2015-2016高考数学函数与方程专题检测(带答案)
- 格式:doc
- 大小:2.12 KB
- 文档页数:1
高考专题训练(三十二) 函数与导数(解答题)1.(2014·皖南八校联考)已知函数f (x )=e x (ax 2-2x +2),其中a >0. (1)若曲线y =f (x )在x =2处的切线与直线x +e 2y -1=0垂直,求实数a 的值;(2)讨论f (x )的单调性.解 f ′(x )=e x [ax 2+ (2a -2)x ](a >0).(1)由题意得f ′(2)·⎝ ⎛⎭⎪⎫-1e 2=-1,解得a =58. (2)令f ′(x )=0,得x 1=0,x 2=2-2aa .①当0<a <1时,f (x )的增区间为(-∞,0),⎝ ⎛⎭⎪⎫2-2a a ,+∞,减区间为⎝⎛⎭⎪⎫0,2-2a a ; ②当a =1时,f (x )在(-∞,+∞)内单调递增;③当a >1时,f (x )的增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a ,(0,+∞),减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 2.(2014·云南二模)已知f (x )=e x (x 3+mx 2-2x +2). (1)假设m =-2,求f (x )的极大值与极小值;(2)是否存在实数m ,使f (x )在[-2,-1]上单调递增?如果存在,求实数m 的取值范围;如果不存在,请说明理由.解 (1)当m =-2时,f (x )=e x (x 3-2x 2-2x +2)的定义域为(-∞,+∞).∵f ′(x )=e x (x 3-2x 2-2x +2)+e x (3x 2-4x -2) =x e x (x 2+x -6)=(x +3)x (x -2)e x ,∴当x ∈(-∞,-3)或x ∈(0,2)时,f ′(x )<0; 当x ∈(-3,0)或x ∈(2,+∞)时,f ′(x )>0; f ′(-3)=f ′(0)=f ′(2)=0,∴f (x )在(-∞,-3)上单调递减,在(-3,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,∴当x =-3或x =2时,f (x )取得极小值; 当x =0时,f (x )取得极大值,∴f (x )极小值=f (-3)=-37e -3,f (x )极小值=f (2)=-2e 2,f (x )极大值=f (0)=2.(2)f ′(x )=e x (x 3+mx 2-2x +2)+e x (3x 2+2mx -2)=x e x [x 2+(m +3)x +2m -2].∵f (x )在[-2,-1]上单调递增, ∴当x ∈[-2,-1]时,f ′(x )≥0. 又当x ∈[-2,-1]时,x e x <0,∴当x ∈[-2,-1]时,x 2+(m +3)x +2m -2≤0,∴⎩⎪⎨⎪⎧(-2)2-2(m +3)+2m -2≤0,(-1)2-(m +3)+2m -2≤0,解得m ≤4,∴当m ∈(-∞,4]时,f (x )在[-2,-1]上单调递增. 3.(文)(2014·山西四校联考)已知函数f (x )=ax 2+x -x ln x . (1)若a =0,求函数f (x )的单调区间;(2)若f (1)=2,且在定义域内f (x )≥bx 2+2x 恒成立,求实数b 的取值范围.解 (1)当a =0时,f (x )=x -x ln x ,函数定义域为(0,+∞). f ′(x )=-ln x ,由-ln x =0, 得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )在(0,1)上是增函数;当x ∈(1,+∞)时,f ′(x )<0,f (x )在(1,+∞)上是减函数. (2)由f (1)=2,得a +1=2, ∴a =1,∴f (x )=x 2+x -x ln x , 由f (x )≥bx 2+2x , 得(1-b )x -1≥ln x . ∵x >0,∴b ≤1-1x -ln xx 恒成立.令g (x )=1-1x -ln x x ,可得g ′(x )=ln xx 2,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴g (x )min =g (1)=0,∴b 的取值范围是(-∞,0]. 3.(理)(文)4.(2014·广州调研)已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行.(1)求f (x )的解析式;(2)是否存在t ∈N *,使得方程f (x )+37x =0在区间(t , t +1)内有两个不相等的实数根?若存在,求出t 的值;若不存在,说明理由.解 (1)∵f (x )是二次函数, 不等式f (x )<0的解集是(0,5), ∴可设f (x )=ax (x -5),a >0. ∴f ′(x )=2ax -5a .∵函数f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行,∴f ′(1)=-6.∴2a -5a =-6,解得a =2. ∴f (x )=2x (x -5)=2x 2-10x .(2)由(1)知,方程f (x )+37x =0等价于方程2x 3-10x 2+37=0. 设h (x )=2x 3-10x 2+37,则h ′(x )=6x 2-20x =2x (3x -10).当x ∈⎝⎛⎭⎪⎫0,103时,h ′(x )<0,函数h (x )在⎝ ⎛⎭⎪⎫0,103上单调递减; 当x ∈⎝⎛⎭⎪⎫103,+∞时,h ′(x )>0,函数h (x )在⎝⎛⎭⎪⎫103,+∞上单调递增.∵h (3)=1>0,h ⎝⎛⎭⎪⎫103=-127<0,h (4)=5>0,∴方程h (x )=0在区间⎝⎛⎭⎪⎫3,103,⎝⎛⎭⎪⎫103,4内各有一个实数根,在区间(0,3),(4,+∞)内没有实数根.∴存在唯一的正整数t =3,使得方程f (x )+37x =0在区间(t ,t +1)内有且只有两个不相等的实数根.4.(理)(文)5.(2014·辽宁五校联考)已知函数f (x )=x ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的实数m 使t =f (m );(3)设(2)中所确定的m 关于t 的函数为m =g (t ),证明:当t >e 时,有710<ln g (t )ln t <1.解 (1)∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0), 令f ′(x )=0,得x =1e .∴当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,此时f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. (2)当0<x ≤1时,f (x )≤0, 又t >0,令h (x )=f (x )-t ,x ∈[1,+∞),由(1)知h (x )在区间[1,+∞)上为增函数,h (1)=-t <0, h (e t )=t (e t -1)>0,∴存在唯一的实数m ,使t =f (m )成立. (3)∵m =g (t )且由(2)知t =f (m ),t >0, 当t >e 时,若m =g (t )≤e ,则由f (m )的单调性有t =f (m )≤f (e)=e ,矛盾, ∴m >e.又ln g (t )ln t =ln m ln f (m )=ln m ln (m ln m )=ln m ln m +ln (ln m )=u u +ln u ,其中u =ln m ,u >1,要使710<ln g (t )ln t <1成立, 只需0<ln u <37u .令F (u )=ln u -37u ,u >1,F ′(u )=1u -37, 当1<u <73时,F ′(u )>0,F (u )单调递增; 当u >73时,F ′(u )<0,F (u )单调递减.∴对u >1,F (u )≤F ⎝ ⎛⎭⎪⎫73<0,即ln u <37u 成立.综上,当t >e 时,710<ln g (t )ln t <1成立.5.(理)(2014·浙江考试院抽测)已知a 为给定的正实数,m 为实数,函数f (x )=ax 3-3(m +a )x 2+12mx +1.(1)若f (x )在(0,3)上无极值点,求m 的值;(2)若存在x 0∈(0,3),使得f (x 0)是f (x )在[0,3]上的最值,求实数m 的取值范围.解 (1)由题意得f ′(x )=3ax 2-6(m +a )x +12m =3(x -2)(ax -2m ),由于f (x )在(0,3)上无极值点, 故2ma =2,所以m =a .(2)由于f ′(x )=3(x -2)(ax -2m ),故 ①当2m a ≤0或2ma ≥3, 即m ≤0或m ≥32a 时, 取x 0=2即满足题意. 此时m ≤0或m ≥32a .②当0<2ma <2,即0<m <a 时,列表如下:故f (2)≤f (0)或f ⎝ ⎛⎭⎪⎫2m a ≥f (3),即-4a +12m +1≤1或-4m 3+12m 2aa 2+1≥9m +1, 即3m ≤a 或-m (2m -3a )2a 2≥0, 即m ≤a 3或m ≤0或m =3a 2. 此时0<m ≤a3.③当2<2m a <3,即a <m <3a2时,列表如下:故f ⎝ ⎛⎭⎪⎫2m a ≤f (0)或f (2)≥f (3),即-4m 3+12m 2a a 2+1≤1或-4a +12m +1≥9m +1, 即-4m 2(m -3a )a 2≤0或3m ≥4a , 即m =0或m ≥3a 或m ≥4a 3. 此时4a 3≤m <3a 2.综上所述,实数m 的取值范围是m ≤a 3或m ≥4a3.。
