八年级数学下册2.4一元一次不等式第1课时一元一次不等式的解法习题课件新版北师大版 (2)
- 格式:ppt
- 大小:1.30 MB
- 文档页数:17
2022-2023学年北师大版八年级数学下册《2.4一元一次不等式》知识点分类练习题(附答案)一.一元一次不等式的定义1.下列不等式中,是一元一次不等式的是()A.2x﹣1>0B.﹣1<2C.x﹣2y≤﹣1D.y2+3>52.在x>0,<﹣1,2x<﹣2+x,x+y≥﹣3,x+1=0,x2>3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个二.解一元一次不等式3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.24.若3a﹣22和2a﹣3是实数m的两个平方根,且t=,则不等式4(2x﹣t)﹣6(3x﹣t)≥5的解集为()A.x≤B.x≥C.x≤D.x≥5.不等式x﹣1<3x+3的解集在数轴上表示正确的是()A.B.C.D.6.如果关于x的方程=的解是非负数,那么a与b的关系是()A.a>b B.b≥a C.a≥b D.a=b7.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的取值范围为.8.已知点P(2,3﹣2x)在第四象限,则x的取值范围是.三.一元一次不等式的整数解9.不等式3x≤7+x的非负整数解有()A.1个B.2个C.3个D.4个10.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是()A.5≤m<8B.5<m<8C.5≤m≤8D.5<m≤8 11.不等式2x﹣1≤x+1的正整数解有()A.1个B.2个C.3个D.4个12.已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为()A.0<m<2B.0≤m<2C.0<m≤2D.0≤m≤2四.由实际问题抽象出一元一次不等式13.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小芳得分不低于80分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣2(20﹣x)≥80B.10x﹣(20﹣x)>80C.10x﹣5(20﹣x)≥80D.10x﹣5(20﹣x)>8014.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1080元,设x个月后小丽至少有1080元,则可列计算月数的不等式为()A.30x+750>1080B.30x﹣750≥1080C.30x﹣750≤1080D.30x+750≥108015.用不等式表示:x与5的差不大于x的2倍:.16.“x的2倍与5的和不大于4”,用不等式表示是()A.2x﹣5<4B.2x+5<4C.2x+5≤4D.2x﹣5≤4五.一元一次不等式的应用17.今年六一,小明在超市买一款心爱的玩具,付款时收银员说:玩具成本是80元,定价为120元,今天是儿童节打折优惠卖给小朋友,但利润率不能低于5%,则该玩具最多可以打()折.A.8.5B.8C.7.5D.718.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保证利润率不低于10%,则至多可以打几折()A.8折B.8.5折C.8.8折D.9折19.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.若有一个格点多边形的面积为9,则b的最大值为()A.17B.18C.19D.2020.某射击运动员在一次比赛中前6次射击共中55环,如果他要打破92环(10次射击)的纪录,第7次射击起码要超过()A.6环B.7环C.8环D.9环参考答案一.一元一次不等式的定义1.解:A、该不等式符合一元一次不等式的定义,故此选项符合题意;B、不含未知数,不是一元一次不等式,故此选项不符合题意;C、该不等式中含有2个未知数,不是一元一次不等式,故此选项不符合题意;D、未知数的次数是2,不是一元一次不等式,故此选项不符合题意;故选:A.2.解:是一元一次不等式的有:x>0,2x<﹣2+x共有2个.故选:B.二.解一元一次不等式3.解:解不等式≤﹣2得:x≥,∵不等式的解集为x≥4,∴=4,解得m=2,故选:D.4.解:由题意知3a﹣22+2a﹣3=0,解得a=5,则m=(3a﹣22)2=(15﹣22)2=(﹣7)2=49,∴t==7,则不等式为4(2x﹣7)﹣6(3x﹣7)≥5,∴8x﹣28﹣18x+42≥5,∴8x﹣18x≥5+28﹣42,∴﹣10x≥﹣9,∴x≤,故选:C.5.解:x﹣1<3x+3,x﹣3x<3+1,﹣2x<4,x>﹣2,在数轴上表示为:;故选:B.6.解:=,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x=,∵关于x的方程=的解是非负数,∴≥0,解得:a≥b,b≤a,故选:C.7.解:根据题意得4x﹣3(3﹣x)>0,去括号,得:4x﹣9+3x>0,移项、合并,得:7x>9,系数化为1,得:x>,故答案为:x>.8.解:∵点P(2,3﹣2x)在第四象限,∴3﹣2x<0,解得x.∴x的取值范围是x.故答案为:x.三.一元一次不等式的整数解9.解:解不等式3x≤7+x得,x≤3.5,∴不等式3x≤x+4的非负整数解是0,1,2,3,一共4个.故选:D.10.解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.11.解:移项得:2x﹣x≤1+1,合并同类项得:x≤2,∴不等式的正整数解是1、2.故选:B.12.解:由2x﹣m>4得x>,∵x=2不是不等式2x﹣m>4的整数解,∴≥2,解得m≥0;∵x=3是关于x的不等式2x﹣m>4的一个整数解,∴<3,解得m<2,∴m的取值范围为0≤m<2,故选:B.四.由实际问题抽象出一元一次不等式13.解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥80.故选:C.14.解:根据题意,得30x+750≥1080.故选:D.15.解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x16.解:“x的2倍与5的和不大于4”,用不等式表示是2x+5≤4,故选:C.五.一元一次不等式的应用17.解:设该玩具打x折销售,依题意得:120×﹣80≥80×5%,解得:x≥7,∴该玩具最多可以打7折.故选:D.18.解:设该商品打x折销售,依题意,得:500×﹣400≥400×10%,解得:x≥8.8.故选:C.19.解:∵格点多边形的面积为9,∴a+b﹣1=9,又∵a≥0,∴b﹣1≤9,∴b≤20,∴b的最大值为20.故选:D.20.解:设第7次射击为x环,∵射击环数最多为10环,∴第8次,第9次,第10次最多射中环数都是10环,∴55+(10﹣6﹣1)×10+x>92,解得x>7,即第7次射击起码要超过7环,故选:B.。