当前位置:文档之家› 如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰
如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰

在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。

一.关于布线

1.信号线与动力线必须分开走线

使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。

2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部

由于水系统的两台富士变频器离控制柜较远分别为30m 和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。

4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。

二.关于接地

1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。2.变频器的接地

·400V级:C种接地(接地电阻10Ω以下)。

·接地线切勿与焊机及动力设备共用。

·接地线请按照电气设备技术基准所规定的导线线径规格。

如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。

·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。

·使用两台以上变频器的场合,请勿将接地线形成回路。3.变频器与电机间的接线距离。

变频器与电机间的接线距离较长的场合,来自电缆的高次谐波漏电流,会对变频器和周边设备产生不利影响。因此为减少变频器的干扰,需要对变频器的载波频率进行调整。

北京天拓四方科技有限公司

模拟量信号干扰分析及11种解决秘诀

模拟量信号干扰分析及11种解决秘诀 关键词:PLC 模拟量信号干扰 1、概述 随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。 2、电磁干扰源及对系统的干扰 影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。 干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 3、PLC 控制系统中电磁干扰的主要来源有哪些呢? (1) 来自空间的辐射干扰: 空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。 (2) 来自系统外引线的干扰: 主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。 (3)来自电源的干扰:

变频器模拟量控制练习题

第一题搅拌机控制 有一台搅拌机,用三相交流异步电动机拖动,其控制要求如下:(1)工作过程: 当按下启动按钮SB1 时,电动机首先正向旋转5分钟,然后停2分钟,然后反向旋转5分钟,停2分钟,然后再正转……如此循环。 (2)停止过程: 任何时候,按下停止按钮SB2,电动机停止运行。 (3)电动机速度控制: 电动机由变频器驱动控制,变频器速度应用PLC模拟量给定,要求模拟量信号类型为0~20mA电流信号,电动机正向运行频率为38HZ,反向运行频率为26HZ。 电动机运行过程中,PLC用模拟量输入通道读取变频器实际运行频率值。

第二题电动机启动控制 有一台三相交流异步电动机带动大惯性机械负载,为避免启动和停止时负载冲击,需采用分段速度递增和递减的方式,其控制要求如下: (1)电动机启动: 当按下启动按钮SB1时,电动机首先以10HZ频率启动,每隔3分钟频率提高5HZ,到达最高频率50HZ后不再提高。 (2)停止过程: 按下停止按钮SB2,电动机立即减速至45HZ,然后每隔3分钟运行频率减少5HZ,运行频率降低到10HZ及以下时,电动机停止运行。 电动机由变频器驱动控制,变频器速度应用PLC模拟量给定,由变频器模拟量端子10、11引入,要求模拟量信号类型为0~ 10V电压信号。系统运行过程中PLC实时监控变频器实际运行频率和运行电流值。

某工作台由一台三相交流异步电动机拖动,在工作台运行的左右两端有限位开关,工作台可以手动运行,也能做自动往返的运行。其控制要求如下: (1)工作过程: 工作台手动运行和自动运行可以利用钥匙开关SA0 来选择。 在SA0 选择手动控制方式时,按下前进按钮SB1,工作台向右前进;按下后退按钮SB2时,工作台向左后退。 在SA0 选择自动控制方式时,按下启动按钮SB3,工作台如果不 在最左端,则应向左后退先返回最左端,碰到左端限位开关后,自动向右前进;如果工作台已经在最左端,则工作台直接向右前进。向右碰到右端限位开关后,工作台停止3分钟钟,然后向左后退,直至碰 到左端限位开关后,工作台继续向右前进……如此循环往复。 (2)停止过程: 任何时候,按下停止按钮SB4,工作台立即停止。 (3)电动机速度控制: 电动机由变频器驱动控制,电动机手动运行状态下运行频率固定 为10HZ。自动运行模式下,前进运行频率为30HZ,后退运行频率为50HZ。 变频器速度应用PLC模拟量给定,由变频器模拟量端子10、11引入,要求模拟量信号类型为0~ 20mA电流信号。系统运行过程中PLC 实时监控变频器输出电压和运行电流值。