2015年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)一、选择题1.(2015安徽文、理)下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+2.(2015安徽理)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <3、(2015北京文)下列函数中为偶函数的是( )A .2sin y x x = B .2cos y x x = C .ln yx =D .2xy -=【答案】B【解析】试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 考点:函数的奇偶性.4.(2015北京理)如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )AB Oxy -122CA .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C 【解析】考点:1.函数图象;2.解不等式.5. (2015北京理)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】 【解析】试题分析:“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D. 考点:1.函数应用问题;2.对“燃油效率”新定义的理解;3.对图象的理解. 6.(2015福建文)下列函数为奇函数的是( )A .y x =B .x y e =C .cos y x =D .x xy e e -=- 【答案】D 【解析】试题分析:函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x xy e e -=-是奇函数,故选D .考点:函数的奇偶性. 7.(2015福建理)下列函数为奇函数的是( ) A .y x = B .sin y x = C .cos y x = D .x x y e e -=-【答案】D考点:函数的奇偶性.8.(2015广东文)下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+ B .2cos y x x =- C .122x x y =+ D .sin 2y x x =+ 【答案】A 【解析】试题分析:函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x=-的定义域为R ,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x xf x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x=+是奇函数.故选A .考点:函数的奇偶性. 9.(2015广东理)下列函数中,既不是奇函数,也不是偶函数的是( ) A .xe x y += B .x x y 1+= C .x xy 212+= D .21x y += 【答案】A .【解析】令()x f x x e =+,则()11f e =+,()111f e --=-+即()()11f f -≠,()()11f f -≠-,所以x y x e =+既不是奇函数也不是偶函数,而BCD 依次是奇函数、偶函数、偶函数,故选A . 【考点定位】本题考查函数的奇偶性,属于容易题.10. (2015湖北文)函数256()4||lg 3x x f x x x -+=-+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]UD .(1,3)(3,6]-U 【答案】C .【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.11. (2015湖北文)设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =【答案】D .【考点定位】本题考查分段函数及其表示法,涉及新定义,属能力题.【名师点睛】以新定义为背景,重点考查分段函数及其表示,其解题的关键是准确理解题意所给的新定义,并结合分段函数的表示准确表达所给的函数.不仅新颖别致,而且能综合考察学生信息获取能力以及知识运用能力.12. (2015湖北理)已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B 【解析】试题分析:因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.考点:1.符号函数,2.函数的单调性.13.(2015湖北理)设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 【答案】B考点:1.函数的值域,2.不等式的性质.14、(2015湖南文、理)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】试题分析:求出函数的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可. 函数f (x )=ln (1+x )-ln (1-x ),函数的定义域为(-1,1),函数f (-x )=ln (1-x )-ln (1+x )=-[ln (1+x )-ln (1-x )]=-f (x ),所以函数是奇函数.()2111'111f x x x x=+=+-- ,已知在(0,1)上()'0f x > ,所以f(x)在(0,1)上单调递增,故选A.【考点定位】函数的性质.【名师点睛】本题主要考查了以对数函数为背景的单调性与奇偶性,属于中档题,首先根据函数奇偶性的判定可知其为奇函数,判定时需首先考虑定义域关于原点对称是函数为奇函数的必要条件,再结合复合函数单调性的判断,即可求解.15、(2015全国新课标Ⅰ卷文)已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14-16、(2015全国新课标Ⅰ卷文)设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )417.(2015全国新课标Ⅱ卷理)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.18.(2015全国新课标Ⅱ卷文、理)如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .【答案】B考点:函数图像19. (2015山东文)设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) (A )a <b <c (B )a <c <b (C )b <a <c (D )b <c <a 【答案】C 【解析】试题分析:由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C.考点:1.指数函数的性质;2.函数值比较大小.20. (2015山东文)若函数21()2x x f x a+=-是奇函数,则使f (x )>3成立的x 的取值范围为( )(A )( ) (B)() (C )(0,1) (D )(1,+)【答案】C 【解析】试题分析:由题意()()f x f x =--,即2121,22x x xx a a--++=---所以,(1)(21)0,1x a a -+==,21(),21x x f x +=-由21()321x x f x +=>-得,122,01,x x <<<<故选C.考点:1.函数的奇偶性;2.指数运算.21. (2015山东文) 设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b=( ) (A )1 (B )78 (C )34 (D)12【答案】D【解析】试题分析:由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D.考点:1.分段函数;2.函数与方程.22.(2015山东理)设函数()31,1,2,1xx x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的a 取值范围是( )(A )2,13⎡⎤⎢⎥⎣⎦ (B )[]0,1 (C )2,3⎡⎫+∞⎪⎢⎣⎭(D )[)1,+∞【答案】C【考点定位】1、分段函数;2、指数函数.【名师点睛】本题以分段函数为切入点,深入考查了学生对函数概念的理解与掌握,同时也考查了学生对指数函数性质的理解与运用,渗透着对不等式的考查,是一个多知识点的综合题.23.(2015陕西文)设1,0()2,0xx x f x x ⎧-≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C考点:1.分段函数;2.函数求值.24. (2015陕西文) 设()sin f x x x =-,则()f x =( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数 【答案】B 【解析】试题分析:()sin ()()sin()sin (sin )()f x x x f x x x x x x x f x =-⇒-=---=-+=--=- 又()f x 的定义域为R 是关于原点对称,所以()f x 是奇函数;()1cos 0()f x x f x '=-≥⇒是增函数. 故答案选B考点:函数的性质.25.(2015四川理)如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B【考点定位】函数与不等式的综合应用.【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.26.(2015四川文)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时 【答案】C【考点定位】本题考查指数函数的概念及其性质,考查函数模型在现实生活中的应用,考查整体思想,考查学生应用函数思想解决实际问题的能力.【名师点睛】指数函数是现实生活中最常容易遇到的一种函数模型,如人口增长率、银行储蓄等等,与人们生活密切相关.本题已经建立好了函数模型,只需要考生将已知的两组数据代入,即可求出其中的待定常数.但本题需要注意的是:并不需要得到k 和b 的准确值,而只需求出e b 和e 11k,然后整体代入后面的算式,即可得到结论,否则将增加运算量.属于中档题.27.(2015天津理)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b << (C )c a b << (D )c b a <<【答案】C 【解析】试题分析:因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 502log 5214,2(0)210b f c f m f ==-====-= 所以c a b <<,故选C.考点:1.函数奇偶性;2.指数式、对数式的运算.28.(2015天津理)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞ ⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D 【解析】试题分析:由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.86422468151055101529. (2015天津文)已知定义在R 上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a <<【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.30. (2015天津文) 已知函数22||,2()(2),2x x f x x x ì-?ï=í->ïî,函数()3(2)g x f x =--,则函数y ()()f x g x =-的零点的个数为( )(A) 2 (B) 3 (C)4 (D)5 【答案】A考点:函数与方程.31. (2015浙江理) 存在函数()f x 满足,对任意x R ∈都有( )A.(sin 2)sin f x x =B.2(sin 2)f x x x =+ C.2(1)1f x x +=+ D.2(2)1f x x x +=+32、(2015浙江文)函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D . 