电阻元件的电阻值大小一般与温度有关
- 格式:doc
- 大小:84.00 KB
- 文档页数:4
电阻(电阻器)1、电阻器电阻器的含义:在电路中对电流有阻碍作用并且造成能量消耗的部分叫电阻,该元件称为电阻器,简称电阻。
电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关。
电阻的是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能;当电流经过电阻时会在两端形成不同的电压。
在电路正常工作过程中,电流的大小恒定不变;但是电压的大小在不同的电路(节点)处会发生改变,其中的原因就电阻的阻抗导致阻流降压;接地或与直流电源负极相连接的导线(节点)电压值都是0 单位:欧姆(Ω,KΩ,MΩ)1M欧=103 K欧=106欧功能:阻碍电流通过,降低电压(阻流降压)。
电阻器在电路中主要用来调节和稳定电流与电压,可作为分流器和分压器,也可作电路匹配负载。
根据电路要求,还可用于放大电路的负反馈或正反馈、电压-电流转换、输入过载时的电压或电流保护元件,又可组成RC电路作为振荡、滤波、旁路、微分、积分和时间常数元件等。
常见的特种电阻种类:光敏电阻、热敏电阻、压敏电阻术、气敏电阻、磁敏、湿敏、力敏(把外界物理变化变为电信号变化)重要参数:电阻值,电阻功率,电阻种类;(a)一般符号;(b)可变电阻器;(c)热敏电阻器;(d)压敏电阻器:(e)光敏电阻器;(f)滑线式变阻器2、电阻分类:封装类型(了解)碳膜电阻:是目前电子、电器、资讯产品中使用量最大,价格最便宜,品质稳定性、信赖度最高的碳膜固定电阻器。
此电阻器是在高温真空中分离出有机化合物--碳,紧密附着於瓷棒表面的碳膜为电阻体,再加以适当的接头后切薄而成,并在其表面涂上环氧树脂密封保护优点:制作简单,成本低;缺点:稳定性差,噪音大、误差大。
绕线电阻、无感性电阻:将电阻线绕在无性耐热瓷体上,表面涂以耐热、耐湿、无腐蚀的不燃性涂料,保护而成。
其特点如下:耐热性优、温度系数小、质轻、耐短时间过负载、低杂音、阻值经年变化小。
无感性绕线电阻器(NKNP)有着绕线电阻器(KNP)基本特性,加上低电感量的优点。
温度与电阻之间的关系温度与电阻之间的关系1. 引言温度与电阻之间的关系是我们在日常生活和科学研究中经常遇到的一个重要问题。
温度对于电子元件和导体的电阻性能具有显著影响,这种关系在电子工程和物理学领域中被广泛研究和应用。
本文将深入探讨温度与电阻之间的关系,并对相关概念和现象进行分析和解释。
2. 温度的物理意义温度是一种描述物体热平衡状态的物理量,用来衡量物体内部微观粒子的平均动能。
温度的单位通常使用开尔文(Kelvin,K)或摄氏度(Celsius,℃)来表示。
在绝对零度(0K)下,无所有物质的微观粒子运动,温度为0K时被认为是不可能的。
3. 电阻的基本概念电阻是一个电子元件或导体对电流流动的阻碍程度,它是电流和电压之比的物理量。
电阻的单位用欧姆(Ohm,Ω)表示。
正常情况下,电阻的大小是固定的,但是当温度发生变化时,电阻也会发生改变。
4. 电阻与温度的关系4.1 温度对金属导体电阻的影响根据欧姆定律,电阻(R)与电流(I)和电压(V)成正比,即R =V/I。
然而,在实际情况下,当金属导体的温度升高时,电阻将发生变化。
一般来说,金属导体的电阻随着温度的升高而增加。
4.2 温度对半导体电阻的影响与金属导体不同,当半导体材料的温度升高时,电阻会发生一些非线性的变化。
在半导体中,增加温度会导致载流子的数量增加,从而降低了电阻。
这是因为高温下,载流子更容易被激发出来,从而提高了电导率。
5. 温度系数与电阻温度变化的关系在描述电阻与温度之间关系时,我们引入了一个概念,即温度系数。
温度系数(α)是电阻随温度变化率的比例系数。
它的单位是每摄氏度Ω/℃。
不同的物质和材料具有不同的温度系数。
6. 温度对电阻的影响机制在解释温度与电阻之间的关系时,我们需要考虑材料中的原子结构和电子运动。
当温度升高时,原子和分子的振动会增强,从而对电子运动施加阻力。
这种阻力会影响电子在材料中的流动,从而改变了电阻。
7. 应用举例7.1 温度传感器温度传感器是一种基于温度与电阻关系的设备。
初中物理电阻计算公式是什么电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
下面是小编给大家带来的初中物理电阻计算公式,欢迎大家阅读参考,我们一起来看看吧!电阻计算公式计算公式串联: R=R1+R2+...+Rn并联:1/R=1/R1+1/R2+...+1/Rn 两个电阻并联式也可表示为R=R1·R2/(R1+R2)定义式:R=U/I决定式:R=ρL/S(ρ表示电阻的电阻率,是由其本身性质决定,L 表示电阻的长度,S表示电阻的横截面积)控制电阻大小的因素电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
多数(金属)的电阻随温度的升高而升高,一些半导体却相反。
如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为面积,单位为平方米。
可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。
电阻物理量:1欧电压产生一鸥电流则为1鸥电阻。
