燃气基础知识 第六章 燃气管网水力计算
- 格式:ppt
- 大小:1.91 MB
- 文档页数:28
第六章燃气管网的水力计算第一节管道内燃气流动的基本方程式我们先看以下燃气管道计算的不稳定流动方程。
一、不稳定流动方程式燃气是可压缩流体,一般情况下管道内燃气的流动是不稳定流,管道内燃气的压力和流量在流动过程中都会发生变化,除此之外,随着管道内沿程压力的下降燃气的密度也在减小,而管道内燃气的温度可以认为是不变的,其温度等于管道周围土壤的温度。
这样,决定燃气流动状态的参数为:压力P,流速w和密度ρ,他们均随燃气流动的距离和时间而变化。
是距离L和时间τ的函数,即为了求得燃气流动的状态参数P,w和ρ,必须借助于运动方程,连续性方程和状态方程三个方程。
对管道内的燃气列出运动方程和连续性方程,再将其与状态方程组合,可以得到求解管道内燃气流动的基本方程式:其中α指的是燃气管道对水平面的倾斜角。
λ为摩阻系数,d是燃气管道的内径。
从理论上讲,该式可用来求解在燃气管道中任意断面x和任一时间τ的气流参数P,ρ和流速w,但实际上这一组非线性偏微分方程组很难求解析解,在工程上常可忽略某些对计算结果影响不大的项,并对该方程组进行线性简化,可求得近似解。
到简化后的方程组为:其中c为声速上式即为简化后的燃气管道不稳定流动方程组,但在实际生产和生活中,该方程的应用并不多,除了单位时间内输气量波动大的超高压天然气长输管线要用到上面的不稳定流进行计算外,设计城市燃气管道时燃气流动的不稳定性可以不考虑。
因此我们下面主要讲一下燃气管到计算的稳定流动方程式。
二、稳定流动方程式通常在城市燃气管网工程设计中,将某一小段时间内(如一小时或一天)的管内流动作为稳定流动,认为各运动参数P ,w 和ρ不随时间变化。
这样这三个参数对时间的偏导数都等于0,即0=∂∂τP0=∂∂τρ0=∂∂τω将他们带入不稳定流动方程组,然后进行适当简化积分后可得稳定流动燃气管计算的公式:该方程可以用来计算高压和低压燃气管道。
其中P1是管道起始端管内燃气的绝对压力Pa ,P2是L 处管道内燃气的绝对压力Pa , λ为摩阻系数,Q 0为燃气管道的计算流量Nm 3/s , d 是管道内径m ,0ρ为燃气的密度kg/Nm 3P 0为标准大气压,P 0=101325Pa ,T 为燃气的温度K ,T 0为标准状态温度,T 0=273.16KZ 是燃气在管内所处温度压力下的压缩因子,Z 0是燃气在标准状态下的压缩因子, 将该式用于计算低压燃气管道压降时可以进行简化,P m 为管道起始端和末端压力的算数平均值,,低压管道本身压力很低,可以认为0P P m ≈,带入稳定流动计算公式可得:若考虑城市燃气管道的压力一般在1.6MPa 以下,此时可认为10=≈Z Z ,并将公式中的各参数采用工程中常用的单位,P 的单位用kPa ,L 的单位采用km ,流量的单位采用Nm 3/h ,管道内径d 的单位采用mm ,则第三部分我们看一下计算公式中的摩阻系数λ 三、燃气管道的摩擦阻力系数简称摩阻系数,是反映管内燃气流动摩擦阻力的一个无因次系数,与燃气在管道内 的流动状况、管道材质、管道的连接方法及安装质量、燃气的性质等因素有关,是雷诺数Re 和相对粗糙度d∆的函数。
第六章_燃气管网的水力计算案例燃气管网的水力计算是指在一定工作条件下,通过计算管网中的流量、压力等参数,来判断管网运行的性能和工况的稳定性。
水力计算是燃气管网设计和运行的重要依据,能够保障管网的正常运行和安全性。
下面将以一个燃气供气管网的水力计算案例来进行详细介绍。
案例:小区的燃气供气管网有3条支路管线,分别是A、B、C。
管线A和管线B通过阀门1相连接,管线B和管线C通过阀门2相连接。
管线A上有一个燃气表,管线C上有一个燃气应急放散阀。
已知各管段的长度、直径、流量和压力差,要求通过水力计算来判断各个管段的流量、压力和流速。
首先,我们需要列出各个管段的参数:管段A:长度L1,直径D1,流量Q1,压力差ΔP1管段B:长度L2,直径D2,流量Q2,压力差ΔP2管段C:长度L3,直径D3,流量Q3,压力差ΔP3根据水力计算的基本原理,我们可以利用管网模型和压力平衡方程来进行计算。
首先计算管段A的流量、压力和流速。
通过压力平衡方程可以得到:Q1=(π/4)*(D1^2)*v1ΔP1=λ*(L1/D1)*(v1^2)/2其中,v1为管段A的流速,λ为管道摩阻系数。
接下来计算管段B的流量、压力和流速。
通过阀门1和压力平衡方程可以得到:Q2=Q1ΔP2=ΔP1+λ*(L2/D2)*(v2^2)/2其中,v2为管段B的流速。
最后计算管段C的流量、压力和流速。
Q3=Q2ΔP3=ΔP2+λ*(L3/D3)*(v3^2)/2其中,v3为管段C的流速。
根据以上方程,我们可以利用迭代法或数值计算方法来求解各个管段的流量、压力和流速。
首先可以假设一个初始值,然后通过迭代或者数值计算逐步逼近求解。
在实际运算中,还需要考虑管道材料的摩阻系数、流量的单位换算、附加阻力等因素,以提高计算的精确性。
通过上述的水力计算,我们可以得到燃气供气管网各个管段的流量、压力和流速参数。
然后可以根据这些参数来判断管网的流动状态和工况是否正常,以及是否需要进行管网的优化和调整。