希望杯数学竞赛五年级培训题 2
- 格式:docx
- 大小:365.83 KB
- 文档页数:7
“希望杯”五年级数学竞赛培训教程全册第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
1、学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。
水瓶和茶杯的单价各是多少元?2、买3个篮球和5个足球共、用去480元,买同样的6个篮球和3个足球共用去519元。
篮球和足球的单价各是多少元?第二讲消去问题(二)1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克。
求每袋大米和每袋面粉的重量。
2、三头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天吃青草165千克。
一头牛和一只羊每天各吃青草多少千克?第三讲一般应用题1、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加身一般的重量,而鱼身体、的重量等于鱼头的重量加上鱼尾的重量。
这条鱼重多少千克?2、一所小学的五年级有四个班,其中五(1)班和五(2)班共有81人,五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人,五(1)班比五(4)班多2人。
这所学校五年级四个班各有多少人?3、甲、乙两位渔夫在和边掉鱼,甲钓了5条,乙钓了3条,吃鱼时,来了一位客人和甲、乙平均分吃这条鱼。
吃完后来客付了8角钱作为餐费。
问:甲、乙两为渔夫各应得这8角钱中的几角?4、一个工地用两台挖土机挖土,小挖土机工作6小时,大挖土机工作8小时,一共挖土312方。
已知小挖土机5小时的挖土量等于大挖土机2小时的完土量,两种挖土机每小时各挖土多少方?5、甲、乙、丙三人用同样多的钱合买西瓜。
分西瓜时,甲和丙都比乙多拿西瓜7。
5千克。
结果甲和丙各给乙1.5元钱。
第十三届小学“希望杯”全国数学邀请赛五年级第2试试题一、填空题1、用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是__________.2. 有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=__________.3. 用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用)4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是__________分.5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有__________种.6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是 .7. 大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是__________.8. 从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.9、观察下表中的数的规律,可知第8行中,从左向右第5个数是__________.第1行 1第2行 2 3 4第3行 5 6 7 8 9第4行10 11 12 13 14 15 16第5行17 18 19 20 ………10. 如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换__________只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法)12. 将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是__________.二、解答题13. 甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14. 如图1,中有多少个三角形?15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边分别为8cm和5cm,乙直角三角形的两条直角边分别为6cm和2cm.求图中阴影部分的面积.16.有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.。
