信源编码
- 格式:ppt
- 大小:539.00 KB
- 文档页数:45
信源编码与信道编码⼀.信源编码和信道编码的发展历程信源编码:最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应⽤中常见的信源编码⽅式有:Huffman编码、算术编码、L-Z编码,这三种都是⽆损编码,另外还有⼀些有损的编码⽅式。
信源编码的⽬标就是使信源减少冗余,更加有效、经济地传输,最常见的应⽤形式就是压缩。
相对地,信道编码是为了对抗信道中的噪⾳和衰减,通过增加冗余,如校验码等,来提⾼抗⼲扰能⼒以及纠错能⼒。
信道编码:1948年Shannon极限理论→1950年Hamming码→1955年Elias卷积码→1960年 BCH码、RS码、PGZ译码算法→1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码→1965年B-M译码算法→1967年RRNS码、Viterbi算法→1972年Chase⽒译码算法→1974年Bahl MAP算法→1977年IMaiBCM分组编码调制→1978年Wolf 格状分组码→1986年Padovani恒包络相位/频率编码调制→1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM→1989年Hagenauer SOVA算法→1990年Koch Max-Lg-MAP算法→1993年Berrou Turbo码→1994年Pyndiah 乘积码准最佳译码→1995年 Robertson Log-MAP算法→1996年 Hagenauer TurboBCH码→1996MACKay-Neal重新发掘出LDPC码→1997年 Nick Turbo Hamming码→1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码→1999年删除型Turbo码虽然经过这些创新努⼒,已很接近Shannon极限,例如1997年Nickle的TurboHamming码对⾼斯信道传输时已与Shannon极限仅有0.27dB相差,但⼈们依然不会满意,因为时延、装备复杂性与可⾏性都是实际应⽤的严峻要求,⽽如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本⾝就已预⽰以接近⽆限的时延总容易找到⼀些⽅法逼近Shannon 极限。
一、实验目的1. 理解信源编码的基本原理和过程。
2. 掌握几种常见的信源编码方法,如哈夫曼编码、算术编码等。
3. 分析不同信源编码方法的编码效率。
4. 培养动手实践能力和分析问题、解决问题的能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 实验工具:PyCharm IDE三、实验内容1. 哈夫曼编码2. 算术编码四、实验步骤1. 实验一:哈夫曼编码(1)读取信源数据,统计每个字符出现的频率。
(2)根据字符频率构建哈夫曼树,生成哈夫曼编码表。
(3)根据哈夫曼编码表对信源数据进行编码。
(4)计算编码后的数据长度,并与原始数据长度进行比较,分析编码效率。
2. 实验二:算术编码(1)读取信源数据,统计每个字符出现的频率。
(2)根据字符频率构建概率分布表。
(3)根据概率分布表对信源数据进行算术编码。
(4)计算编码后的数据长度,并与原始数据长度进行比较,分析编码效率。
五、实验结果与分析1. 实验一:哈夫曼编码(1)信源数据:{a, b, c, d, e},频率分别为{4, 2, 2, 1, 1}。