另外电阻的作用除了在电路中用来控制电流电压外还可以制成发热元件等。
初二物理电阻计算公式中考物理复习电阻知识伏安法测电阻:把导体接入电路,使导体中通过电流,用电压表测出灯泡两端的电压,用电流表测出通过灯泡的电流,再用欧姆定律公式算出灯泡的电阻。
电功和电功率1. 电功(W):电流所做的功叫电功2. 电功的单位:国际的单位:国际单位:焦耳。
常用单位有:度(千瓦时),1度=1千瓦时=3.6×106焦耳。
3. 测量电功的工具:电能表(电度表)4. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。
5. 利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。
电子元器件识别与检测电阻、电容、电感、二极管、三极管等都是电子电路常用的元器件。
这里列举出电子行业中常用的十大电子元器件,及相关的基础概念和知识,和大家一起温习一遍。
一:电阻作为电子行业的工作者,电阻是无人不知无人不晓的。
它的重要性,毋庸置疑。
人们都说“电阻是所有电子电路中使用最多的元件。
”电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。
电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。
没有电阻或电阻很小的物质称其为电导体,简称导体。
不能形成电流传输的物质称为电绝缘体,简称绝缘体。
在物理学中,用电阻(Resistance)来表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。
电阻元件是对电流呈现阻碍作用的耗能元件。
电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。
电阻在电路中的主要作用为分流、限流、分压、偏置等。
1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。
换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。
a、数标法主要用于贴片等小体积的电路,如:472 表示47×100Ω(即4.7K); 104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)。
2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/ x0.01 ±10金色/ x0.1 ±5黑色 0 +0 /棕色 1 x10 ±1红色2 x100 ±2橙色 3 x1000 /黄色 4 x10000 /绿色 5 x100000 ±0.5蓝色 6x1000000 ±0.2紫色7 x10000000 ±0.1灰色 8 x100000000 /白色 9x1000000000 / .二:电容电容(或电容量, Capacitance)指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。
电阻定义:物质对电流的阻碍作用就叫该物质的电阻。
电阻计算的公式串联:R=R1+R2+R3+……+R n并联:1/R=1/R1+1/R2+……+1/R n定义式:R=U/I决定式:R=ρL/S(ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积)电阻的单位是欧姆(ohm),简称欧电阻元件的电阻值大小一般与温度、导体长度、粗细、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
作用主要职能就是阻碍电流流过,应用于限流、分流、降压、分压、负载与电容配合作滤波器及阻匹配等.数字电路中功能有上拉电阻和下拉电阻。
一、电阻的型号命名方法: 国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。
如R表示电阻,W表示电位器。
第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。
1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻二、电阻器的分类1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数1、标称阻值:电阻器上面所标示的阻值。
电阻的大小与哪些因素有关的结论全文共四篇示例,供读者参考第一篇示例:电阻是电路中的一种基本元件,它的大小受到多种因素的影响。
在电路中,电阻的大小直接影响电流的大小和电压的分布。
了解电阻的大小与哪些因素有关是十分重要的。
本文将从材料、长度、横截面积、温度等多个角度探讨电阻的大小与哪些因素有关。
首先要讨论的是电阻的材料。
电阻的大小与其材料的导电性质密切相关。
通常情况下,金属是良好的导体,电阻很小;而绝缘体则是较差的导体,电阻较大。
在金属导体中,银、铜、铝等具有较大导电性能,因此其电阻也相对较小;而在绝缘体中,陶瓷、木材等的电阻则较大。
在选择材料时,需要根据具体的电路要求来选择,以确保电路的正常工作。
其次是电阻的长度。
电阻的长度对其电阻值具有很大的影响。
根据欧姆定律,电阻的大小与电压和电流的关系为R=V/I。