2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每题5分共60分)1.(5分)计算:3.6×(2.45﹣1.9)÷0.4=_________.2.(5分)已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,甲数是_________,乙数是_________.3.(5分)如图,当n=1时,图中有1个圆;当n=2时,图中有7个圆;当n=3时,图中有19个圆;…,按此规律,当n=5时,图中有_________个圆.4.(5分)54个小朋友排队做游戏,每轮游戏有12个小朋友参加,游戏结束后,这12个小朋友按原来的先后顺序排到队尾,如果游戏开始时,小亮站在队首,当小亮再次站在队首时,已经做了_________轮游戏.5.(5分)有一列数,第1个是1,从第2个数起,们每个数比它前面相邻的数大3,最后一个数是100,将这列数相乘,则在计算结果的末尾中有_________个连续的零.6.(5分)公元纪年法中,每四年含一个闰年,每个平年有365天,每个闰年有366天,2012年是闰年,元旦是星期日,那么,下一个元旦也是星期日的年份是_________年.7.(5分)在平面上有7个点,其中任意3个点都不在同一条直线上,如果连接这7个点中的每两个点,那么最多可以得到_________条线段;以这些线段为边,最多能构成_________个三角形.8.(5分)如图所示,在一个圆周上放了1枚黑色的围棋子和2012枚白色的围棋子.若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩下_________枚白子.9.(5分)正方体木块被砍掉了一个角(这里的角,指三条线相交处),剩余部分最多有_________个角,最少有_________角.10.(5分)如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是_________cm2.11.(5分)某次数学竞赛以后52 人参加,共考5道题,每道题做错的人数统计如下:题号 1 2 3 4 5做错人数 4 6 10 20 39如果每人都至少做对1道题,只做对1题有7人,5道题都做对的有6人,只做对2道题和只做对3道题的人数相同,那么做对4道题的有_________人.12.(5分)在长、宽、高分别是10cm、10cm、6cm的长方体的容器中盛有深4cm的水,在向容器中放入棱长5cm 的正方体铁块,则水深变为_________cm.二.解答题:(每小题15分共60分)每题都要写出推算过程.13.(15分)将图分割成两部分,两部分恰好能拼成一个正方形.(1)若图中每个小正方形的边长是1,拼成的正方形的边长是多少?(2)用粗线表示分割的路线.14.(15分)甲乙丙三辆汽车从A地去B地,甲车的速度是60千米/时,乙车的速度是48千米/时,与此同时,一辆卡车从B地去A地,卡车在出发后6小时、7小时、8小时的时刻分别与甲乙丙三车相遇,求:(1)甲车与卡车相遇时,甲车与乙车的距离;(2)求卡车的速度;(3)求丙车的速度.15.(15分)某快递公司对从A地发往B地的快件的运费收费标准是:快件重量不超过10千克,每千克收费8元;如果超过10千克,超出部分按每千5元收费,已知甲乙二人向该公司各投递一个快件,甲比乙多交了34元,求甲乙的快件的重量.(甲乙的快件的重量都是整千克数)16.(15分)已知,,,各代表一个自然数,观察下面三个算式呈现的规律:+﹣=6﹣+=3××=140求(+)÷的值.2012年第10届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每题5分共60分)1.(5分)计算:3.6×(2.45﹣1.9)÷0.4= 4.95.考点:小数四则混合运算.专题:运算顺序及法则.分析:先算括号内的,再算除法和乘法.解答:解:3.6×(2.45﹣1.9)÷0.4,=3.6×0.55÷0.4,=1.98÷0.4,=4.95;故答案为:4.95.点评:此题考查了小数四则混合运算,注意运算顺序和运算法则.2.(5分)已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,甲数是210,乙数是21.考点:和倍问题.专题:和倍问题.分析:根据“甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,”知道甲数是乙数的10倍,再根据题意知道甲乙两数的和是231,由此利用和倍公式解决问题.解答:解:乙数:231÷(10+1),=231÷11,=21,甲数:231﹣21=210,答:甲数是210,乙数是21.故答案为:210,21.点评:解答本题的关键是根据题意找出甲数与乙数的倍数关系,再利用和倍问题的公式{和÷(倍数+1)=小数,小数×倍数=大数,(或者和﹣小数=大数)}解决问题.3.(5分)如图,当n=1时,图中有1个圆;当n=2时,图中有7个圆;当n=3时,图中有19个圆;…,按此规律,当n=5时,图中有61个圆.考点:数与形结合的规律.专题:探索数的规律.分析:所构成的图形是轴对称图形,沿中间的一列分开,两边对称,最左边的一行是n个圆,后面每一列比前面的每一列多一个,直到中间的一列,中间的一排是2n﹣1个.