(2)哈夫曼编码表:a: 0b: 10c: 110d: 1110e: 1111(3)编码后的数据长度:4a + 2b + 2c + 1d + 1e = 4 + 2 + 2 + 1 + 1 = 10(4)编码效率:编码后的数据长度为10,原始数据长度为8,编码效率为10/8 = 1.25。
2. 实验二:算术编码(1)信源数据:{a, b, c, d, e},频率分别为{4, 2, 2, 1, 1}。
(2)概率分布表:a: 0.4b: 0.2c: 0.2d: 0.1e: 0.1(3)编码后的数据长度:2a + 2b + 2c + 1d + 1e = 2 + 2 + 2 + 1 + 1 = 8(4)编码效率:编码后的数据长度为8,原始数据长度为8,编码效率为8/8 = 1。
六、实验总结1. 哈夫曼编码和算术编码是两种常见的信源编码方法,具有较好的编码效率。
信源编码的基本功能
信源编码是一种将离散型信源的符号序列转换成二进制码的过程。
其基本功能包括:
1. 压缩:信源编码可将原始信源中的冗余信息消除或减少,从而实现对信源数据的压缩。
通过利用信号符号出现的统计规律和概率分布,将出现频率较高的符号用较短的二进制码表示,而将出现频率较低的符号用较长的二进制码表示,以达到数据压缩的目的。
2. 解码:信源编码在进行压缩后,需进行解码以恢复原始信源信息。
解码过程即将经过编码的二进制码转换为原始的符号序列。
解码器根据所使用的编码规则,将编码后的二进制码映射到相应的符号或符号序列,从而还原原始信源信息。
3. 码长控制:信源编码还可以根据不同的需求和应用场景,灵活地设置码长,用于控制编码后的码长。
码长的设置需要平衡数据压缩效果和解码的复杂性。
在需要高压缩比时,可采用码长较短的编码方式;而在需要快速解码和较低的解码器资源消耗的情况下,可采用码长较长的编码方式。
4. 错误检测和纠错:某些信源编码方式还具备一定的错误检测和纠错能力。
通过在编码过程中引入冗余信息,可以在解码阶段检测和纠正一定数量的传输或存储错误,提高信号传输的可靠性。
总之,信源编码的基本功能是将离散型信源符号序列进行压缩,解码,进行码长控制和提供一定的错误检测和纠错能力。
信源编码通俗理解
嘿,朋友!今天咱来好好唠唠信源编码,这玩意儿啊,其实说简单也简单,说复杂吧,还真有点门道儿。
你想啊,信源编码就好像是给信息“瘦身”一样!举个例子,比如说你要给朋友寄一大箱子东西,那你是不是得把东西好好整理整理,该压缩的压缩,该打包的打包呀,这样才能让箱子装得下呀。
信源编码不就是干这个事儿嘛!
那怎么个“瘦身”法呢?这就有意思啦!它把那些多余的、不必要的信
息给去掉,留下最精华、最重要的部分。
哎呀,就好比说你说话,啰里啰嗦说了一大通,其实重点就那么几句话,信源编码就是把那些没用的废话给去掉了。
比如说你要告诉别人你今天去超市买了个苹果,就没必要说你在路上看到了几只猫几只狗吧,那不是浪费吗?
再进一步说,信源编码还能提高信息传输的效率呢!就像跑步比赛一样,如果身上背着一堆没用的东西,那能跑得快吗?肯定不行啊!把那些没用的“包袱”扔掉,才能跑得更快嘛!比如说看电视,如果信号不好,画面老是卡顿,那多烦人啊!但如果有了信源编码,就像给电视信号开了个“加速挂”,画面就能更流畅啦!
而且哦,信源编码还特别智能呢!它可以根据不同的情况来调整策略。
就像你做饭,有的菜要多放盐,有的菜要少放盐,信源编码也是这样,不同的信息用不同的方式来处理,多厉害呀!
我跟你说啊,信源编码可不是什么遥不可及的高科技,它就在我们生活中无处不在呢!想想你的手机通话、你看的视频,到处都有信源编码在默默工作。
它就像是一个幕后英雄,虽然我们平时可能注意不到它,但它却默默地为我们的信息生活保驾护航呢!
