
X3 水池高液位控制开关S3 Y2 加热器
X4 水池低液位控制开关S4 Y3 搅拌器
C5 温度传感器S5 Y4 蜂鸣器
四:设计流程图为:
五:水塔控制示意图:
六:硬件连接图如下:
七:由以上的分析可得梯形图如下:
八:从上梯形图可以看出,闭合X4后,一直进行加水并加热,直到水池充满,当热量到达20到30度之间蜂鸣器开始提醒,这之间可以打开水塔的低液位的开关,此时抽水机工作,关闭加热和搅拌,直到到达水塔高液位,整个系统停止工作。
目录一课题内容和设计要求 (1)1.1.课题内容 (1)1.2.设计要求 (2)1.3控制系统的总体方案说明 (2)二 PLC系统的硬件设计 (3)2.1PLC选型 (3)2.2I/O点数的估算 (3)2.3PLC的输入、输出及状态分配表 (3)2.4控制系统电气原理图 (4)三软件设计 (4)3.1水塔水位控制系统流程图 (4)3.2水塔水位控制系统顺序功能图 (4)3.3.水塔水位控制系统设计思路及梯形图 (6)四水塔水位控制系统调试说明 (12)五设计小结 (12)六参考资料 (13)一课题内容和设计要求1.1.课题内容现有一水塔水位控制系统,如图所示。
当水池水位低于水池低水位界(S4为ON表示),阀门Y打开进水(Y为ON)定时器开始定时,4秒后,如果S4还不为OFF,那么指示灯1以2HZ闪烁,表示阀门Y没有进水,出现故障,S3为ON后,阀门Y关闭(Y为OFF)。
当S4为OFF时,且水塔水位地于水塔低水位界时S2为ON,水泵电动机M运转抽水,若水泵电动机M运行5S后,水塔低水位界S2不为OFF,说明水泵电动机M没有抽水,出现故障,指示灯1以1HZ闪烁。
当水塔水位高于水塔高水位界时水泵电动机M停止。
利用PLC构成水塔水位自动控制系统,保证水池和水塔不断水图1 水塔水位控制系统示意图1.2.设计要求(1)有三种不同工作流程可供选择:定时流程,实际水位控制流程,手动操作流程。
(2)三种工作流程,如表所示。
当按下停止按钮时,整个系统停止工作,按下启动按钮,则系统继续工作。
1.3控制系统的总体方案说明(1)水塔水位控制系统控制对象电动机均由交流接触器完成起、停控制。
(2)水塔与水池中的水位检测开关,在选型时考虑抗干扰性能,选用电极考虑腐蚀性。
(3)水泵电动机M采用热继电器实现过载保护,其热继电器的常开触点通过中间继电器转换后,作为PLC的输入信号,用以完成各个电动机系统的过载保护。
(4)主电路用断路器,各负载回路和控制回路以及PLC控制回路采用熔断器,实现短路保护。
水塔水位控制系统
PLC设计
水塔水位控制系统PLC设计
1、水塔水位控制系统PLC硬件设计
1.1、水塔水位控制系统设计要求
水塔水位控制装置如图1-1所示
S1---表示水塔的水
位上限,S2---表示
水塔的水位下限,
图1-1 水塔水位控制装置
水塔水位的工作方式:
当水池液位低于下限液位开关S4,S4此时为ON,水阀Y打开(Y为ON),开始往水池里注水,定时器开始定时,4秒以后,若水池液位没有超过水池下限液位开关时(S4还不为OFF),则系统发出报警(阀Y指示灯闪烁),表示阀Y没有进水,出现故障;若系统正常,此时水池下限液位开关S4为OFF,表示水位高于下限水位。
当水位液面高于上限水位,则S3为ON,阀Y关闭(Y为OFF)。
当S4为OFF时,且水塔水位低于水塔下限水位时(水塔下限水位开关S2为ON),电机M开始工作,向水塔供水,当S2为OFF 时,表示水塔水位高于水塔下限水位。
当水塔液面高于水塔
上限水位时(水塔上限水位开关S1为OFF),电机M停止。
(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动)
1.2 水塔水位控制系统主电路
水塔水位控制系统主电路如图1-2所示:
L1L2L3
SQ
FU
KM
FR
M
3~
图1-2 水塔水位控制系统主电路
1.3、I/O接口分配
水塔水位控制系统PLC的I/O接口分配如表1-1所示。
表1-1 水塔水位控制系统PLC的I/O接口分配表
1.4、水塔水位控制系统的I/O 接线图
这是一个单体控制小系统,没有特殊的控制要求,它有5个开关量,开关量输出触点数有8个,输入、输出触点数共有13个,只需选用一般中小型控制器即可。
据此,能够对输入、输出点作出地址分配,水塔水位控制系统的I/O 接线图如图1-3所示。
KM
SB 传感器传感器传感器传感器
图1-3 水塔水位控制系统的I/O 接线图
2、水塔水位控制系统PLC 软件设计 2.1 程序流程图
水塔水位控制系统的PLC 控制流程图,根据设计要求,控制流程图如图2-1所示。
图2-1 水塔水位控制系统的PLC控制流程图
2.2梯形图程序设计及工作过程分析
梯形图编程语言是一种图形化编程语言,它沿用了传统的继。