中间的后面的每排依次减少.解答:解:最左边的一列是n,第二列是n+1,第三列是n+2,…,第n列是2n﹣1;第n列以后,各列的个数分别是2n﹣2,2n﹣3…,n.则第n个图形的圆的个数是:n+(n+1)+…(2n﹣1)+(2n﹣2)+(2n﹣3)+…+n=2[n+(n+1)+(n+2)+…+(2n﹣2)]+(2n﹣1)=(n﹣1)[n+(2n﹣2)]+(2n﹣1)=3n2﹣3n+1.所以当n=5时,图中有圆:3×52﹣3×5+1,=3×25﹣15+1,=75﹣15+1,=61(个),答:当n=5时,图中有圆61个.故答案是:61.点评:本题考查了图形的变化规律,可以用圈数表示为:1+6×1+6×2+6×3+…+6×(n﹣1))解决问题.4.(5分)54个小朋友排队做游戏,每轮游戏有12个小朋友参加,游戏结束后,这12个小朋友按原来的先后顺序排到队尾,如果游戏开始时,小亮站在队首,当小亮再次站在队首时,已经做了9轮游戏.考点:排队论问题.专题:数学游戏与最好的对策问题.分析:54和12的最小公倍数为108,也就是说共移动了108人次,做了108÷12=9轮游戏.解答:解:54=2×3×9,12=2×2×3,因此54和12的最小公倍数为:2×2×3×9=108;做了:108÷12=9(轮).答:已经做了9轮游戏.故答案为:9.点评:此题的关键是运用求最小公倍数的方法解决问题,5.(5分)有一列数,第1个是1,从第2个数起,们每个数比它前面相邻的数大3,最后一个数是100,将这列数相乘,则在计算结果的末尾中有9个连续的零.考点:数字问题.专题:综合填空题.分析:由于从第2个数起,每个数比它前面相邻的数大3,则此数列为1,4,7,10,…100.则一个它们积的末尾有多个数零是由其中因数2与5的个数决定的,而其中因数2的个数一定大于5个的个数,因此只要找出1×4×7×10×…×100中因数的个数即可.这一数列的数可表示为1+3(n﹣1),则5的倍数有10,25,40,55,70,85,100共7个,由于25=5×5,25和100是25的倍数,则1×4×7×10×…×100中共有7+2=9个因数5,则计算结果的末尾中有9个连续的零.解答:解:积的末尾有多个数零是由其中因数2和5的个数决定的,由题意可知,这一数列中5的倍数有10,25,40,55,70,85,100共7个,由于25=5×5,25和100是25的倍数,则1×4×7×10×…×100中共有7+2=9个因数5.所以计算结果的末尾中有9个连续的零.故和案为:9.点评:明确的末尾有多个数零是由其中因数2与5的个数决定的,并根据数列的特点求出这一数列中因数5的个数是完成本题的关键.6.(5分)公元纪年法中,每四年含一个闰年,每个平年有365天,每个闰年有366天,2012年是闰年,元旦是星期日,那么,下一个元旦也是星期日的年份是2017年.考点:平年、闰年的判断方法.分析:一星期有7天,这是定数,闰年有366天,平年有365天,366÷7=52个…2天,365÷7=52个…1天,只要余数加起来是7,就是这年的元旦是星期日.解答:解:2012年366天,是52个星期余2天,然后是3个平年52个星期余1天,接着是闰年,又余2天,2+1+1+1+2,即经过所以5年后即,2012+5=2017年的元旦是星期日;故答案为:2017.点评:本题主要考查年月日的知识,注意一星期有7天,闰年是52个星期余2天,平年是52个星期余1天.7.(5分)在平面上有7个点,其中任意3个点都不在同一条直线上,如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形.考点:组合图形的计数.专题:操作、归纳计数问题.分析:根据两点确定一条线段即可计算出线段的条数.顺次连接不在同一直线上的三个点可作1个三角形;当有4个点时,可作4个三角形;当有5个点时,可作10个三角形;依此类推当有n个点时,可作个三角形.解答:解:在平面上有7个点,其中任意3个点都不在同一条直线上,连接其中任意两个点,最多能画6+5+4+3+2+1=21条线段.以这些线段为边,最多能构成=35个三角形.答:最多可以得到21条线段;以这些线段为边,最多能构成35个三角形.故答案为:21,35.点评:数三角形的个数,可以按照数线段条数的方法,如果平面上有n个点,其中任意三点都不在同一条直线上,那么就有条线段,得到个三角形.8.(5分)如图所示,在一个圆周上放了1枚黑色的围棋子和2012枚白色的围棋子.若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩下503枚白子.考点:哈密尔顿圈与哈密尔顿链.专题:综合填空题.分析:从黑子的右面第一枚白子开始编号为1,2,3,…2012,则黑子为2013;从黑子计数,按顺时针方向,每隔1枚,取走1枚,首先取走的依次是2、4、6、8…2012号,到此时剩余奇数号;继续取,取走的依次是1、5、9、…4n﹣3号(n=1、2、3…),因为2013=4×504﹣3,所以2013此时被取走;余下的是3,7,11,15,…2011,规律是4n﹣1,n=1,2,3…,求出3到2011以4为等差的等差数列的个数,即可得解.