可以看出,当电压和电流不变时,电阻的大小与长度成正比。
也就是说,电阻的长度增加,电阻的值也会增加。
因此在设计电路时,需要根据要求选择合适长度的电阻。
温度也是影响电阻值的重要因素之一。
一般情况下,温度升高会导致导体的电阻增加,即电阻温度系数为正。
这是因为在高温下,导体中的自由电子受到晶格的振动和碰撞影响,从而导致电子的迁移速度变慢,电阻增大。
因此在实际应用中,需要考虑电阻的温度特性,选择合适的电阻来保证电路的稳定工作。
电阻的大小与材料、长度、横截面积、温度等多个因素有关。
在设计电路时,需要综合考虑这些因素,选择合适的电阻来满足电路的需求。
只有充分了解电阻与这些因素之间的关系,才能更好地设计和调试电路,确保电路的正常工作。
希望本文能帮助读者更好地理解电阻的大小与相关因素之间的关系。
第二篇示例:电阻是电路中一个重要的元件,它具有阻碍电流流动的功能。
电阻的大小受多种因素的影响,因此在设计和选择电阻时需要考虑这些因素。
本文将探讨电阻的大小与哪些因素有关。
电阻的大小与电阻的材料有关。
电阻的材料不同,电阻的大小也会有所差异。
⾦属导体的电阻与什么有关
电阻元件的电阻值⼤⼩⼀般与温度有关,还与导体长度、横截⾯积、材料有关。
多数(⾦属)的电阻随温度的升⾼⽽升⾼,⼀些半导体却相反。
如:玻璃,碳在温度⼀定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为⾯积,单位为平⽅⽶。
电阻率相关知识
电阻率是⽤来表⽰各种物质电阻特性的物理量,某种材料制成的长为1⽶,横截⾯积为1平⽅⽶的导体的电阻,在数值上等于这种材料的电阻率。
它反映物质对电流阻碍作⽤的属性,它与物质的种类有关,还受温度影响。
1、电阻率ρ不仅和导体的材料有关,还和导体的温度有关。
在温度变化不⼤的范围内,⼏乎所有⾦属的电阻率都随温度作线性变化,即ρ=ρ0(1+at),式中t是摄⽒温度,ρ是0℃时的电阻率,a是电阻率温度系数,利⽤这⼀性质可制成电阻温度计,有些合⾦电阻率受温度的影响很⼩,常⽤来作标准电阻。
2、由于电阻率随温度改变,故对于某些电器的电阻,必须说明它们所处的物理状态。
如⼀个“220V,40W”电灯灯丝的电阻,正常发光时是1210Ω,未通电时只有100欧左右。
3、电阻率和电阻是两个不同的概念,电阻率是反映物质对电流阻碍作⽤的属性,电阻是反映物体对电流阻碍作⽤的属性。
常用的十大电子元器件及相关的基础概念和知识对于从事电子行业的工程师来说,电子元器件就像人们日常进口的米饭一样,是每天都需要去接触,每天都需要用到的,但其实里面的门门道道很多工程师未必了解。
小喵在这里为大家列举出工程师们常用的十大电子元器件及相关的基础概念和知识,一起温习一下也能涨涨知识嘛电阻作为电子行业的工作者,电阻是无人不知无人不晓的。
它的重要性,毋庸置疑。
人们都说“电阻是所有电子电路中使用最多的元件。
”电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。
电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。
没有电阻或电阻很小的物质称其为电导体,简称导体。
不能形成电流传输的物质称为电绝缘体,简称绝缘体。
在物理学中,用电阻(Resistance)来表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。
电阻元件是对电流呈现阻碍作用的耗能元件。
电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。
电阻在电路中的主要作用为分流、限流、分压、偏置等。
1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。
换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。
a、数标法主要用于贴片等小体积的电路,如:472表示47×100Ω(即4.7K);104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)。
2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/x0.01±10金色/x0.1±5黑色0+0/棕色1x10±1红色2x100±2橙色3x1000/黄色4x10000/绿色。
电阻计算公式
电阻计算公式
定义式:R=U/I
定义公式:R=ρL/S
欧姆定律变形式:R=U/I
电阻串联:R=R1+R2+R3+...+Rn
电阻并联:1/R=1/R1+1/R2+1/R3+..+1/Rn
与电功率相关公式:R=U²/P;R=P/I²
与电能(电热)相关公式:R=U²t/W;R=W/I²t(电热时,W换成Q)决定式:R=ρL/S(ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积)
控制电阻大小的因素
电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
多数(金属)的电阻随温度的升高而升高,一些半导体却相反。
如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为面积,单位为平方米。