【答案】D 【解析】试题分析:因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A, B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.33、(2015浙江文)设实数a ,b ,t 满足1sin a b t +==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin 2b唯一确定 D .若t 确定,则2a a +唯一确定 【答案】B 【解析】试题解析:因为1sin a b t +==,所以222(1)sin a b t +==,所以2221a a t +=-,故当t 确定时,21t -确定,所以22a a +唯一确定.故选B.考点:函数概念34. (2015重庆文) 函数22(x)log (x 2x 3)f =+-的定义域是( ) (A) [3,1]- (B) (3,1)-(C) (,3][1,)-∞-+∞U (D) (,3)(1,)-∞-+∞U 【答案】D【解析】试题分析:由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ; 故选D.考点:函数的定义域与二次不等式.二、填空1. (2015全国新课标Ⅰ卷理)若函数f (x )=x ln (x +2a x +)为偶函数,则a =【答案】1考点:函数的奇偶性2. (2015全国新课标Ⅱ卷文)已知函数()32f x ax x =-的图像过点(-1,4),则a = . 【答案】-2【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式3.(2015安徽文)=-+-1)21(2lg 225lg.【名师点睛】本题主要考查考生的基本运算能力,熟练掌握对数运算公式和指数幂运算公式是解决本题的关键.4.(2015安徽文)在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 .5、(2015北京文)32-,123,2log 5三个数中最大数的是 . 【答案】2log 5 【解析】试题分析:31218-=<,12331=>,22log 5log 423>>2log 5最大.考点:比较大小.6. (2015北京理)设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是 .【答案】(1)1,(2)112a ≤<或2a ≥. 考点:1.函数的图象;2.函数的零点;3.分类讨论思想.加油时间 加油量(升) 加油时的累计里程(千米)2015年5月1日 1235000 2015年5月15日48 35600 千米平均耗油量为( )A .6升B .8升C .10升D .12升 【答案】B 【解析】 试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 考点:平均耗油量.8.(2015福建文)若函数()2() x afx a R-=∈满足(1)(1)f x f x+=-,且()f x在[,)m+∞单调递增,则实数m的最小值等于_______.【答案】1【解析】试题分析:由(1)(1)f x f x+=-得函数()f x关于1x=对称,故1a=,则1()2xf x-=,由复合函数单调性得()f x在[1,)+∞递增,故1m≥,所以实数m的最小值等于1.考点:函数的图象与性质.9.(2015福建理)若函数()6,2,3log,2,ax xf xx x-+≤⎧=⎨+>⎩(0a>且1a≠)的值域是[)4,+∞,则实数a的取值范围是.【答案】(1,2]考点:分段函数求值域.10.(2015湖北文)a为实数,函数2()||f x x ax=-在区间[0,1]上的最大值记为()g a. 当a=_________时,()g a的值最小.【答案】222-.【考点定位】本题考查分段函数的最值问题和函数在区间上的最值问题,属高档题.【名师点睛】将含绝对值的二次函数在区间上的最值问题和分段函数的最值问题融合在一起,运用分类讨论的思想将含绝对值问题转化为分段函数的问题,充分体现了分类讨论和化归转化的数学思想,能较好的考查知识综合能力.其解题的关键是运用分类讨论求出()g a的表达式和分段函数在区间上的最值求法.11、(2015湖南文)若函数f (x )=| 2x -2 |-b 有两个零点,则实数b 的取值范围是_____. 【答案】0<b <2考点:函数零点12.(2015湖南理)已知32,(),x x af x x x a ⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是 .【答案】),1()0,(+∞-∞Y .【考点定位】1.函数与方程;2.分类讨论的数学思想.【名师点睛】本题主要考查了函数的零点,函数与方程等知识点,属于较难题,表面上是函数的零点问题,实际上是将问题等价转化为不等式组有解的问题,结合函数与方程思想和转化思想求解函数综合问题,将函数的零点问题巧妙的转化为不等式组有解的参数,从而得到关于参数a 的不等式,此题是创新题,区别于其他函数与方程问题数形结合转化为函数图象交点的解法,从另一个层面将问题进行转化,综合考查学生的逻辑推理能力.13. (2015江苏)不等式224x x-<的解集为________. 【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式14. (2015江苏)已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4考点:函数与方程15. (2015山东理)已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b += .【答案】32-【考点定位】指数函数的性质.【名师点睛】本题考查了函数的有关概念与性质,重点考查学生对指数函数的性质的理解与应用,利用方程的思想解决参数的取值问题,注意分类讨论思想方法的应用.16. (2015上海文)设)(1x f -为12)(+=x x x f 的反函数,则=-)2(1f . 【答案】32-17、(2015上海文、理)方程()()1122log 95log 322x x ---=-+的解为 . 【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=->21430,5333112x t t t t x x -⇒-+=>⇒=⇒=⇒-=⇒= 【考点定位】解指对数不等式【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.18、(2015上海理)设()1f x -为()222x x f x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】419. (2015四川理)某食品的保鲜时间y (单位:小时)与储存温度x (单位:C ο)满足函数关系b kx ey +=(Λ718.2=e 为自然对数的底数,k 、b 为常数)。
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由. 【解析】(1)对32()2f x x ax b =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;当0a =时,(,)-¥+¥区间上单调递增;当0a >时,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a+¥区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以,若0a <,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;此时在区间[0,1]上单调递增,所以(0)1f =-,(1)1f =代入解得1b =-,0a =,与0a <矛盾,所以0a <不成立. 若0a =,(,)-¥+¥区间上单调递增;在区间[0,1].所以(0)1f =-,(1)1f =代入解得1a b =ìí=-î. 若02a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af 而(0),(1)2(0)f b f a b f ==-+³,故所以区间[0,1]上最大值为(1)f . 即322()()13321a a ab a b ì-+=-ïíï-+=î相减得32227a a -+=,即(33)(33)0a a a -+=,又因为02a <£,所以无解. 若23a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af而(0),(1)2(0)f b f a b f ==-+£,故所以区间[0,1]上最大值为(0)f . 即322()()1331a a a b b ì-+=-ïíï=î相减得3227a=,解得332x =,又因为23a <£,所以无解. 若3a >,(,0)-¥区间上单调递增,(0,)3a区间上单调递减,(,)3a+¥区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =ìí-+=-î解得41a b =ìí=î.综上得01a b =ìí=-î或41a b =ìí=î. 【小结】这是一道常规的利用函数导研究函数单调性、极值、【小结】这是一道常规的利用函数导研究函数单调性、极值、最值问题,最值问题,最值问题,此类问题一般住现此类问题一般住现在第一问,在第一问,但但2019年高考3卷把该题放到第20题位置,难度也相应降低,因此,该题的第二问仍然这类问题,只不过多出一个参数。
一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。