解答:解:(2011﹣3)÷4+1=503(枚),答:若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩下503枚白子.故答案为:503.点评:此题考查了哈密尔顿圈与哈密尔顿链问题,锻炼了学生的认真分析问题的能力.9.(5分)正方体木块被砍掉了一个角(这里的角,指三条线相交处),剩余部分最多有10个角,最少有7角.考点:图形的拆拼(切拼).专题:立体图形的认识与计算.分析:把正方体木块被砍掉了一个角,如果如果砍切点在组成这个顶点的这三条棱上,将会增加一个三角形,即增加三个顶点,剩余部分用原来的正方体的8个顶点减去一个顶点,再加新增加的3个顶点,此时剩余部分角最多;如果砍切点在另外三个角(顶点)上,这时将比原正方体减少一个角(顶点).据此解答.解答:解:正方体木块被砍掉了一个角(这里的角,指三条线相交处),剩余部分最多有10个角,最少有7角;故答案为:10,7.点评:此题是考查图形的切拼问题,关键是砍切点的选取.最好是动手操作一下,既可解决问题,又锻炼了动手操作能力.10.(5分)如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是20 cm2.考点:重叠问题.专题:平面图形的认识与计算.分析:因为重叠部分是一个长方形,所以∠1=∠3,2=∠1,可得∠2=∠3,因此AB∥EF,又因为AB=EF,所以四边形ABEF是平行四边形,那么直角△ACB和△EDF的面积都与四边形ABEF等底等高,直角△ACB 和△EDF的面积都是四边形ABEF的面积的一半,那么四边形ABEF的面积是:10×2=20cm2.解答:解:根据分析可得:直角△ACB和△EDF的面积都是四边形ABEF的面积的一半,那么四边形ABEF的面积是:10×2=20(cm2).故答案为:20.点评:本题关键是能够看出四边形ABEF是平行四边形,然后利用等底等高的三角形与平行四边形的面积关系解答即可.11.(5分)某次数学竞赛以后52 人参加,共考5道题,每道题做错的人数统计如下:题号 1 2 3 4 5做错人数 4 6 10 20 39如果每人都至少做对1道题,只做对1题有7人,5道题都做对的有6人,只做对2道题和只做对3道题的人数相同,那么做对4道题的有31人.考点:容斥原理.专题:传统应用题专题.分析:总共有52×5=260道题,做错的题目数为4+6+10+20+39=79道,所以做对的题目为260﹣79=181道,又只做对1题有7人,5道题都做对的有6人,则做对2道题、3道题、4道题的题目总数为181﹣7﹣5×6=144道,由于做对2道题和3道题的人数一样多,即可以看作是一样的人数做对了5道题,由此可设做对四道题的有x人,只做对2道题和只做对3道题的一样的人数为y,则4x+5y=144①,又只做对1题有7人,5道题都做对的有6人,则做对2、3、4道题的共有x+2y=52﹣1﹣7人②,整理①②即能得出做对道题的有多少人.解答:解:做对的题目有:260﹣(4+6+10+20+39)=60﹣79,=181(道);做对做对2道题、3道题、4道题的题目总数为181﹣7﹣5×6=144道,设做对四道题的有x人,只做对2道题和只做对3道题道的一样的人数为y,即共做对了(2+3)y题,可得:4x+5y=144①,x+2y=52﹣1﹣7=39②,由②得:x=39﹣2y,由①得:4(39﹣2y)+5y=144,156﹣8y+5y=144,3y=12,y=4.则x=39﹣2×4=31.即做对4道题的有31人.故答案为:31.点评:根据容斥原理求出共做对多少道题的基础上通过设未知数,根据人数与做各题的数量列出等量关系式进行分析是完成本题的关键.12.(5分)在长、宽、高分别是10cm、10cm、6cm的长方体的容器中盛有深4cm的水,在向容器中放入棱长5cm 的正方体铁块,则水深变为 5.25cm.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:首先根据长方体的容积(体积)公式:v=abh,求出容器中水的体积是多少立方厘米,根据正方体的体积公式:v=a3,再求出棱长5厘米的正方体的体积,用容器中水的体积加上这个正方体铁块的体积,除以容器的底面积就是现在水的深(高).由此列式解答.解答:解:容器中水的体积:10×10×4=400(立方厘米),正方体铁块的体积:5×5×5=125(立方厘米),水深:(400+125)÷(10×10),=525÷100,=5.25(厘米);答:水深5.25厘米.故答案为:5.25.点评:此题属于长方体、正方体的容积(体积)的实际应用,长方体的高=体积÷底面积,关键是求出容器中水和铁块的体积之和.再根据体积除以底面积等于高,列式解答.二.