V20变频器PID控制恒压供水操作指南(DOC)

V20变频器PID控制恒压供水操作指南 1.硬件接线 西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。 通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示: 图1-1.V20变频器用于恒压供水典型接线 2调试步骤

2.1 工厂复位 当调试变频器时,建议执行工厂复位操作: P0010 = 30 P0970 = 1 (显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。) 2.2 快速调试 表2-1 快速调试参数操作流程 参数功能设置 P0003 访问级别=3 (专家级) P0010 调试参数= 1 (快速调试) P0100 50 / 60 Hz 频率选择根据需要设置参数值: =0: 欧洲[kW] ,50 Hz (工厂缺省值) =1: 北美[hp] ,60 Hz P0304[0] 电机额定电压[V] 范围:10 (2000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0305[0] 电机额定电流[A] 范围:0.01 (10000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0 说明:如P0100 = 0 或2 ,电机功率 单位为[kW] 如P0100 = 1 ,电机功率单位为[hp] P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000 说明:此参数仅当P0100 = 0 或 2 时可见P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9 说明:仅当P0100 = 1 时可见 此参数设为0 时内部计算其值。 P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00 P0311[0] 电机额定转速[RPM] 范围:0 (40000) P0314[0] 电机极对数设置为0时内部计算其值。 P0320[0] 电机磁化电流[%] 定义相对于电机额定电流的磁化电流。 设置为0时内部计算其值。 P0335[0] 电机冷却根据实际电机冷却方式设置参数值 = 0: 自冷(工厂缺省值) = 1: 强制冷却 = 2: 自冷与内置风扇 = 3: 强制冷却与内置风扇

抗干扰处理方法(1)

PLC抗干扰处理办法 一、模拟量抗干扰处理办法 1.1、模拟量类型: 1.1.1模拟量输入类型(可根据客户需求定制) 1.1.2 模拟量输出类型 1.2模拟量输入抗干扰处理办法 1.2.1热电偶 特点: 1.测温范围广: 2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。 3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用 4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; 5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期

1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; 注意: 1.热电偶不能和强电放在一个线槽内 2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶) 处理方法: 1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确; 1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器) 2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开 3.加104瓷片电容、磁环做防干扰处理 4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线 5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。 6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。 1.2.2 PT100 特点: 1.测温范围:-99.9~499.9℃,线距越长线损越大 注意: 1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端 2.线距1.5m左右,若测温距离长需使用特殊的延长线(线损小) 3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。 4.采用双绞线作为信号线:串模干扰和被测信号的频率相当,这时很难用滤波的方法消除,此时可在信号源到PLC之间选用带屏蔽层的双绞线作为信号电缆,并确保接地正确可靠。采用双绞线作为信号线的目的是减少电磁干扰,双绞线能使各个小环路的感应电势相互抵消。 5.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 6.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 7,采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 8,采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC 1.2.3 NTC10K/50K/100K