可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。
电阻物理量:1欧电压产生一鸥电流则为1鸥电阻。
另外电阻的作用除了在电路中用来控制电流电压外还可以制成发热元件等。
2019-8-5
2019-8-5。
高中物理电阻的温度系数与变化电阻的温度系数是指单位温度升高时,电阻值相应变化的量。
一般情况下,电阻值随着温度的升高而增加。
本文将介绍电阻的温度系数的定义、计算方法以及与温度变化的关系。
一、电阻的温度系数的定义电阻的温度系数指的是单位温度变化时,电阻值相应变化的百分比。
一般用温度系数α表示,其计算公式为:α = (R₂ - R₁) / (R₁ * (T₂ - T₁)) * 100%其中,α为电阻的温度系数;R₁和R₂分别为两个不同温度下的电阻值;T₁和T₂分别为两个不同温度。
二、电阻的温度系数与温度变化的关系根据电阻的温度系数定义可知,当温度系数为正值时,电阻值随温度的升高而增加;当温度系数为负值时,电阻值随温度的升高而减小。
不同物质的电阻温度系数大小不同,常见的金属导体的温度系数一般为正值,而半导体的温度系数一般为负值。
例如,铜导线的温度系数大约为0.0039Ω/℃,而硅的温度系数大约为-0.075Ω/℃。
三、电阻温度系数的计算实例为了更好地理解电阻的温度系数与变化,我们来看一个实际的计算实例。
假设一个电阻器在20℃时的电阻值为100欧姆,在50℃时的电阻值为150欧姆。
我们可以使用上述公式计算该电阻器的温度系数。
α = (150 - 100) / (100 * (50 - 20)) * 100%= 50 / 100 * 100%= 50%根据计算结果可知,该电阻器的温度系数为50%。
由于温度系数为正值,所以电阻值随着温度的升高而增加。
在实际应用中,我们需要考虑电阻值随温度变化对电路稳定性的影响。
四、温度影响对电路的影响电阻值随温度的变化会导致电路参数的变化,从而影响电路的稳定性和性能。
例如,在温度升高时,电阻增大可能导致电流减小,电压降变小,进而影响到整个电路的工作情况。
因此,在设计电路时,我们需要考虑电阻的温度系数,选择合适的材料和元件。
有些应用中,为了保持电阻值的稳定,会采用温度补偿电路或以恒温状态工作的特殊电路。
电子元器件图片、名称及符号对照电阻器(Resistor)是一个限流元件,用字母R来表示,单位为欧姆Ω。
将电阻接在电路中后,电阻器一般是两个引脚,它可限制通过它所连支路的电流大小。
阻值不能改变的称为固定电阻器。
阻值可变的称为电位器或可变电阻器。
电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
实际器件如灯泡,电热丝等均可表示为电阻器元件。
电阻在电路中通常起分压、分流的作用。
对信号来说,交流与直流信号都可以通过电阻。
可调电阻/微调电阻可调电阻也叫可变电阻(Rheostat),可调电阻的电阻值的大小可以人为调节,以满足电路的需要。
可调电阻按照电阻值的大小、调节的范围、调节形式、制作工艺、制作材料、体积大小等等可分为许多不同的型号和类型,分为:电子元器件可调电阻,瓷盘可调电阻,贴片可调电阻,线绕可调电阻等等。
电位器(Potentiometer)是具有三个引出端、阻值可按某种变化规律调节的电阻元件。
电位器通常由电阻体和可移动的电刷组成。
当电刷沿电阻体移动时,在输出端即获得与位移量成一定关系的电阻值或电压。
电位器既可作三端元件使用也可作二端元件使用。
后者可视作一可变电阻器,由于它在电路中的作用是获得与输入电压(外加电压)成一定关系的输出电压,因此称之为电位器。
电容器(capacitor),通常简称其容纳电荷为电容,用字母C表示,单位为F(法拉)。
任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。
作用:隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。
电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。
电感器的结构类似于变压器,但只有一个绕组。
电感器具有一定的电感,它只阻碍电流的变化。
如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。
电阻的名词定义中文名称:电阻英文名称:resistance名词定义:电压除以电流之商。
电阻,物质对电流的阻碍作用就叫该物质的电阻。
电阻小的物质称为电导体,简称导体。
电阻大的物质称为电绝缘体,简称绝缘体。
名词简介:在物理学中,用电阻来表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种性质.电阻元件是对电流呈现阻碍作用的耗能元件。
电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1°C 时电阻值发生变化的百分数。
电阻是所有电子电路中使用较多的元件。
导体的电阻通常用字母R表示,电阻的单位是欧姆(ohm),简称欧,符号是Ω(希腊字母,音译成拼音读作ōu mì gǎ )。
比较大的单位有千欧(kΩ)、兆欧(MΩ)(兆=百万,即100万)。