解答题:(每小题15分共60分)每题都要写出推算过程.13.(15分)将图分割成两部分,两部分恰好能拼成一个正方形.(1)若图中每个小正方形的边长是1,拼成的正方形的边长是多少?(2)用粗线表示分割的路线.考点:图形划分.专题:几何形体的分、合、移、补的问题.分析:(1)通过观察,图中小正方形的个数是36个,由正方形的面积公式,面积=边长×边长,6×6=36,所以拼成的正方形的边长是6;(2)如下图所示,第一行右边留两个,向下分割,沿水平向左两个小正方形边长分割;第二行右边留4个向下分割,沿水平向左两个小正方形边长分割,第三行,留6个向下分割,分割后,左部分向右两个,向上一个小正方形,即可得解.解答:解:(1)6×6=36,答:拼成的正方形的边长是6;(2)点评:此题考查了图形划分,锻炼了学生的空间想象力和几何直观.14.(15分)甲乙丙三辆汽车从A地去B地,甲车的速度是60千米/时,乙车的速度是48千米/时,与此同时,一辆卡车从B地去A地,卡车在出发后6小时、7小时、8小时的时刻分别与甲乙丙三车相遇,求:(1)甲车与卡车相遇时,甲车与乙车的距离;(2)求卡车的速度;(3)求丙车的速度.考点:相遇问题.专题:综合行程问题.分析:(1)甲车与卡车相遇时行了6小时,由于甲乙两车的速度差为每小时60﹣48=12千米,则此时甲乙两车相距12×6=72千米;(2)由于卡车与甲车相遇时甲乙两车相距72千米,即此时卡车与乙车相距也是72千米,由于卡车又经过了7﹣6=1小时与乙车相遇,则卡车的速度为每小时72÷1﹣48=24千米;(3)由于卡车与乙车相遇时,三车已行了7小时,此时乙车已行48×7=336千米,又过了8﹣7=1小时,卡车与丙车相遇,从与乙车相遇到与丙车相遇,卡车行了24千米,即丙车在8小时内行了336﹣24=312千米,则丙车的速度为每小时:312÷8=39千米.解答:解:(1)(60﹣48)×6=12×6,=72(千米).答:甲车与卡车相遇时,甲车与乙车的距离为72千米.(2)72÷1﹣48=72﹣48,=24(千米/小时).答:卡车每小时行24千米.(3)[48×7﹣24×(8﹣7)]÷8=[336﹣24]÷8,=312÷8,=39(千米/小时).答:丙车每小时行39千米.点评:首先根据速度差×行驶时间=路程差求出甲车与卡车相遇时,甲车与乙车的距离,进而求出卡车的速度是完成本题的关键.15.(15分)某快递公司对从A地发往B地的快件的运费收费标准是:快件重量不超过10千克,每千克收费8元;如果超过10千克,超出部分按每千5元收费,已知甲乙二人向该公司各投递一个快件,甲比乙多交了34元,求甲乙的快件的重量.(甲乙的快件的重量都是整千克数)考点:整数、小数复合应用题.分析:因为34不是8的倍数,也不是5的倍数,所以多付的34元有8元每千克的,也有5元每千克的;然后找出34可以是几个5与几个8的和,由此求出甲比乙多的重量,进而求出甲乙原来的重量.解答:解:34元=8元×3千克+5元×2千克;那么甲比乙多的分成2部分:10千克以上的有2千克;10千克以下的有3千克;甲的重量就是:10+2=12(千克);乙的重量就是:10﹣3=7(千克);答:甲的快件的重量是12千克,乙的重量是7千克.点评:本题关键是根据重量都是整千克数,把34分解,找出有几个8元和几个5元即可求解.16.(15分)已知,,,各代表一个自然数,观察下面三个算式呈现的规律:+﹣=6﹣+=3××=140求(+)÷的值.考点:简单的等量代换问题.专题:消元问题.分析:我们把图变成字母,=a,=b,=c,=d,所以a+d﹣c=6,c﹣b+a=3,d×a×c=140,求(d+c)÷b值是多少.解答:解:因为d×a×c=140,140=1×10×14,140=2×7×10,140=4×5×7,又因a+d﹣c=6,所以a+d=6+c,所以只有140=4×5×7,适合题意.在4、5、6、7,所以①c=5,a=4,d=7;②c=5,a=7,d=4.当①c=5,a=4,d=7时.c﹣b+a=3,5﹣b+4=3,9﹣b=3,b=6;则(d+c)÷b值是:=(7+5)÷6,=2;当②c=5,a=7,d=4;c﹣b+a=3,5﹣b+7=3,12﹣b=3,b=9,则(d+c)÷b值是:=(4+5)÷9,=9÷9,=1;答:(+)÷的值是2或1.点评:本题是一道复杂的等量代换,考查了学生的等量的代换的意识.。
五年级数学希望杯试题第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷=______。
2.对不为零的⾃然数a,b,c ,规定新运算“☆”:☆(a,b ,c)= ,则☆(1,2,3)=______。
3.判断:“⼩明同学把⼀张电影票夹在数学书的51页⾄52页之间”这句话是______的。
(填“正确”或“错误”)4.已知a,b,c是三个连续⾃然数,其中a是偶数。
则a+1,b+2,c+3的积是奇数还是偶数5.某个⾃然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最⼩是______。