关于模拟量控制变频器的调试讲解

移位指令与模拟量控制的运用 在实际工作中,常常碰到一些例如机械手等等之类的步进控制。如果在步进控制中再参入一些检测之类的其它工作要求,按照步进指令一步一步的编写程序,将会使程序变得异常繁琐。此时如果使用移位指令来控制步进动作,则会使步骤清晰,程序之间减少了许多不必要的干扰。如果只是单纯的几个简单的气缸之类的控制,适合于用步进指令来编写程序。 下面是电机的多段速模拟量控制,使用欧姆龙PLC,(CP1H-XA型)用移位指令来编写动作步进控制程序。此程序节选自福特汽车门锁门铰链耐久测试控制系统。模仿福特汽车开门、关门动作,测试门铰链的耐久程度。 一、控制要求:如下图1-0所示。 图1-0 整体分为左门速度控制,右门速度控制两大类,它们的控制要求相同。电机速度可调,循环次数可调,可以在触摸屏上任意设置速度。多段速控制有四个要求:开门过载模式、正常循环模式、带冲击开门模式、带冲击关门模式。当整个动作的行程出现意外时,有个最大行程保护,也就是行程保护控制。 整体动作控制有两个。停止---开门---停止----关门----停止。即电机的正转,反转。多段速运行分为以下几种: 正常循环模式。模仿车门在轻轻的开门,轻轻的关门动作时,门铰链的耐久程度。在开门动作时的多段速(启动加速---正常速度---停止减速)。在关门动作时的多段速(启动速度---正常速度---停止减速)。 带冲击开门模式。模仿车门在用力的开门,轻轻的关门动作时,门铰链的耐久程度。在开门动作时的多段速(启动加速---正常速度---冲击加速)。在关门动作时的多段速(启动速度---正常速度---停止减速)。 带冲击关门模式。模仿车门在轻轻的开门,用力的关门动作时,门铰链的耐久程度。

如何消除变频器对PLC模拟量的干扰

如何消除变频器对PLC模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定 要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 5.如无使用压线端子,接线时请注意。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。 2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。 ·使用两台以上变频器的场合,请勿将接地线形成回路。

PLC对模拟量信号的处理过程及方法

PLC对模拟量信号的处理过程及方法模拟量信号是自动化过程控制系统中最基本的过程信号(压力、温度、流量等)输入形式。系统中的过程信号通过变送器,将这些检测信号转换为统一的电压、电流信号,并将这些信号实时的传送至控制器(PLC)。 PLC通过计算转换,将这些模拟量信号转换为内部的数值信号。从而实现系统的监控及控制。从现场的物理信号到PLC内部处理的数值信号,有以下几个步骤:

从以上PLC模拟量的信号输入流程可以看到,在自动化过程控制系统中,模拟量信号的输入是非常复杂的。但是,在现目前的工业现场,对模拟量信号的处理已基本都采用电流信号方式进行传输,

相比于电压信号方式,电流信号抗干扰能力更强,传输距离更远,信号稳定。 这里就PLC对模拟量信号的转换过程进行一个简单的分解介绍。 PLC对模拟量信号的转换 西门子S7-200SMART PLC模拟量模块对模拟量信号的转换范围 台达DVP系列模拟量模块对模拟量信号的转换范围从以上 可以看到: 1、模拟量信号接入PLC后,PLC将模拟量信号转换为了整型数据,不是浮点数(如西门子-27,648 到 27,648); 2、不同品牌的PLC对模拟量转换范围是有差异的(如西门子-27,648 到 27,648;台达-32,384 到 32,384); 3、PLC同一个模块对不同类型的模拟量信号的转换范围是一致的

(如西门子对±10 V、±5 V、±2.5 V 或 0 到 20mA的模拟量信号的转换范围均为-27,648 到 27,648); 故从以上几点我们可以知道,接入PLC的模拟量信号还需要进行再转换处理,才可以得到与实际物理量相匹配的数据;在进行数据转换处理的时候,还应该与使用的PLC模块的处理数据范围相对应。PLC数据转换处理过程 1、模拟量信号与PLC转换数据之间的转换 从以上内容知道,从PLC直接读取到的模拟量信号为整型数据,整型数据无法直观的反馈出实际的物理量大小,故为了能够直观的反馈出现场的过程信号情况,还应该将这些整型数据转换为反馈直观真实的浮点数信号。这里以台达PLC模拟量输入模块的数据处理过程为例说明。