2015年高考数学真题分类汇编 专题02 函数 文1.【2015高考湖北,文6】函数256()4||lg 3x x f x x x -+=-+-的定义域为( ) A .(2,3)B .(2,4]C .(2,3)(3,4]UD .(1,3)(3,6]-U【答案】C .【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4]U ,故应选C .【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.2.【2015高考浙江,文5】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .【答案】D【解析】因为11()()cos ()cos ()f x x x x x f x x x -=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D. 【考点定位】1.函数的基本性质;2.函数的图象.【名师点睛】本题主要考查函数的基本性质以及函数的图象.解答本题时要根据给定函数的解析式并根据给出的图象选项情况确定函数的基本性质,利用排除法确定正确的图象.本题属于容易题.3.【2015高考重庆,文3】函数22(x)log (x 2x 3)f =+-的定义域是( )(A) [3,1]- (B) (3,1)-(C) (,3][1,)-∞-+∞U (D) (,3)(1,)-∞-+∞U【答案】D【解析】由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ,故选D.【考点定位】函数的定义域与二次不等式.【名师点睛】本题考查对数函数的定义域与一元二次不等式式的解法,由对数的真数大于零得不等式求解.本题属于基础题,注意不等式只能是大于零不能等于零.4.【2015高考四川,文5】下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π)(C )y =sin 2x +cos 2x (D )y =sinx +cosx【答案】B【解析】A 、B 、C 的周期都是π,D 的周期是2π但A 中,y =cos 2x 是偶函数,C 中y sin (2x +4π)是非奇非偶函数 故正确答案为B【考点定位】本题考查三角函数的基本概念和性质,考查函数的周期性和奇偶性,考查简单的三角函数恒等变形能力.【名师点睛】讨论函数性质时,应该先注意定义域,在不改变定义域的前提下,将函数化简整理为标准形式,然后结合图象进行判断.本题中,C 、D 两个选项需要先利用辅助角公式整理,再结合三角函数的周期性和奇偶性(对称性)进行判断即可.属于中档题.5.【2015高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时【答案】C【解析】由题意,2219248bk b e e +⎧=⎪⎨=⎪⎩得1119212b k e e ⎧=⎪⎨=⎪⎩,于是当x =33时,y =e 33k +b =(e 11k )3·e b =31()2×192=24(小时)【考点定位】本题考查指数函数的概念及其性质,考查函数模型在现实生活中的应用,考查整体思想,考查学生应用函数思想解决实际问题的能力.【名师点睛】指数函数是现实生活中最常容易遇到的一种函数模型,如人口增长率、银行储蓄等等,与人们生活密切相关.本题已经建立好了函数模型,只需要考生将已知的两组数据代入,即可求出其中的待定常数.但本题需要注意的是:并不需要得到k 和b 的准确值,而只需求出e b 和e 11k,然后整体代入后面的算式,即可得到结论,否则将增加运算量.属于中档题. 6.【2015高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14- 【答案】A【解析】∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立,当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 考点:分段函数求值;指数函数与对数函数图像与性质【名师点睛】对分段函数求值问题,先根据题中条件确定自变量的范围,确定代入得函数解析式,再代入求解,若不能确定,则需要分类讨论;若是已知函数值求自变量,先根据函数值确定自变量所在的区间,若不能确定,则分类讨论,化为混合组求解. 7.【2015高考天津,文8】已知函数22||,2()(2),2x x f x x x ì-?ï=í->ïî,函数()3(2)g x f x =--,则函数y ()()f x g x =-的零点的个数为( )(A) 2 (B) 3 (C)4 (D)5【答案】A【考点定位】本题主要考查分段函数、函数零点及学生分析问题解决问题的能力.【名师点睛】本题解法采用了直接解方程求零点的方法,这种方法对运算能力要求较高.含有绝对值的分段函数问题,一直是天津高考数学试卷中的热点,这类问题大多要用到数形结合思想与分类讨论思想,注意在分类时要做到:互斥、无漏、最简.8.【2015高考天津,文7】 已知定义在R 上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a <<【答案】B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-= ,所以b c a <<,故选B.【考点定位】本题主要考查函数奇偶性及对数运算.【名师点睛】函数是高考中的重点与热点,客观题中也会出现较难的题,解决此类问题要充分利用相关结论.函数()0,1x m y a b a a -=+>≠的图像关于直线x m = 对称,本题中求m 的值,用到了这一结论,本题中用到的另一个结论是对数恒等式:()log 0,1,0a N a N a a N =>≠>.9.【2015高考陕西,文9】 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数【答案】B【解析】()sin ()()sin()sin (sin )()f x x x f x x x x x x x f x =-⇒-=---=-+=--=-, 又()f x 的定义域为R 是关于原点对称,所以()f x 是奇函数;()1cos 0()f x x f x '=-≥⇒是增函数.故答案选B【考点定位】函数的性质.【名师点睛】1.本题考查函数的性质,判断函数的奇偶性时,应先判断函数定义域是否关于原点对称,然后再判断()f x 和()f x -的关系,函数的单调性可以通过导函数判断.2.本题属于基础题,注意运算的准确性.10.【2015高考陕西,文4】设10()2,0x x f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C【解析】因为21(2)24f --==,所以111((2))()11422f f f -===-=,故答案选C 【考点定位】1.分段函数;2.复合函数求值.【名师点睛】1.本题考查分段函数和复合函数求值,此题需要先求(2)f -的值,继而去求((2))f f -的值;2.若求函数[()]f f a 的值,需要先求()f a 的值,再去求[()]f f a 的值;若是解方程[()]f f x a =的根,则需先令()f x t =,即()f t a =,再解方程()f t a =求出t 的值,最后在解方程()f x t =;3.本题属于基础题,注意运算的准确性.11.【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【答案】C【解析】设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.考点:函数对称;对数的定义与运算【名师点睛】对已知两个函数的关系及其中一个函数关系式解另一个函数问题,常用相关点转移法求解,即再所求函数上任取一点,根据题中条件找出该点的相关点,代入已知函数解析式,即可得出所求函数的解析式.12.【2015高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )() (B)() (C )0,1() (D )1,+∞()【答案】C 【解析】由题意()()f x f x =--,即2121,22x x x x a a--++=---所以,(1)(21)0,1x a a -+==,21(),21x x f x +=-由21()321x x f x +=>-得,122,01,x x <<<<故选C . 【考点定位】1.函数的奇偶性;2.指数运算.【名师点睛】本题考查函数的奇偶性及指数函数的性质,解答本题的关键,是利用函数的奇偶性,确定得到a 的取值,并进一步利用指数函数的单调性,求得x 的取值范围.本题属于小综合题,在考查函数的奇偶性、指数函数的性质等基础知识的同时,较好地考查了考生的运算能力.13.【2015高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c << (B ) a c b << (C )b a c << (D )b c a <<【答案】C【解析】由0.6x y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .【考点定位】1.指数函数的性质;2.函数值比较大小.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.14.【2015高考四川,文15】已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n .其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为f '(x )=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g '(x )=2x -8,当x 1,x 2<4时n <0,②错误对于③,令f '(x )=g '(x ),即2x ln 2=2x +a记h (x )=2x ln 2-2x ,则h '(x )=2x (ln 2)2-2存在x 0∈(0,1),使得h (x 0)=0,可知函数h (x )先减后增,有最小值.因此,对任意的a ,m =n 不一定成立.③错误对于④,由f '(x )=-g '(x ),即2x ln 2=-2x -a令h (x )=2x ln 2+2x ,则h '(x )=2x (ln 2)2+2>0恒成立,即h (x )是单调递增函数,当x →+∞时,h (x )→+∞当x →-∞时,h (x )→-∞因此对任意的a ,存在y =a 与函数h (x )有交点.④正确【考点定位】本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【名师点睛】本题首先要正确认识m ,n 的几何意义,它们分别是两个函数图象的某条弦的斜率,因此,借助导数研究两个函数的切线变化规律是本题的常规方法,解析中要注意“任意不相等的实数x 1,x 2”与切线斜率的关系与差别,以及“都有”与“存在”的区别,避免过失性失误.属于较难题.15.【2015高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =-C .122x x y =+D .sin 2y x x =+【答案】A【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.16.【2015高考山东,文10】设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)12【答案】D 【解析】由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D . 【考点定位】1.分段函数;2.函数与方程.【名师点睛】本题考查了分段函数及函数方程思想,解答本题的关键,是理解分段函数的概念,明确函数值计算层次,准确地加以计算.本题属于小综合题,在考查分段函数及函数方程思想的同时,较好地考查了考生的运算能力及分类讨论思想.17.【2015高考北京,文3】下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2xy -=【答案】B【解析】根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B.