6.当p和p3+5都是质数时,+5=______.7.下列四个图形是由四个简单图形A、B、C、D(线段和正⽅形)组合(记为*)⽽成。
则图中①~④中表⽰A*D的是______。
(填序号)8.下⾯四幅图形中不是轴对称图形的是______。
(填序号)9.⼩华⽤相同的若⼲个⼩正⽅形摆成⼀个⽴体(如图)。
从上⾯看这个⽴体,看到的图形是图①~③中的______。
(填序号)10.图中内部有阴影的正⽅形共有______个。
11.下图中的阴影部分BCGF是正⽅形,线段FH长18厘⽶,线段AC长24厘⽶,则长⽅形ADHE的周长是______厘⽶。
12.图中的熊猫图案的阴影部分的⾯积是______平⽅厘⽶。
(注:阴影部分均由半圆和正⽅形组成,图中⼀个⼩正⽅形的⾯积是1平⽅厘⽶,π取3.14) 13.⼩红看⼀本故事书,第⼀天看了这本书的⼀半⼜10页,第⼆天看了余下的⼀半⼜10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有⼀副扑克牌中(去掉⼤、⼩王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车⾥程表显⽰的数字表⽰摩托车已经⾏驶了24944千⽶,经过两⼩时后,⾥程表上显⽰的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千⽶,则摩托车在这两⼩时内的平均速度是______千⽶/时。
五年级“希望杯”培训试题1、将20082007 ,20072008 ,20092008 ,20082009 这四个数从小到大排列是:____________________________。
2、计算:1.01•+2.12•+3.23•+4.34•+5.45•+…+9.89•3、计算:1×2+2×4+3×6+…+1005×20104、计算:2009×0.23+34×20.09+4.3×200.95、计算:1×(2×3)÷(3×4)×(4×5)÷(5×6)×……×(2008×2009)÷(2009×2010)6、计算:(12345+23451+34512+45123+51234)÷(1+2+3+4+5)7、计算:1-2-3+4+5-6-7+8+9-……+2004+2005-2006-2007+40178、计算:29292929×88888888÷10101010÷111111119、计算:2008×200920092009-2009×20082008200810、计算:2÷3÷7+4÷6÷14+14÷21÷494÷7÷9+8÷14÷18+28÷49÷6311、以m表示个位及十位数字均为偶数的两位数的个数,以n表示个位十位数字均为奇数的两位数的个数,则m与n之间的大小关系是__________。
12、在两位数中,个位数字与十位数字奇偶性不同的数共有__________个。
13、在三位数中,百位数字是十位数字的2倍,十位数字是个位数字的2倍的数有__________个。
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
五年级训练题(一)一、选择题1.甲、乙两个数的和是201.3,其中甲数的小数点向左移动一位,就等于乙数,甲数与乙数的差是( )。
A. 164.3B.164.7C.165.3D.165.72.如图,平面上有12个点,上下或左右相邻的两点之间的距离都是1,选其中4个点围成一个正方形,不同的选法共有( )。
A.8种B.9种C.10种D.11种3.五年级两个班共100人参加智力竞赛,平均分是78分,其中男生平均分是80分,女生平均分是75分,男生比女生多( )。
A. 20人B.22人C.24人D.25人4.王伯去水果店买水果。
如果买4千克梨和6千克苹果,要付款84元;如果买5千克梨和6千克苹果,要付款91.5元。
那么买1千克梨和1千克苹果要付款 ( )。
A. 15元B.15.5元C.16元D.16.5元5.如下左图,某物体由14个小正方体堆积而成,从左边看该物体,看到的图形是( )。
999除以13所得的余数是( )。
6.1232012个9A.4 B.6 C.8 D.10二、填空题7.计算:(9.6×8.6×8.4)÷(4.3×3.2×2.1)=。
8.在400米长的环形跑道上,甲、乙两人同时同向从起跑线并排起跑,甲每秒跑5米,乙每秒跑4.2米。
两人起跑后第一次相遇时,乙共跑了米。
9.某校五年级举行篮球比赛,规定:胜一场积3分,平一场积1分,负一场积0分。
赛后统计,A班共积9分,其中平比胜多1局,负的局数是胜的2倍,A班负了局。
10.如图,连接大正方形各边的中点得到第二个正方形,再连接第二个正方形各边的中点得到第三个正方形,最后连接第三个正方形各边的中点得到第四个正方形。
大正方形的面积是图中阴影部分面积的倍。
11.如果+++=2.1, +++=2.5,+++=3, 则+++++=。