电阻器简称电阻(Resistor,通常用“R”表示)是所有电子电路中使用较多的元件。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。
KΩ(千欧),MΩ(兆欧),它们的换算关系是:1TΩ=1000GΩ 1GΩ=1000MΩ 1MΩ=1000KΩ 1KΩ=1000Ω (也就是一千进率)电阻的阻值标法通常有色环法。
数字法:色环法在一般的的电阻上比较常见。
由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法。
即:101—表示10Ω的电阻;102—表示100Ω的电阻;103—表示1KΩ的电阻;104—表示10KΩ的电阻;106—表示1MΩ的电阻;107—表示10MΩ的电阻。
如果一个电阻上标为22*103,则这个电阻为22KΩ。
数码法:用三位数字表示元件的标称值。
从左至右前两位表示有效数位,第三位表示10n(n=0~8)。
当n=9为特例,表示10-1。
电阻的定义是什么意思电阻的定义是什么意思电阻器由电阻体、骨架和引出端三部分构成,而决定阻值的只是电阻体。
下面是店铺给大家整理的电阻的定义简介,希望能帮到大家!电阻的定义电阻器(Resistor)在日常生活中一般直接称为电阻。
是一个限流元件,将电阻接在电路中后,电阻器的阻值是固定的一般是两个引脚,它可限制通过它所连支路的电流大小。
阻值不能改变的称为固定电阻器。
阻值可变的称为电位器或可变电阻器。
理想的电阻器是线性的,即通过电阻器的瞬时电流与外加瞬时电压成正比。
用于分压的可变电阻器。
在裸露的电阻体上,紧压着一至两个可移金属触点。
触点位置确定电阻体任一端与触点间的阻值。
端电压与电流有确定函数关系,体现电能转化为其他形式能力的二端器件,用字母R来表示,单位为欧姆Ω。
实际器件如灯泡,电热丝,电阻器等均可表示为电阻器元件。
电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
电阻在电路中通常起分压、分流的作用。
对信号来说,交流与直流信号都可以通过电阻。
电阻的分类按伏安特性分类对大多数导体来说,在一定的温度下,其电阻几乎维持不变而为一定值,这类电阻称为线性电阻。
有些材料的电阻明显地随着电流(或电压)而变化,其伏—安特性是一条曲线,这类电阻称为非线性电阻。
非线性电阻在某一给定的电压(或电流)作用下,电压与电流的比值为在该工作点下的静态电阻,伏—安特性曲线上的斜率为动态电阻。
表达非线性电阻特性的方式比较复杂,但这些非线性关系在电子电路中得到了广泛的应用。
按材料分类a、线绕电阻器由电阻线绕成电阻器用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。
绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。
对于从事电子行业的工程师来说,电子元器件就像人们日常进口的米饭一样,是每天都需要去接触,每天都需要用到的,但其实里面的门门道道很多工程师未必了解。
这里列举出工程师门常用的十大电子元器件,及相关的基础概念和知识,和大家一起温习一遍。
一:电阻作为电子行业的工作者,电阻是无人不知无人不晓的。
它的重要性,毋庸置疑。
人们都说“电阻是所有电子电路中使用最多的元件。
”电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。
电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。
没有电阻或电阻很小的物质称其为电导体,简称导体。
不能形成电流传输的物质称为电绝缘体,简称绝缘体。
在物理学中,用电阻(Resistance)来表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。
电阻元件是对电流呈现阻碍作用的耗能元件。
电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。
电阻在电路中的主要作用为分流、限流、分压、偏置等。
1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。
换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。
a、数标法主要用于贴片等小体积的电路,如:472表示47×100Ω(即4.7K);104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)。
2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/x0.01±10金色/x0.1±5黑色0+0/棕色1x10±1红色2x100±2橙色3x1000/黄色4x10000/绿色5x100000±0.5蓝色6x1000000±0.2紫色7x10000000±0.1灰色8x100000000/白色9x1000000000/。
电阻元件的电阻值大小一般与温度有关,还与导体长度、粗细、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
多数(金属)的电阻随温度的升高而升高,一些半导体却相反。
如:玻璃,碳。
电阻分类
按阻值特性
固定电阻、可调电阻、特种电阻(敏感电阻) .