变频器注意事项

6SE70 一、O008闭锁看参数R550的状态显示 1、控制字BIT0 OFF1 P554,故障复位后启动命令P554还在,则闭锁,此时停止后 再启动,正常 2、控制字BIT1 OFF2 P555 P556 P557为0,改为1即可 3、控制字BIT2 OFF3 P558 P559 P560为0,改为1即可 4、控制字BIT3 逆变器使能P561为0则启动时会显示O011,改为1即可 5、控制字BIT4 斜坡使能P562为0则启动时速度为0.00,改为1即可 6、控制字BIT5 斜坡开始P563为0则启动时速度为0.00,改为1即可 7、控制字BIT6 设定值使能P564为0则启动时速度为0.00,改为1即可 8、控制字BIT8 点动0 (P568),P554为0时有效 9、控制字BIT9 点动1 (P569)P554为0时有效 当P568和P569同时为1时,变频器启动时显示O008,闭锁。不需要点动功能时,将两个参数设成0. 10、控制字BIT11 正转(P571) 11、控制字BIT12 反转(P572) P571和P572一个为1,一个为0,则能实现正反转;或两个都为1,则变频器直接由速度给定P443控制;如果都为0,则启动时速度为0,并报警A035 12、控制字BIT13 电位计+ (P573)P554为1时有效 13、控制字BIT14 电位计- (P574)P554为1时有效 正常时两个参数为0,当都为1时,速度为0,无法控制变频器的速度。 14、控制字BIT15 外部故障P575为0则报F035,改为1即可 一般正常启动运行的控制字显示是R550: 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 上例是P571=1 P572=1,反转靠速度给定。当然也可以一个为1,一个为0,但是不能都为0,否则无法给定速度,且报警A035。 二、BICO数据组切换。 P590参数切换 有可能故障出在:参数已经设置好,能够实现功能,比如网络控制,P554.1=3100,P443.1=3002(即第一套参数),但无法启动,此时看R012(BICO参数组)是否为1,如果等于2,说明P590为1,则改成0后正常。 三、故障代码 F011:过流 F021:过热 F015 F053:堵转(检查编码器) F037:变频器的模拟量输入选择了电流型,且低于下限4mA(如果选择了4—20mA)。

如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m 和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

PLC控制变频器转速

PLC控制变频器转速 2008-09-09 3:19 本文以三菱PLC为例介绍了模拟量控制,并结合变频调速基本原理及特点,重点阐述了如何通过PLC模拟量控制来实现对变频器的速度调节。 1、引言 近年来可编程序控制器(PLC)以及变频调速技术日益发展,性能价格比日益提高,并在机械、冶金、制造、化工、纺织等领域得以普及和应用。为满足温度、速度、流量等工艺变量的控制要求,常常要对这些模拟量进行控制,PLC模拟量控制模块的使用也日益广泛。 通常情况下,变频器的速度调节可采用键盘调节或电位器调节方式,但是,在速度要求根据工艺而变化时,仅利用上述两种方式则不能满足生产控制要求,因此,我们须利用PLC灵活编程及控制的功能,实现速度因工艺而变化,从而保证产品的合格率。 2、变频器简介 交流电动机的转速n公式为: 式中: f—频率; p—极对数; s—转差率(0~3%或0~6%)。 由转速公式可见,改变三相异步电动机电源频率,可以改变旋转磁通势的同步转速,达到调速的目的。额定频率称为基频,变频调速时,可以从基频向上调(恒功率调速),也可以从基频向下调(恒转距调速)。因此变频调速方式,比改变极对数p和转差率s两个参数简单得多。同时还具有很好的性价比、操作方便、机械特性较硬、静差率小、转速稳定性好、调速范围广等优点,因此变频调速方式拥有广阔的发展前景。 3、PLC模拟量控制在变频调速的应用 PLC包括许多的特殊功能模块,而模拟量模块则是其中的一种。它包括数模转换模块和模数转换模块。例如数模转换模块可将一定的数字量转换成对应的模拟量(电压或电流)输出,这种转换具有较高的精度。