所以啊,信源编码真的很重要啊,它让我们的信息世界变得更高效、更精彩!朋友,你现在是不是对信源编码有了更清楚的认识啦?。
简述信源编码的功能摘要:1.信源编码的定义与作用2.信源编码的分类及方法3.信源编码技术的应用领域4.信源编码的发展趋势与挑战5.总结与展望正文:一、信源编码的定义与作用信源编码,是指在信息传输过程中,对原始信息进行编码处理,将其转换为适合于信道传输的编码形式。
其作用主要体现在以下几点:1.提高信息传输的效率:通过对信源进行编码,可以减少信息传输的冗余度,从而提高传输速率。
2.实现信息加密:信源编码可以实现信息加密,保障信息安全。
3.便于信号处理与分析:编码后的信号更容易进行信号处理、分析和识别。
二、信源编码的分类及方法根据编码方式的不同,信源编码可分为以下几类:1.基于概率的编码:如哈夫曼编码、算术编码等,主要用于熵编码。
2.基于结构的编码:如分组编码、卷积编码等,主要用于信道编码。
3.基于语义的编码:如图像编码、音频编码、视频编码等,主要用于特定领域信息的压缩与传输。
常见信源编码方法有:1.预测编码:通过对相邻帧或帧内的像素进行预测,减少冗余信息。
2.变换编码:将原始信号变换为频域或小波域,再进行编码。
3.熵编码:基于信息熵原理,对编码后的符号进行码字优化。
三、信源编码技术的应用领域1.图像处理:如JPEG、JPEG2000等图像压缩标准。
2.音频处理:如MP3、AAC等音频压缩标准。
3.视频处理:如MPEG、H.264等视频压缩标准。
4.通信系统:如3G、4G、5G等无线通信系统的信道编码。
四、信源编码的发展趋势与挑战1.趋势:随着大数据、云计算、物联网等技术的发展,信源编码将向更高效率、更低成本、更智能化的方向发展。
2.挑战:如何在低功耗、低带宽、高噪声等环境下,实现高效、可靠的信源编码成为当前研究的关键。
五、总结与展望信源编码作为信息传输过程中的关键技术,对于提高传输效率、保障信息安全、实现信号处理具有重要意义。
一、实验目的1. 理解信源编码与译码的基本原理和过程;2. 掌握哈夫曼编码和LZ编码的原理和方法;3. 通过实验验证信源编码和译码的效果,分析编码效率;4. 培养动手实践能力和分析问题的能力。
二、实验原理信源编码是将信源中的信息进行压缩的过程,目的是减小传输或存储信息所需的比特数。
信源编码分为熵编码和无损编码两大类。
熵编码基于信源符号的概率分布,无损编码则基于符号的统计特性。
1. 哈夫曼编码:根据信源符号的概率分布,构建哈夫曼树,为每个符号分配一个唯一的码字,实现信源的无损压缩。
2. LZ编码:基于符号的统计特性,将信源中的重复序列进行压缩,实现信源的无损压缩。
三、实验设备与软件1. 实验设备:计算机、编程软件(如MATLAB、Python等)2. 实验软件:MATLAB(或其他编程语言)四、实验内容与步骤1. 哈夫曼编码实验(1)选择实验文本,计算文本中每个字符的概率;(2)根据字符概率构建哈夫曼树;(3)根据哈夫曼树为每个字符分配码字;(4)对文本进行哈夫曼编码,得到编码后的文本;(5)对编码后的文本进行译码,验证译码效果。
2. LZ编码实验(1)选择实验文本,分析文本中的重复序列;(2)根据重复序列的长度和位置,构建LZ编码字典;(3)对文本进行LZ编码,得到编码后的文本;(4)对编码后的文本进行译码,验证译码效果。
五、实验结果与分析1. 哈夫曼编码实验结果(1)实验文本:某篇新闻文章,字符总数为10000;(2)字符概率分布:大部分字符出现概率较低,少数字符出现概率较高;(3)编码效率:编码后的文本长度为原始文本长度的60%;(4)译码效果:译码后的文本与原始文本完全一致。
2. LZ编码实验结果(1)实验文本:某篇新闻文章,字符总数为10000;(2)重复序列分析:文本中存在大量重复序列,可压缩性较高;(3)编码效率:编码后的文本长度为原始文本长度的50%;(4)译码效果:译码后的文本与原始文本完全一致。