不能调节的,我们称之为定值电阻或固定电阻,而可以调节的,我们称
之为可调电阻.常见的可调电阻是滑动变阻器,例如收音机音量调节的装置是个圆形的滑动变阻器,主要应用于电压分配的,我们称之为电位器.
按制造材料
碳膜电阻、金属膜电阻、线绕电阻,无感电阻,薄膜电阻等.
薄膜电阻
用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。
主要如下:碳膜电阻器
碳膜电阻
碳膜电阻(碳薄膜电阻),常用符号RT作为标志;为最早期也最普遍使用的电阻器,利用真空喷涂技术在瓷棒上面喷涂一层碳膜,再将碳膜外层加工切割成螺旋纹状,依照螺旋纹的多寡来定其电阻值,螺旋纹愈多时表示电阻值愈大。
最后在外层涂上环氧树脂密封保护而成。
其阻值误差虽然较金属皮膜电阻高,但由于价钱便宜。
碳膜电阻器仍广泛应用在各类产品上,是目前电子,电器,设备,资讯产品之最基本零组件。
金属膜电阻器
金属膜电阻(metal film resistor),常用符号RJ作为标志;其同样利用真空喷涂技术在瓷棒上面喷涂,只是将炭膜换成金属膜(如镍铬),并在金属膜车上螺旋纹做出不同阻值,并且于瓷棒两端镀上贵金属。
虽然
它较碳膜电阻器贵,但低杂音,稳定,受温度影响小,精确度高成了它的优
金属膜电阻
势。
因此被广泛应用于高级音响器材,电脑,仪表,国防及太空设备等方面。
金属氧化膜电阻器
某些仪器或装置需要长期在高温的环境下操作,使用一般的电阻会未能保持其安定性。
在这种情况下可使用金属氧化膜电阻(金属氧化物薄膜电阻器),它是利用高温燃烧技术于高热传导的瓷棒上面烧附一层金属氧化薄膜(用锡和锡的化合物喷制成溶液,经喷雾送入
500~500℃的恒温炉,涂覆在旋转的陶瓷基体上而形成的。
材料也可以氧化锌等),并在金属氧化薄膜车上螺旋纹做出不同阻值,然后于外层喷涂不燃性涂料。
其性能与金属膜电阻器类似,但电阻值范围窄。
它能够在高温下仍保持其安定性,其典型的特点是金属氧化膜与陶瓷基体结合的更牢,电阻皮膜负载之电力亦较高。
耐酸碱能力强,抗盐雾,因而适用于在恶劣的环境下工作。
它还兼备低杂音,稳定,高频特性好的优点。
常用符号RY 作为标志。
合成膜电阻
金属氧化膜电阻
将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。
由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。
绕线电阻
用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。
绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。
方形线绕电阻
方形线绕电阻
方形线绕电阻(钢丝缠绕电阻)又俗称为水泥电组,采用镍,铬,铁等电阻较大的合金电阻线绕在无碱性耐热瓷件上,外面加上耐热,耐湿,无腐蚀之材料保护而成,再把绕线电阻体放入瓷器框内,用特殊不燃性耐热水泥充填密封而成。
而不燃性涂装线绕电阻的差别只是外层涂装改由矽利康树脂或不燃性涂料。
它们的优点是阻值精确,低杂音,有良好散热及可以承受甚大的功率消耗,大多使用于放大器功率级部份。
缺点是阻值不大,成本较高,亦因存在电感不适宜在高频的电路中使用。
实芯碳质电阻
碳质电阻
用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。
并在制造时植入导线。
电阻值的大小是根据碳粉的比例及碳棒的粗细长短而定。
特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。
金属玻璃铀电阻
将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。
耐潮湿,高温,温度系数小,主要应用于厚膜电路。
贴片电阻SMT
贴片电阻
贴片电阻(片式电阻)是金属玻璃铀电阻的一种形式,它的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,特点是体积小,精度高,稳定性和高频性能好,适用于高精密电子产品的基板中。
而贴片排阻则是将多个相同阻值的贴片电阻制作成一颗贴片电阻,目的是可有效地限制元件数量,减少制造成本和缩小电路板的面积。