在设计一个控制系统或对一个已有的设备进行改造时,常常会需要对电机的速度进行控制,利用PLC的模拟量控制模块的输出来对变频器实现速度控制则是一个经济而又简便的方法。 下面以三菱FX2N系列PLC为例进行说明。同时选择FX2N-2DA模拟量模块作为对变频器进行速度控制的控制信号输出。如图1所示,控制系统采用具有两路模拟量输出的模块对两个变频器进行速度控制。、 图1 对变频器进行速度控制的信号输出 图2为变频器的控制及动力部分,这里的变频器采用三菱S540型,PLC的模拟量速度控制信号由变频器的端子2、5输入。

模拟量干扰解决方案

为了减少电子干扰,对于plc的模拟信号的线缆有什么要求?使用的屏蔽线缆的屏蔽层应不应接地?如果接地应如何接地?(两端,一端,那端)说说为什么? 模拟信号的线缆主要有以下几点要求: (1)开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线。信号类型有条件也最好采用4-20mA,而且线径最好选大点,如果负载是电磁阀类的,最好能选1.5的线,屏蔽线也要大线径的。当然留一点的富裕量是必须的。 (2)模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆。 (3)集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。 (4)信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 (5)交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 应该接地,根据情况选择是两端还是一端接地。 (1)为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地。 (2)但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。 外部有强电流干扰,单点接地无法满足静电的最快放电。如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。 比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。 PLC 控制应用系统中的干扰是一个涉及到方方面面的十分复杂的问题,因此在系统的抗干扰设计中应综合考虑各方面的因素,根据实际应用中干扰现象分析出干扰产生的原因,从而合理有效地采取抑制干扰措施,使PLC 应用系统可靠的工作。文章从硬件电路入手,分析了常见干扰的引入途径和相应的抑制措施,为PLC 应用系统有效抑制干扰提供了

基于PLC模拟量方式的变频器闭环调速

基于PLC模拟量方式的变频器闭环调速 在MF51变频器实验挂箱中完成此实验 一、实验目的 1.利用可编程控制器及其模拟量模块,通过对变频器的控制,实现电机的闭环调速。 2.了解可编程控制器在实际工业生产中的应用及可编程控制器的编程方法。 二、实验要求 变频器控制电机,电机上同轴连旋转编码器。编码器根据电机的转速变化而输出电压信号Vi1反馈到PLC模拟量模块(FX2N-4AD)的电压输入端,在PLC内部与给定量经过运算处理后,通过PLC模拟量模块(FX2N-2DA)的电压输出端输出一路DC0~+10V电压信号Vout来控制变频器的输出,达到闭环控制的目的。 三、实验原理图 四、实验步骤 1 n10 Pr.30 Pr.73 Pr.7 9 1 1 4 0 2.输入输出接线 3.按接线列表正确将导线连接完毕后,将程序下载至PLC主机,将“RUN/STOP”开关拨到“RUN”。4.先设定给定值。点击标准工具条上的“软元件测试”快捷项(或选择“在线”菜单下“调试”项中的“软元件测试”项),进入软元件测试对话框。在“字软元件/缓冲存储区”栏中的“软元件”项中键入D0,设置D0的值,确定电机的转速。输入设定值N,N为十进制数,如:N=1000,则电机的转速目标值就为1000转/min。

5.按变频器面板上的“RUN”,启动电机转动。电机转动平稳后,记录给定目标转速、电机实际转速、和他们之间的偏差,再改变给定值,观察电机转速的变化并记录数据。(注意:由于闭环调节本身的特性,所以电机要过一段时间才能达到目标值) 给定目标转速(r/min)电机实际转速 (r/min) 变频器输出频率 (Hz) 最大震荡偏差 6.按变频器面板上的“STOP/RESET”,使电机停止转动。 五、梯形图参考程序

运用APRPID自动控制AT控制变频器的频率

运用APR+PIDAT控制变频器的频率输出 实验设备:CP1H-XA40DR-A,3G3MX2-AB001,USB线缆 实验目的:通过CP1H-XA40DR-A的内置模拟量输入将变频器的电压(0-10V)接入,第一次用过APR转换成PIDAT的最大输入值给PIDAT进行计算,通过PIDAT的计算得出来的操作量运用APR转换得到的数传给CP1H-XA40DR-A 的内置模拟量得到一个电压输出,返还给变频器,实现一个完整的闭环的控制系统。 1、系统概述,硬件搭建和接线 ①使用市售的普通的USB电缆将CP1H通过USB方口直接连接到电脑的USB 口。