【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.18.【2015高考湖北,文7】设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩ 则( ) A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =【答案】D . 【解析】对于选项A ,右边,0|sgn |0,0x x x x x ≠⎧==⎨=⎩,而左边,0||,0x x x x x ≥⎧==⎨-<⎩,显然不正确;对于选项B ,右边,0sgn 0,0x x x x x ≠⎧==⎨=⎩,而左边,0||,0x x x x x ≥⎧==⎨-<⎩,显然不正确;对于选项C ,右边,0sgn 0,0,0x x x x x x x >⎧⎪===⎨⎪<⎩,而左边,0||,0x x x x x ≥⎧==⎨-<⎩,显然不正确;对于选项D ,右边,0sgn 0,0,0x x x x x x x >⎧⎪===⎨⎪-<⎩,而左边,0||,0x x x x x ≥⎧==⎨-<⎩,显然正确;故应选D .【考点定位】本题考查分段函数及其表示法,涉及新定义,属能力题.【名师点睛】以新定义为背景,重点考查分段函数及其表示,其解题的关键是准确理解题意所给的新定义,并结合分段函数的表示准确表达所给的函数.不仅新颖别致,而且能综合考察学生信息获取能力以及知识运用能力.19.【2015高考陕西,文10】设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =< D .p r q => 【答案】C【解析】1ln ln 2p f ab ===;()ln 22a b a b q f ++==;11(()())ln 22r f a f b ab =+=因为2a b +>,由()ln f x x =是个递增函数,()2a b f f +> 所以q p r >=,故答案选C【考点定位】函数单调性的应用.【名师点睛】1.本题考查函数单调性,因为函数()ln f x x =是个递增函数,所以只需判断2a b + 2.本题属于中档题,注意运算的准确性. 20.【2015高考福建,文3】下列函数为奇函数的是( )A .y =B .x y e =C .cos y x =D .x x y e e -=- 【答案】D【解析】函数y =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .【考点定位】函数的奇偶性.【名师点睛】本题考查函数的奇偶性,除了要掌握奇偶性定义外,还要深刻理解其定义域特征即定义域关于原点对称,否则即使满足定义,但是不具有奇偶性,属于基础题.21.【2015高考安徽,文4】下列函数中,既是偶函数又存在零点的是( )(A )y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx【答案】D【解析】选项A :x y ln =的定义域为(0,+∞),故x y ln =不具备奇偶性,故A 错误;选项B :12+=x y 是偶函数,但012=+=x y 无解,即不存在零点,故B 错误; 选项C :x y sin =是奇函数,故C 错; 选项D :x y cos =是偶函数, 且0cos ==x y ππk x +=⇒2,z k ∈,故D 项正确.【考点定位】本题主要考查函数的奇偶性和零点的概念.【名师点睛】在判断函数的奇偶性时,首先要判断函数的定义域是否关于原点对称,然后再判断)(x f 与)(x f -的关系;在判断函数零点时,可分两种情况:①函数图象与x 轴是否有交点;②令0)(=x f 是否有解;本题考查考生的综合分析能力.22.【2015高考安徽,文10】函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A )a >0,b <0,c >0,d >0 (B )a >0,b <0,c <0,d >0 (C )a <0,b <0,c <0,d >0 (D )a >0,b >0,c >0,d <0 【答案】A【解析】由函数)(x f 的图象可知0>a ,令0=x ⇒0>d 又c bx ax x f ++='23)(2,可知21,x x 是0)(='x f 的两根 由图可知0,021>>x x∴⎪⎪⎩⎪⎪⎨⎧>=>-=+030322121a c x x a b x x ⇒⎩⎨⎧<<00c b ;故A 正确. 【考点定位】本题主要考查函数的图象和利用函数图象研究函数的性质.【名师点睛】本题主要是考查考生利用函数图象研究函数的性质,在研究函数的性质时要结合函数的单调性、奇偶性、零点、以及极值等函数的特征去研究,本题考查了考生的数形结合能力.23.【2015高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】162--【解析】2(2)(2)4f -=-=,所以()612(4)4642f f f -==+-=-⎡⎤⎣⎦.当1x ≤时,()1f x ≥;当1x >时,()6f x ≥-,当6,x x x==时取到等号.因为61<,所以函数的最小值为6-.【考点定位】1.分段函数求值;2.分段函数求最值.【名师点睛】本题主要考查分段函数以及函数求最值能力.通过分布计算的方法,求得复合函数值,根据分段函数的性质,分别求最值.本题属于容易题,主要考查学生基本的运算能力. 24.【2015高考浙江,文9】计算:2log = ,24log 3log 32+= .【答案】12-【解析】12221log log 22-==-;2424log 3log 3log 3log 32223+=⨯==. 【考点定位】对数运算【名师点睛】本题主要考查对数的运算.主要考查学生利用对数的基本运算法则,正确计算的对数值.本题属于容易题,重点考查学生正确运算的能力. 25.【2015高考四川,文12】lg 0.01+log 216=_____________. 【答案】2【解析】lg 0.01+log 216=-2+4=2【考点定位】本题考查对数的概念、对数运算的基础知识,考查基本运算能力.【名师点睛】对数的运算通常与指数运算相对应,即“若a b=N ,则log a N =b ”,因此,要求log a N 的值,只需看a 的多少次方等于N 即可,由此可得结论.当然本题中还要注意的是:两个对数的底数是不相同的,对数符号的写法也有差异,要细心观察,避免过失性失误.属于简单题.26.【2015高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.【答案】2-.【解析】因为函数2()||f x x ax =-,所以分以下几种情况对其进行讨论:①当0a ≤时,函数22()||f x x ax x ax =-=-在区间[0,1]上单调递增,所以max ()(a)1f x g a ==-;②当02a <<时,此时22()|()|2224a a a a f a =-⨯=,(1)1f a =-,而22(2)(1)2044a a a +--=-<,所以max ()(a)1f x g a ==-;③当21a -≤<时,22()||f x x ax x ax =-=-+在区间(0,)2a 上递增,在(,1)2a 上递减.当2ax =时,()f x 取得最大值2()24a a f =;④当2a ≥时,22()||f x x ax x ax =-=-+在区间[0,1]上递增,当1x =时,()f x 取得最大值(1)1f a =-,则21,2()2241,2a a ag a a a a ⎧-<⎪⎪=-≤<⎨⎪-≥⎪⎩在(2)-∞-上递减,2,)-+∞上递增,即当2a =-时,()g a 的值最小.故应填2-.【考点定位】本题考查分段函数的最值问题和函数在区间上的最值问题,属高档题. 【名师点睛】将含绝对值的二次函数在区间上的最值问题和分段函数的最值问题融合在一起,运用分类讨论的思想将含绝对值问题转化为分段函数的问题,充分体现了分类讨论和化归转化的数学思想,能较好的考查知识综合能力.其解题的关键是运用分类讨论求出()g a 的表达式和分段函数在区间上的最值求法.27.【2015高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____.【答案】02b <<【解析】由函数()|22|xf x b =--有两个零点,可得|22|xb -=有两个不等的根,从而可得函数|22|xy =-函数y b =的图象有两个交点,结合函数的图象可得,02b <<,故答案为:02b <<.【考点定位】函数零点【名师点睛】已知函数有零点(方程有根)求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.28.【2015高考福建,文15】若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1【解析】由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 【考点定位】函数的图象与性质.【名师点睛】本题考查函数的图象和性质,由已知条件确定()f x 的解析式,确定递增区间,进而确定参数取值范围,注意函数的单调递增区间是D 和函数在区间D 上递增是不同的概念,其中“单调递增区间是D ”反映了函数本身的属性,而“函数在区间D 上递增”反映函数的局部性质.29.【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【解析】函数2π()2sin sin()2f x x x x =+-的零点个数等价于方程2π2sin sin()02x x x +-=的根的个数,即函数π()2sin sin()2sinxcosx sin 2x 2g x x x =+==与2h(x)x =的图像交点个数.于是,分别画出其函数图像如下图所示,由图可知,函数()g x 与h(x)的图像有2个交点.【考点定位】本题考查函数与方程,涉及常见函数图像绘画问题,属中档题.【名师点睛】将函数的零点问题和方程根的问题、函数的交点问题联系在一起,凸显了数学学科内知识间的内在联系,充分体现了转化化归的数学思想在实际问题中的应用,能较好的考查学生准确绘制函数图像的能力和灵活运用基础知识解决实际问题的能力. 30.【2015高考安徽,文11】=-+-1)21(2lg 225lg . 【答案】-1【解析】原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+- 【考点定位】本题主要考查对数运算公式和指数幂运算公式.【名师点睛】本题主要考查考生的基本运算能力,熟练掌握对数运算公式和指数幂运算公式是解决本题的关键.31.【2015高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 .2【解析】在同一直角坐标系内,作出12--==a x y a y 与的大致图像,如下图:由题意,可知2112-=⇒-=a a 【考点定位】本题主要靠数形结合思想,函数与方程、零点等基础知识.【名师点睛】本题根据题意作出函数1--=a x y 的大致图象是解决本题的关键,本题主要考查学生的数形结合的能力. 