2.9信源编码信源编码原理完成编码功能的器件称为编码器。
如前所述,离散信源输出的消息是一个一个离散的原始符号x1,x2…x n.由L个原始符号组成尚未编码的序列为:X=(X1X2…X l…X L)其中X l∈{x1,x2,…,x i,…x n}。
即若干个原始符号组成一个大符号X。
编码器把信源输出的随机符号序列变成码序列:A=(A1A2…A k…A K)其中A k∈{a1,a2,…,a j,…a m}。
信源符号每L个组成一组,用K个码符号对每一组信源符号进行编码,显然要求信源消息与码序列必须一一对应,即每组信源符号都有一个码字(即每一组K个码符号)为其编码,而每一个码字都可唯一地译出一组信源符号,这样才能做到无失真传送。
信源编码有等长度编码和变长编码两种编码法。
2.9.1等长编码定理由L 个符号组成,每个符号的熵为H(X)的平稳无记忆符号序列X1X2…X l …X L ,可用KA1A2…A k …A K ,个符号(每个符号有m 种可能取值)进行等长编码,对任意ε>0,只要满足: ε+≥)(X H lbm L K(正定理)(2.9.1)则当L 足够大时,必可使译码差错任意小,实现几乎无失真的编码。
反之,如果 ε2)(-≤X H lbm L K(逆定理) (2.9.2)则不可能实现无失真编码,当L 足够大时,译码必然出错。
这里仅对定理进行物理解释,式(2.9.1)中m 表示编码后码字的符号可能取值数,设m 个符号是等概率的,则一个符号的信息量为lbm ,由于这里是等长码,每个码字的长度为K ,码字可能的总数应为m K ,如果信源是平稳无记忆的,长度为K 的码字的信息量应为单个符号信息量的K倍。
即:lbm K=KlbmKlbm是编码后一个码字的信息量,它代表一个信源符号序列的信息量,那么平均一个信源符号的信息量应为K/L*lbm。
故正定理式(2.9.1)说明,只要编码后折合到信源每个符号的平均信息量略大于信源单符号熵,就可以做到无失真译码,条件是L要足够大。
信源编码的原理、方法、优缺点及应用信源编码就是从信源产生的信号到码符号的一种映射,它把信源输出的符号变换成码元序列。
信源编码主要是利用信源的统计特性,解决信源的相关性,去掉信源冗余信息,从而达到压缩信源输出的信息率,提高系统有效性的目的。
冗余信息是指信源产生信息所用数据位数与消息中包含的实际信息数据位的数目差值。
解决信源的相关性本质就是降低信源中的冗余,常用消除信源相关性的方法:“合并法”和“预测法”。
如果信源的符号序列中,只在相邻的少数几个符号之间有相关性,而相距较远的符号之间的相关性可以忽略不计,那么,这种信源称为弱记忆信源。
在这种情况下,可以把具有较强相关性的邻近几个符号看成一个大符号。
于是,这些大符号之间的相关性就变得很小了。
实际上就是把原来的基本信源空间变换成了多重空间。
多重空间的重数越高,这种大符号之间的相关性越小,最终可以获得相互独立的情况。
这种方法称为合并法。
如果信源的符号序列之间存在较强的相关性联系,以至根据其中一部分符号能够以一定的准确性推测出其余的符号,这种信源就称为强记忆信源。
在传递这样的信息时,那些可以被精确推断出来的符号就不必传送,从而可以节省时间,提高传输的效率。
但是,大多数情况下,完全可以精确推断出来的情况是极少的,只能根据信源的统计相关性作近似的预测,这就是预测法。
信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。
最原始的信源编码就是莫尔斯电码,另外还有电报码都是信源编码,它们主要用于传输电报信息。
但现代通信应用中常见的信源编码方式有:香农编码、费诺编码、Huffman 编码、算术编码、L-Z编码等,另外还有一些有损的编码方式。
信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。
另外,在数字电视领域,信源编码包括通用的MPEG—2编码和H.264(MPEG—Part10 AVC)编码等。