1.指令的介绍 输入条件为ON时,将每个采样周期的测定值S根据C的参数做PID运算,将输出的操作量输出到D

在给再给PIDAT写操作字的时候,要注意PIDAT是一个自整定的过程,P值I值D值都是PIDAT指令根据现场的情况自己整定出来的,所以在写PIDAT的指令的时候可以不给C+1、C+2、C+3通道赋值。 C+5位的位3,表示当设定值与测定值相等的时候,PIDAT的操作量需要做一个选择就是操作量是保持50%的输出还是立刻没有输出0%。 C+5为的位0,当测定值大于设定值的时候,增加的操作量的时候是(冷却),这时候是正动作,当测定值比设定值小时,增加操作量为逆动作。 C+6的8-11位,范围输入指定S的测定值的输入的16为以内的有效位数,假如设置的范围是4也就是0-FFFHEX,在这个0-FFFHEX的值进来的时候才是有效的。 C+9的15位,PIDAT是自整定的,也就是说写指令的时候PID这3个参数不要给值,将C+9位的最高位置1以后设好C位给测定值在设定值的附近上下浮动三次,PID自己会算出有效值进行计算。PID自整定出参数以后,C+9位的最高为自动变0.整定图如下图所示:

PLC的抗干扰性分析

PLC的抗干扰分析 摘要 本文分析乳制品加工对PLC控制系统的稳定性和干扰源的类型的影响。通过研究和总结PLC控制系统来改进控制系统的抗干扰能力的方法和具体措施,并且在实际乳制品加工工厂里取得了良好的效果。 1 前言 在乳制品加工自动化控制领域,可编程序逻辑控制器(PLC)是重要的控制设备。PLC是一种为工业环境应用而设计的数字运算操作的电子系统。它使用可编程序存储器来保存逻辑实现、顺序控制、定时、计数和算术运算指令等,比如运算,数字量、模拟量输入、输出,控制各种类型的机械或生产过程。可编程序逻辑控制器及相关设备,应该易于与所有工业控制系统形成一个整体,易于扩展功能设计的原则。因此PLC自动控制系统在乳制品加工领域已广泛应用。乳品业务环境经常是比较严酷的环境条件,PLC控制系统的可靠性直接影响乳制品生产企业和经济运行的安全。因此,研究PLC控制系统干扰信号的原因和抑制措施来提高PLC 控制系统抗干扰能力和可靠性具有重要意义。 2 常见的干扰类型和解决方案 这个领域有很多原因会导致干扰。首先,我们需要找到真正的根源,然后找出解决方案。 2.1 电源干涉 在乳制品加工领域,开关冲击,大型电力设备的开启和关闭,由于交流和直流驱动器所致的谐波,短路瞬态冲击都可以形成网络中的脉冲干扰。通过供电网络提供给PLC的正常电源,将直接影响公司的正常运行。随着网络范围的扩大,由于持续高频谐波干扰导致电磁干扰将成为所有空间的电源干扰。尤其是在断开电网期间,特别是在电感负载瞬态电压峰值由额定功率产生几次后,脉冲功率将完全破坏PLC半导体设备。因为脉冲含有大量的谐波,它会通过半导体