12.建设某项工程,原计划40名工人用90天完成。
现在这批工人工作30天后又增加了10人,完成剩下的部分需再做天。
2021年第十三届希望杯五年级培训题1002021年第十三届小学“希望杯”全国数学邀请赛1、计算:0.685×5.6+3.4×0.685+0.6852、排序:2021-2021+2021-2021+……+3-2+13、计算:21×20.15+350×2.015+4.1×201.5+0.03×20214、排序:2021×20212021-2021×202120215、五个连续奇数的和是2021,求其中最大的奇数。
6、若将2021分解成5个自然数的和,则这5个数的积是“奇数”,“偶数”,还是“奇数或偶数”?7、若a是质数,b是合数,试写出一个合数(用a,b表示)。
8、1,3,8,23,229,2021的和就是奇数还是偶数?9、有两个自然数,它们的最大公约数是14,最小公倍数是210,问:这样的自然数有多少组?10、由2,0,1,1可以共同组成多少个读法中只有一个“1”的两位小数?11、若10个不同整数的和为一个偶数,且偶数比奇数多,则偶数最少有多少个?12、根据表的x,y的对应规律,谋a的值。
13、10010÷99的余数是多少。
14、存有四个数,其中的每一个数与另外三个数的平均数的和分别为19,90,20,15,谋原来四个数的平均数。
15、20212021÷2021的余数就是多少?16、有一列数3、4、2、8、……,从第三个数起,每个数都是它前面两个数的乘积的个位数字,谋这列数的第150个数。
17、若四位数3a50能同时被2、3、5整除,则a有多少个不同的值?18、如果a,b都就是质数,并且3a+7b=47,谋a+b。
19、将2021人分成若干个组,要求任意两个组的人数都不相同,问:这些人至多可以分成20、规定:a△b=a×(a+b),谋(2△3)△4。
ab42a b21、规定:ad bc,a b,谋6。
第二届希望杯培训题(五年级)1.19.6÷4.8-6.4÷4.8+5.4÷2.4=______。
2.计算:().______3.688.092.041428175.2=⨯⎥⎦⎤⎢⎣⎡-⨯÷⨯ 3.计算:.______727284.25318516=÷+⨯ 4.请将下列四个自然数用四则运算符号连结成一个综合算式,使结果等于24.(可以交换位置,可以加括号,一个数只能用一次).①2,3,5,7.列式:___________=24;②4,5,7,8.列式:___________=24,5.根据规律填空:0.123456,0.12346,_________,0.124,0.12,0.1.6.根据规律填空:3,5,9,17,______,65.7.如果______.2003@20043@42@32@1,@=++++⨯-= 那么,BA AB B A 8.如果A #B=A ×A -B ×B ,那么l -l #2—2#3-…-2003#2004=______.9.写出三个小于20的自然数,使它们的最大公约数是l ,但两两不互质,这三个数分别是,____,_____,______或____,_____,______或____,_____,______。
10.桌上放有若干堆糖块,每堆数量互不相同且都是不大于100的质数.其中任意三堆糖块可以平均分给3名小朋友,任意四堆糖块也可以平均分给4名小朋友,已知其中有一堆是 17块,则桌上放的糖块总数最多是______.11.有三个自然数a ,b ,c ,已知a ×b=24,b ×c=56,a ×c=21.这三个数的积a ×b ×c=_____。
12.甲、乙、丙、丁四人打靶,每人打三枪,四人各自中靶的环数之积都是60,按个人中靶的总环数由高到低排序,依次是甲、乙、丙、丁,靶子上4环的那一枪是______打的(环数是不超过10的自然数).13.一个数被9除,余数是5,该数的5倍被9除时,余数是_____.14.设有一个四位数76aa ,它能被9整除,则a 代表的数字是_______。
希望杯数学竞赛五年级培训题2
31.已知ABCDEF×B=EFABCD,相同的字母表示相同的数字,不同的字母表示不同的数字。
那么ABCDEF的可能情况有_____种。
32.下表中,15位于第4行第2列,2021位于第a行第b列,则
a+b= ____ 。
33.四个连续自然数 a,b,c,d依次是3,4,5,6的倍数(倍数大于1), 则 a+b+c+d 最小值是_____。
34.5个连续奇数的乘积是135135,则这5个数中最大的是_____。
35.一个三位自然数abc减去它各个数位上的数字,得到的差是三位
数□44,那么a=_____。
36.棱长为4 c m 的密封正方体盒子中,有一个半径为1 c m 的小球,小球可以在盒子里随意移动,盒子也可以任意翻转.小球可以接触到的正方体盒子的内表面面积是_____cm²。
37.被9除所得余数是5的四位数有_____个。
38.用两个8,三个7,一个0可以组成_____个不同的六位数。