【2015高考上海,文8】方程2)23(log )59(log 1212+-=---x x 的解为 .【答案】2【解析】依题意)834(log )59(log 1212-⋅=---x x ,所以8345911-⋅=---x x ,令)0(31>=-t t x ,所以0342=+-t t ,解得1=t 或3=t ,当1=t 时,131=-x ,所以1=x ,而05911<--,所以1=x 不合题意,舍去;当3=t 时,331=-x ,所以2=x ,045912>=--,012312>=--,所以2=x 满足条件, 所以2=x 是原方程的解. 【考点定位】对数方程.【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零. 【2015高考上海,文4】.设)(1x f-为12)(+=x x x f 的反函数,则=-)2(1f .3【解析】因为)(1x f -为12)(+=x x x f 的反函数,212=+x x ,解得32-=x ,所以32)2(1-=-f .【考点定位】反函数,函数的值.【名师点睛】点),(b a 在原函数的图象上,在点),(a b 必在反函数的图象上.两个函数互为反函数,则图象关于直线x y =对称.32.【2015高考北京,文10】32-,123,2log 5三个数中最大数的是 . 【答案】2log 5【解析】31218-=<,1231=>,22log 5log 42>>>2log 5最大.【考点定位】比较大小.【名师点晴】本题主要考查的是比较大小,属于容易题.解题时一定要注意重要字眼“最大数”,否则很容易出现错误.函数值的比较大小,通过与1-,0,1的比较大小,利用基本初等函数的单调性即可比较大小.33.【2015高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分.已知函数xax x f 1)(2+=,其中a 为实数.(1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增. 【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数. (2)设]2,1[22∈<∀x x ,则]1)()[())(()()(2121212112212121x x x x a x x x x x x x x x x a x f x f -+-=-++-=- 因为]2,1[21∈<x x ,所以021<-x x ,4221<+<x x ,4121<<x x , 所以12)(221<+<x x a ,114121<<x x , 所以01)(2121>-+x x x x a , 所以0)()(21<-x f x f ,即)()(21x f x f <, 故函数)(x f 在]2,1[上单调递增. 【考点定位】函数的奇偶性、单调性. 【名师点睛】函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.34.【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分. 如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米. 【解析】(1)h v AC t 831==乙,设此时甲运动到点P ,则8151==t v AP 甲千米,所以=⋅⋅-+==A AP AC AP AC PC t f cos 2)(22184135381532)815(322=⨯⨯⨯-+=千米.(2)当871≤≤t t 时,乙在CB 上的Q 点,设甲在P 点, 所以t t CB AC QB 878-=-+=,t AP AB PB 55-=-=, 所以B PB QB PB QB PQ t f cos 2)(22⋅⋅-+== 18422554)55)(87(2)55()87(222+-=⨯----+-=t t t t t t , 当187≤<t 时,乙在B 点不动,设此时甲在P 点, 所以t AP AB PB t f 55)(-=-==.所以⎪⎪⎩⎪⎪⎨⎧≤<-≤≤+-=187,558783,184225)(2t t t t t t f .所以当183≤≤t 时,]8413,0[)(∈t f ,故)(t f 的最大值超过了3千米. 【考点定位】余弦定理的实际运用,函数的值域.【名师点睛】分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题,分段函数的值域,先求各段函数的值域,再求并集.。
函数与方程训练题(含解析2015高考数学一轮)函数与方程训练题(含解析2015高考数学一轮)A组基础演练1.设f(x)=x3+bx+c是-1,1]上的增函数,且f(-12)•f(12)<0,则方程f(x)=0在-1,1]内()A.可能有3个实数根B.可能有2个实数根C.有唯一的实数根D.没有实数根解析:由f-12•f12<0得f(x)在-12,12内有零点,又f(x)在-1,1]上为增函数,∴f(x)在-1,1]上只有一个零点,即方程f(x)=0在-1,1]上有唯一的实根.答案:C2.(2014•长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:x123456f(x)136.1315.552-3.9210.88-52.488-232.064则函数f(x)存在零点的区间有()A.区间1,2]和2,3]B.区间2,3]和3,4]C.区间2,3]、3,4]和4,5]D.区间3,4]、4,5]和5,6]解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,∴f(x)在区间2,3],3,4],4,5]上都存在零点.答案:C3.若a>1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是()A.(3.5,+∞)B.(1,+∞)C.(4,+∞)D.(4.5,+∞)解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x +4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y =xy=-x+4,解得x=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm≥4,又n≠m,故(n+m)1n+1m>4,则1n+1m>1.答案:B4.(2014•昌平模拟)已知函数f(x)=lnx,则函数g(x)=f(x)-f′(x)的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:函数f(x)的导数为f′(x)=1x,所以g(x)=f(x)-f′(x)=lnx-1x.因为g(1)=ln1-1=-1<0,g(2)=ln2-12>0,所以函数g(x)=f(x)-f′(x)的零点所在的区间为(1,2).故选B.答案:B5.已知函数f(x)=2x-1,x>0,-x2-2x,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m的取值范围是________.解析:画出f(x)=2x-1,x>0,-x2-2x,x≤0,的图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0<m<1,即m∈(0,1).答案:(0,1)6.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2014x+log2014x 则在R上,函数f(x)零点的个数为________.解析:函数f(x)为R上的奇函数,因此f(0)=0,当x>0时,f(x)=2014x +log2014x在区间0,12014内存在一个零点,又f(x)为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数在R上的零点的个数为3.答案:37.已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________.解析:令x+2x=0,即2x=-x,设y=2x,y=-x;令x+lnx=0,即lnx=-x,设y=lnx,y=-x.在同一坐标系内画出y=2x,y=lnx,y=-x,如图:x1<0<x2<1,令x-x-1=0,则(x)2-x-1=0,∴x=1+52,即x3=3+52>1,所以x1<x2<x3答案:x1<x2<x38.若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的取值范围.解:(1)当a=0时,函数f(x)=-x-1为一次函数,则-1是函数的零点,即函数仅有一个零点.(2)当a≠0时,函数f(x)=ax2-x-1为二次函数,并且仅有一个零点,则一元二次方程ax2-x-1=0有两个相等实根.则Δ=1+4a=0,解得a=-14.综上,当a=0或a=-14时,函数仅有一个零点.9.关于x的二次方程x2+(m-1)x+1=0在区间0,2]上有解,求实数m的取值范围.解:设f(x)=x2+(m-1)x+1,x∈0,2],①若f(x)=0在区间0,2]上有一解,∵f(0)=1>0,则应用f(2)<0,又∵f(2)=22+(m-1)×2+1,∴m<-32.②若f(x)=0在区间0,2]上有两解,则Δ≥0,0<-m-12<2,,∴--4≥0,-3<m<1,4+-+1≥0.∴m≥3或m≤-1,-3<m<1,m≥-32∴-32≤m≤-1.由①②可知m的取值范围(-∞,-1].B组能力突破1.函数f(x)=x-cosx在0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析:在同一直角坐标系中分别作出函数y=x和y=cosx的图象,如图,由于x>1时,y=x>1,y=cosx≤1,所以两图象只有一个交点,即方程x-cosx=0在0,+∞)内只有一个根,所以f(x)=x-cosx在0,+∞)内只有一个零点,所以选B.答案:B2.(2014•吉林白山二模)已知函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,则m的取值范围是()A.-38,18B.-38,18C.-38,18D.-18,38解析:当m=0时,函数f(x)=-x-1有一个零点x=-1,满足条件.当m≠0时,函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,需满足①f(-2)•f(2)<0,或-=0,-2<14m<0,或=0,0<14m<2.解①得-18<m<0或0<m<38;解②得m∈∅,解③得m=38.综上可知-18<m≤38,故选D.答案:D3.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈0,1]时,f(x)=x,若在区间-1,3]上函数g(x)=f(x)-kx-k有4个零点,则实数k 的取值范围是________.解析:由f(x+1)=f(x-1)得,f(x+2)=f(x),则f(x)是周期为2的函数.∵f(x)是偶函数,当x∈0,1]时,f(x)=x,∴当x∈-1,0]时,f(x)=-x,易得当x∈1,2]时,f(x)=-x+2,当x∈2,3]时,f(x)=x-2.在区间-1,3]上函数g(x)=f(x)-kx-k有4个零点,即函数y=f(x)与y =kx+k的图象在区间-1,3]上有4个不同的交点.作出函数y=f(x)与y=kx+k的图象如图所示,结合图形易知k∈,14].答案:,14]4.(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.解:(1)①函数f(x)有且仅有一个零点⇔方程f(x)=0有两个相等实根⇔Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1.②设f(x)有两个零点分别为x1,x2,则x1+x2=-2m,x1•x2=3m+4.由题意,有Δ=4m2-+>++>0⇔+++>0m2-3m-4>03m+4-2m+1>0-2m+2>0⇔m>4或m<-1,m>-5,m<1,∴-5<m<-1.故m的取值范围为(-5,-1).(2)令f(x)=0,得|4x-x2|+a=0,即|4x-x2|=-a.令g(x)=|4x-x2|,h(x)=-a.作出g(x)、h(x)的图象.由图象可知,当0<-a<4,即-4<a<0时,g(x)与h(x)的图象有4个交点,即f(x)有4个零点.故a的取值范围为(-4,0).。