电路分布电容的绝缘电阻等侵入性逻辑电路导致故障。为了抑制干扰,保持电压稳定,我们经常用一些抗干扰方法: ⑴扭曲双绞线的接入电源会产生高频干扰信号,使用隔离变压器衰减这些高频干扰信号是用来抑制输入/输出共模干扰。不同方式的盾牌对干扰抑制的影响是不一样的。实践中是将主要的和次要的盾牌都接地。 ⑵滤波器 在一定频率范围内,某些反网络干扰需要使用过滤器而不是隔离变压器。但是,选择一个好的滤波器频率范围是很困难的。因此,常见的方法是同时使用过滤器和隔离变压器。注意隔离变压器的一侧二次电缆使用双绞线,第一和第二端应该分开。 ⑶供电系统的分离 单独的PLC,I / O通道和其他电源设备抑制电网干扰。每一个变压器二次绕组屏蔽地面点应该访问绕组电路,分别选择必要的和适当的公共访问站点。PLC的绝缘电源供电给变压器二次侧绝缘地。我们也可以使用供电系统和双电源系统。双电源最好引用不同的变电站的电源。 2.2 来自信号线的干扰 除了有效传播范围的信息, 控制系统与各种信号传输线连接,但总是会有外部干扰信号入侵。检测的信号线路承担信号和控制信号的传输任务,传输质量直接影响整个控制系统的准确性、稳定性和可靠性。线路的干扰信号,主要来自空间的电磁辐射,有差模干扰和共模干扰两种。差模干扰是叠加在被测信号上的干扰信号,这种干扰主要是高频交变的源信号,通常是耦合干扰。常规的干扰抑制方法是:RC滤波器连接在输入回路或双T过滤器,将电压信号转换为电流信号。最大化的使用双积分式A / D转换器,是因为积分器有消除高频干扰的作用。共模干扰是干扰信号行,通常通过被测信号和接地极的末端和地面控制系统这两个信号线引起。,在两个信号线周期中,振幅几乎相同的情况下,这种干扰有一定的潜在差异,使用上述方法不能消除或抑制。 解决方案如下:使用双差分输入差动放大器,该放大器具有很高的共模抑制比;使用绞线输入行,绞线可以减少共模干扰,传感器相互抵消;使用光学隔离方法可以消除共模干扰;使用屏蔽电缆和单侧接地,为了避免信号失真,长距离传输的信号应该注意阻抗匹配。 此外,我们可以采用软件。为了提高输入信号噪声比,使用软件数字滤波来提高有用信号的真实性。对于大型随机干扰系统,使用程序限制的规则连续采样5倍,如果一次采样的采样支持的幅度远远大于其他几次,然后给予关注。对流量、压力、液位、位移等参数是在一定范围内波动频繁的参数,可以使用算术平均的

变频器原理及应用模拟试卷1答案(供参考)

《变频器原理及应用》模拟试卷1答案 一、填空题 1.面板控制,外接模拟量控制,电位器控制,通讯控制。 2.交-交型,交-直-交型,通用型,专用型。 3.段速控制,加减速 4.电力电子器件,工频交流电,频率和电压 5.主电路,控制电路 6. V/f=常数 7.整流电路,逆变电路 8.整流电路、逆变电路 9.恒转矩调速,恒功率调速 10.比例,积分,微分 二、单选题 1. A 2. B 3. C 4. C 5. A 6. B 7. C 8. B 9. B 10.D 11. B 三、多选题 1.A、B、C 2. A、B、C 3.A、B 4.A、B、C、D