39.如图,△ABC被分成四部分,各部分的面积已在图上标出,则△BEF 的面积为_____。
40.电视台打算5天播完10集电视剧(按顺序播完),其中可以有若干天不播,共有______种播出的方法。
41.图中包含*的正方形有____个。
42.如图,长方形ACDF 中,AC=3BC, FD=3FE, 阴影部分的面积为30,△AFG 的面积为_____。
43.如图, AD//EFI/BC,AB//GH//DC. 若平行四边形 BEPH 的面积为4,△PAC的面积为3,则平行四边形 PFDG 的面积为_____。
44.下图是一个正方体的平面展开图,若该正方体相对的两个面上的数相等,则c-a+b=_____。
45.从1到100这100个自然数中至少选出____个数,才能保证其中一定有两个数的和是10的倍数。
46.如图,2根绳子系在一起,现在绳子的某处点火,如果每分钟火燃烧的长度是1,那么烧光这些绳子至少需要_______分钟。
47.某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车送货.若用9辆车送货,12小时可以送完;若用8辆车送货,15小时可以送完.如果先用8辆车送货,3小时后再增加_____辆车,再过4小时可以送完。
48.李叔叔加工一批产品,他每加工出一件正品,得报酬2.5元;每加工出一件次品,扣款20元。
一天,他加工的正品数量是次品的49倍,共得到205元的报酬。
那么他这天加工出_____件次品。
49.一种商品20元,甲店:“买五赠一”,乙店:“满100减15",丙店:"打八八折”。
如果只从经济方面考虑,买8件这种商品,应选择_______店。
灰太狼的体重比喜羊羊的体重的3倍少2kg。
那么喜羊羊的体重的9倍比灰太狼的体重的3倍还多 ______kg。
51.东东从家到学校上课,先以每分钟70米的速度走了2分钟,发现这样走下去将迟到3分钟,于是她提高速度,以每分钟140米的速度前进,结果提前2分钟到校。
东东家离学校_______米。
52.将1~9这9个数字分别填入下面的各个方框内,每个数字只能用一次,则计算结果最大是____。
53.一个三位数各位数字的乘积是18,满足条件的所有三位数的总和是________。
54.有四个不同的自然数,它们的和是1991.如果要求这四个数的最大公因数尽可能大,那么这四个数中最大的数是_____。
55.甲乙两人分别从 A、B 两地同时出发,相向而行,在距 A 地8千米处相遇.相遇后他们继续前行,甲到达B 地,乙到达 A 地后都立即返回,第二次相遇点距A 地4千米. A、B 两地相距____千米.
56.东东有9张卡片,其中4张卡片上写有数字2,2张卡片上写有数字3,3张卡片上写有数字5.从这些卡片中任意取出若干张,并计算
卡片上数字的乘积(可以只取1张,也可以9张都取),一共可以得到___个不同的乘积.
57.如图,圆圈内分别填有1~7这7个数字.计算每个三角形顶点上的三个数字之和,再把得到的6个和相加,最后得64,那么中间圆圈内填入的数字是_______.
58.下图是两个相同的直角梯形重叠在一起,阴影部分的面积是 __.
59.10名工人给1250个魔法球涂色,每人每6分钟可以给5个魔法
球涂色,那么他们涂完所有魔法球最少用_______分钟.
60.如图,沿着图中的线段从A 点走到B 点,每个点最多只能经过一次,那么一共有______条不同的路线.
61.自然数M 乘13的积的末三位数是123, M 最小是____。
62.的乘积由9个不同数字组成,这9个数字中不包
含数字______。
63.一个正方体被切成24个完全相同的小长方体(如图所示),这些小
长方体的表面积之和为162平方厘米.原正方体的体积是_____立方
厘米.
64.64.两个不同两位数的乘积是完全平方数,它们的和最大是_____.
65.和为1998的两个自然数的最大公因数是6.这样的两个自然数共
有 _ 种情况.
66.一个七位数,从左到右,相邻的两个数字依次相加,得到的和分
别是9、7、9、2、8、11.这个七位数是__ __.
67.一个长方体药盒的展开图如图所示,药盒的长比宽多4厘米,则
这个药盒的体积是_______立方厘米.
68.一条河流有 A、B 两港, B 港在A 港下游100千米处.甲船从A 港、乙船从B 港同时出发,相向而行.甲船到达 B 港、乙船到达A 港后,
都立即按原来路线返航.如果水速为2米/秒,且两船在静水中的速度相同,两船两次相遇的地点相距20千米,那么两船在静水中的速度是____米/秒.
69.如图,正六边形ABCDEF 的面积是54, AP=2PF,CQ=2BQ, 则阴影四边形 CEPQ 的面积是_______.
70.如图,四边形ABCD 是矩形, E,F 分别是AB,BC 上的点,且AE= 31AB,CF=4
1BC ,AF 与 C E 相交于 G . 若矩形ABCD 的面积为120,则△AEG 与△CGF 的面积之和为 ___。