2015年普通高等学校招生全国统一考试课标全国Ⅰ理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,理1)设复数z满足1+z=i,则|z|=()A.1B.2C.3D.2答案:A解析:∵1+z=i,∴z=i−1=(i−1)(−i+1)=i,∴|z|=1.2.(2015课标全国Ⅰ,理2)sin 20°cos 10°-cos 160°sin 10°=()A.-32B.32C.-12D.12答案:D解析:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(10°+20°)=sin30°=12.3.(2015课标全国Ⅰ,理3)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案:C解析:∵p:∃n∈N,n2>2n,∴p:∀n∈N,n2≤2n.故选C.4.(2015课标全国Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案:A解析:由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C320.62(1-0.6)+C330.63=0.648.5.(2015课标全国Ⅰ,理5)已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A. −3,3B. −3,3C. −22,22D. −23,23答案:A解析:由条件知F1(-3,0),F2(3,0),∴MF1=(-3-x0,-y0),MF2=(3-x0,-y0),∴MF1·MF2=x02+y02-3<0.①又∵x022−y02=1,∴x02=2y02+2.代入①得y02<13,∴-3<y0<3. 6.(2015课标全国Ⅰ,理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 答案:B解析:设底面圆半径为R ,米堆高为h.∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=1×1·πR 2h=1×π× 16 2×5.∵π≈3,∴V ≈3209(尺3). ∴堆放的米约为3209×1.62≈22(斛).7.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,BC =3CD ,则( )A .AD =-1AB +4AC B .AD =1AB −4AC C .AD =43AB +13AC D .AD=43AB −13AC 答案:A解析:如图:∵AD =AB +BD,BC =3CD , ∴AD =AB +43BC =AB +43(AC −AB )=-13AB +43AC. 8.(2015课标全国Ⅰ,理8)函数f (x )=cos(ωx+φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A . kπ−1,kπ+3 ,k ∈Z B . 2kπ−1,2kπ+3 ,k ∈Z C . k −14,k +34 ,k ∈Z D . 2k −1,2k +3 ,k ∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2× 54−14=2,所以2πω=2,解得ω=π. 所以f (x )=cos(πx+φ).由图像可知,当x=12 14+54=34时,f (x )取得最小值,即f 3 =cos3π+φ =-1,解得3π4+φ=2k π+π(k ∈Z ),解得φ=2k π+π4(k ∈Z ).令k=0,得φ=π,所以f (x )=cos πx +π.令2k π≤πx+π≤2k π+π(k ∈Z ),解得2k-14≤x ≤2k+34(k ∈Z ).所以函数f (x )=cos πx +π4的单调递减区间为 2k−14,2k +34(k ∈Z ).结合选项知应选D .9.(2015课标全国Ⅰ,理9)执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8答案:C解析:∵S=1,n=0,m=1,t=0.01,∴S=S-m=12,m=m 2=14,n=n+1=1,S>0.01,∴S=14,m=18,n=2,S>0.01,∴S=1,m=1,n=3,S>0.01,∴S=1,m=1,n=4,S>0.01,∴S=132,m=164,n=5,S>0.01,∴S=1,m=1,n=6,S>0.01,∴S=1,m=1,n=7,S<0.01,∴n=7.10.(2015课标全国Ⅰ,理10)(x 2+x+y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案:C解析:由于(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5r (x 2+x )5-r y r (r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3i (x 2)3-i ·x i =C 3i x 6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30. 11.(2015课标全国Ⅰ,理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,理12)设函数f (x )=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A. −32e ,1B. −32e,34C.32e ,34D.32e,1答案:D解析:设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-12时,g'(x)<0,函数g(x)单调递减;当x>-12时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g −1.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图像.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图像与y轴的交点为A(0,-1),与x轴的交点为D1,0.取点C −1,−3e.由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=0−−3e=3,k PA=0−(−1)=1,所以32e ≤a<1.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,理13)若函数f(x)=x ln(x+ a+x2)为偶函数,则a=.答案:1解析:∵f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+a+1)=ln a+1+1a,f(1)=ln(1+a+1),因此ln(a+1+1)-ln a=ln(a+1+1),于是ln a=0,∴a=1.14.(2015课标全国Ⅰ,理14)一个圆经过椭圆x 2+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案: x−32+y2=25解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以(a−0)2+(0−2)2=4-a,解得a=32,故圆心为32,0,此时半径r=4-32=52,因此该圆的标准方程是 x−322+y2=254.15.(2015课标全国Ⅰ,理15)若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.答案:3解析:画出约束条件对应的平面区域(如图),点A为(1,3),要使y最大,则y−0最大,即过点(x,y),(0,0)两点的直线斜率最大,由图形知当该直线过点A时,yx max =3−01−0=3.16.(2015课标全国Ⅰ,理16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 答案:( 6− 2, 6+ 2) 解析:如图.作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB= − 延长CD 交BA 的延长线于F ,则∠F=30°. 在△BCF 中,由正弦定理得,BF= 6+ 2, 所以AB 的取值范围为( 6− 2, 6+ 2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,理17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a n 2+2a n =4S n +3,可知a n +12+2a n+1=4S n+1+3.可得a n +12−a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n +12−a n 2=(a n+1+a n )(a n+1-a n ). 由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1. 6分(2)由a n =2n+1可知b n =1n n +1=1=11−1.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12 13−15 + 15−17 +⋯+12n +1−12n +3=n . 12分18.(本小题满分12分)(2015课标全国Ⅰ,理18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. 解:(1)连结BD ,设BD ∩AC=G ,连结EG ,FG ,EF.在菱形ABCD 中,不妨设GB=1. 