5. A、B、C、D 6. A、B、C 四.简答题 1.说明IGBT的结构组成特点。 答:IGBT是一种新型复合器件。输入部分为MOSFET,输出部分为GTR,它综合了MOSFET 和GTR的优点,具有输入阻抗高、工作速度快、通态电压低、阻断电压高、承受电流大的优点。 2.交-直-交变频器的主电路包括哪些组成部分?说明各部分的作用。 答:交-直-交变频器主电路包括三个组成部分:整流电路、中间电路和逆变电路。整流电路的功能是将交流电转换为直流电;中间电路具有滤波电路或制动作用;逆变电路可将直流电转换为交流电。 3. 变频器功能参数的预置过程大致有哪几个步骤? 答:变频器功能参数的预置过程大致有哪几个步骤。 1) 查功能码表,找出需要预置参数的功能码。 2) 在参数设定模式(编程模式)下,读出该功能码中原有的数据。 3) 修改数据,送入新数据。 4.异步电动机变频调速时,在额定频率以下调节频率,必须同时调节加在定子绕组上 的电压,即恒V/f控制,为什么? 答:在额定频率以下调节频率,同时也改变电压,通常是使V/f为常数,是为了使电动机磁通保持一定,在较宽的调速范围内,电动机的转矩、效率、功率因数不下降。 5. 矢量控制有什么优越性? 答:矢量控制系统的优点:1)动态的高速响应;2)低频转矩增大;3)控制灵活。 6. 变频器主电路的电源输入侧连接断路器有什么作用? 答:连接断路器的作用:1)接通和分断负载电路;2)隔离作用;3)保护作用。 7.变频器安装时周围的空间最少为多少? 答:变频器在运行中会发热,为了保证散热良好,必须将变频器安装在垂直方向,切勿倒装、倾斜安装或水平安装。其上下左右与相邻的物品和挡板(墙)必须保持足够的空间,左右5cm以上,上下15cm以上。 8.变频器运行为什么会对电网产生干扰?如何抑制? 答:变频器的整流电路和逆变电路都是由非线性器件组成,其电路结构会导致电网的电压电流波形发生畸变,作为对低压配电线路谐波的管理标准,电压的综合畸变率应在5%以

PLC中常见的干扰源及抗干扰措施举例

PLC中常见的干扰源及抗干扰措施举例 PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性. 1.控制系统中干扰及其来源 现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此必须知道现场干扰的源头。 (1)干扰源及一般分类 影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,

直接影响测量与控制精度。 (2)PLC系统中干扰的主要来源及途径 强电干扰 PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。 柜内干扰 控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC 造成一定程度的干扰。 来自信号线引入的干扰 与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。 来自接地系统混乱时的干扰 接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。来自PLC系统内部的干扰

变频器模拟量控制

天津电子信息职业技术学院综合实训报告 课题名称变频器模拟量控制 姓名 学号 班级 专业电气自动化技术 所在系电子技术系 指导教师 完成日期2013年12月30日

一、实训目的 1.了解变频器的基本概念、发展趋势、分类及应用方向。 2.了解变频器的工作原理。 3.掌握MM420变频器的模拟信号控制。 4.进一步掌握变频器基本参数的输入方法。 5.熟练掌握变频器的运行操作。 二、实训单位 天津电子信息职业技术学院 三、实训内容 1. 变频器概述 变频器是将固定电压、固定频率的交流电变换为可调电压、可调频率的交流电装置。它的问世使电气传动领域发生了深刻的技术革命。有数据显示,采用变频控制将会节电30%左右。近年来变频器作为商品在国内的销售呈逐年增长趋势,近几年市场保持12%~15%的增长率,超过了GTP的增长速度。 变频器的出现是微电子技术、电力电子技术、计算机技术和自动控制理论不断发展创新的产物。它的问世使电气传动领域发生了深刻的技术革命。 变频器具有对交流电动机进行软起动、变频调速、提高运转精度、改变功率因数、过流、过压、过载保护等功能。通过变频调速可以使控制系统节能、改善生产工艺流程、提高产品质量和易于实现自动控制,是目前最有发展前途的调速方式。 变频器早期仅仅用于速度控制,随着技术发展和社会对能源运用效率要求的日益提高,逐渐被用于节能领域。它可以使得电动机及其拖动的负载在无需任何改动情况下,按照生产工艺要求调整转速输出,大大降低电动机功耗,实现系统高效运行目的。目前,我国很多企业已将变频器用于带式输送机起动、调速控制、风机调速以及水泵调速,对节约电能,减少排放量做出积极贡献。 1.1 变频器发展趋势 经过40年的发展,变频器的发展趋势呈现以下特点。 (1)智能化操作更加简便,有明显的工作状态显示,能够自诊断和故

相关主题
文本预览
相关文档 最新文档