由∠ABC=120°,可得AG=GC=由BE ⊥平面ABCD ,AB=BC ,可知AE=EC. 又AE ⊥EC ,所以EG= 3,且EG ⊥AC. 在Rt △EBG 中,可得BE= 2,故DF= 2. 在Rt △FDG 中,可得FG= 62.在直角梯形BDFE 中,由BD=2,BE= 2,DF= 22,可得EF=3 22. 从而EG 2+FG 2=EF 2,所以EG ⊥FG. 又AC ∩FG=G ,可得EG ⊥平面AFC.因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC. 6分(2)如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴、y 轴正方向,|GB |为单位长,建立空间直角坐标系G-xyz.由(1)可得A (0,- E (1,0, F −1,0,2,C (0, 3,0),所以AE =(1, 3, 2),CF= −1,− 3, 2 . 10分故cos <AE ,CF >=AE ·CF|AE ||CF|=- 33. 所以直线AE 与直线CF 所成角的余弦值为 3.12分19.(本小题满分12分)(2015课标全国Ⅰ,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =18∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i −u )(v i −v )∑i =1n(u i −u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i −w )(y i −y )∑i =18(w i −w )2=108.81.6=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.12分20.(本小题满分12分)(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线C :y=x 24与直线l :y=kx+a (a>0)交于M ,N两点.(1)当k=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 解:(1)由题设可得M (2 a ,a ),N (-2 a ,a ),或M (-2 a ,a ),N (2 a ,a ).又y'=x 2,故y=x 24在x=2 a 处的导数值为 a ,C 在点(2 a ,a )处的切线方程为y-a= a (x-2 a ),即 a x-y-a=0. y=x 2在x=-2 a 处的导数值为- a ,C 在点(-2 a ,a )处的切线方程为y-a=- a (x+2 a ),即 a x+y+a=0. 故所求切线方程为 a x-y-a=0和 a x+y+a=0. 5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y=kx+a 代入C 的方程得x 2-4kx-4a=0. 故x 1+x 2=4k ,x 1x 2=-4a.从而k 1+k 2=y 1−b x 1+y 2−bx 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a.当b=-a 时,有k 1+k 2=0,则直线PM 的倾角与直线PN 的倾角互补,故∠OPM=∠OPN ,所以点P (0,-a )符合题意. 12分21.(本小题满分12分)(2015课标全国Ⅰ,理21)已知函数f (x )=x 3+ax+1,g (x )=-ln x.(1)当a 为何值时,x 轴为曲线y=f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x>0),讨论h (x )零点的个数. 解:(1)设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即 x 03+ax 0+1=0,3x 02+a =0.解得x 0=1,a=-3.因此,当a=-34时,x 轴为曲线y=f (x )的切线. 5分(2)当x ∈(1,+∞)时,g (x )=-ln x<0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)无零点. 当x=1时,若a ≥-54,则f (1)=a+54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x=1是h (x )的零点;若a<-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x=1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x>0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f'(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a+54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a<0,则f (x )在 0, −3单调递减,在 −3,1 单调递增,故在(0,1)中,当x= −3时,f (x )取得最小值,最小值为f −a =2a −a +1. ①若f −a >0,即-3<a<0,f (x )在(0,1)无零点; ②若f −a =0,即a=-3,则f (x )在(0,1)有唯一零点;③若f −3 <0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.10分综上,当a>-3或a<-5时,h (x )有一个零点;当a=-3或a=-5时,h (x )有两个零点;当-5<a<-3时,h (x )有三个零点. 12分请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)(2015课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=3CE,求∠ACB的大小.解:(1)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.5分(2)设CE=1,AE=x,由已知得AB=2,BE=2.由射影定理可得,AE2=CE·BE,所以x2=12−x2,即x4+x2-12=0.可得x=3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.5分(2)将θ=π4代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN|= 2.由于C2的半径为1,所以△C2MN的面积为1.10分24.(本小题满分10分)(2015课标全国Ⅰ,理24)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x2<x<2.5分(2)由题设可得,f(x)=x−1−2a,x<−1,3x+1−2a,−1≤x≤a,−x+1+2a,x>a.所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A2a−13,0,B(2a+1,0),C(a,a+1),△ABC的面积为2(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).10分。
形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是2015-2016高考数学函数与方程专题检测,请大家仔细进行检测。
一、选择题
1.(2013渭南模拟)设函数f(x)=x-lnx(x0),则y=f(x)()(A)在区间(e-1,1),(1,e)内均有零点
(B)在区间(e-1,1),(1,e)内均无零点(C)在区间(e-1,1)内有零点,在区间(1,e)内无零点(D)在区间(e-1,1)内无零点,在区间(1,e)内有零点 2.若f(x)=则函数g(x)=f(x)-x的零点为()(A)1+ (B)1-(C)1 (D)1或1+3.已知函数f(x)=x+2x,g(x)=x+lnx的零点分别为x1,x2,则x1,x2的大小关系是()(A)x1x2(C)x1=x2 (D)不能确定 4.(2013合肥模拟)已知符号函数sgn(x)=则函数f(x)=sgn(lnx)-lnx的零点个数为()(A)1(B)2(C)3(D)45.设x1,x2是方程ln|x-2|=m(m为实常数)的两根,则x1+x2的值为()(A)4 (B)2 (C)-4 (D)与m有关6.(2013延安模拟)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是关联函数,区间[a,b]称为关联区间.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是关联函数,则m的取值范围是()(A)(-,-2] (B)[-1,0](C)(-,-2] (D)(-,+)7.若函数y=()|1-x|+m的图像与x轴有公共点,则m的取值范围是()(A)m-1 (B)m1(C)-10 (D)0bc且f(1)=0,试证明f(x)必有两个零点.(2)若对x1,x2R,且x10,f(1)=0,f(e)=e-10,f(e-1)f(1)0,f(1)f(e)0,故选D.2.【解析】选D.g(x)=f(x)-x=当x2或x-1时,g(x)=x2-2x-1,令g(x)=0得x=1+,当-10恒成立,即对于任意bR,b2-4ab+4a0恒成立,所以有(-4a)2-4(4a)a2-a0,解之得0bc,a0,即ac0.又∵=b2-4ac0,方程ax2+bx+c=0有两个不等实根,函数f(x)必有两个零点.(2)令g(x)=f(x)-[f(x1)+f(x2)],则g(x1)=f(x1)-[f(x1)+f(x2)]=,g(x2)=f(x2)-[f(x1)+f(x2)]=.g(x1)g(x2)=[][]=-[f(x1)-f( x2)]2.∵f(x1)f(x2),g(x1)g(x2)0.g(x)=0在(x1,x2)内必有一实根.即f(x)=[f(x1)+f(x2)]必有一实根属于(x1,x2).14.【解析】(1)对于任意的aR(R为实数集),方程f(x)=1必有实数根是真命题.依题意:f(x)=1有实根,即x2+(2a-1)x-2a=0有实根,∵=(2a-1)2+8a=(2a+1)20对于任意的aR(R为实数集)恒成立,即x2+(2a-1)x-2a=0必有实数根,从而f(x)=1必有实数根.(2)依题意:要使y=f(x)在区间(-1,0)及(0,)内各有一个零点,只需即解得0),则t2+mt+1=0,当=0时,即m2-4=0,m=2或m=-2.又m=-2时,t=1,m=2时,t=-1(不合题意,舍去),2x=1,x=0符合题意.当0时,即m2或m-2时,t2+mt+1=0有两正或两负根,即f(x)有两个零点或没有零点,这种情况不符合题意.综上可知:m=-2时,f(x)有唯一零点,该零点为0.2015-2016高考数学函数与方程专题检测及答案的全部内容就是这些,查字典数学网希望对考生复习函数的知识有帮助。