高二数学等差数列的前n项和4
- 格式:pdf
- 大小:1.78 MB
- 文档页数:21
4.2.2 等差数列的前n项和公式(精讲)考点一等差数列基本量计算【例1】(2021·全国高二课时练习)已知等差数列{a n }中, (1)131,22a d ==-,15n S =-,求n 及n a ;(2)115121022n n a ,a ,S ==-=-,求d . 【答案】(1)124n n ,a ==-;(2)171-.【解析】(1)∵()13115222n n n S n -⎛⎫=⨯+-⨯=- ⎪⎝⎭,整理得27600n n --=,解得12n =或5n =-(舍去), ()1231121422a ⎛⎫=+-⨯-=- ⎪⎝⎭.∵12124n n ,a a ===-.(2)由1()(1512)102222n n n a a n S +-===-,解得4n =. 又由()11n a a n d +-=,即()512141d -=+-,解得171d =-. 【一隅三反】1.(2021·全国高二课时练习)在等差数列{}n a 中. (1)156a =,32n a =-,5n S =-,求n 和d ; (2)14a =,8172S =,求8a 和d ;(3)已知2d =,11n a =,35n S =,求1a 和n . (4)已知742S =,510n S =,345n a -=,求n .【答案】(1)15n =,16d =-;(2)839a =,5d =;(3)153n a =⎧⎨=⎩或171n a =⎧⎨=-⎩;(4)20 .【解析】(1)由题意得()15352262n n n n S a a ⎛⎫=+=-=- ⎪⎝⎭,解得15n =, 又15531462a d =+=-,解得:16d =-;(2)由已知得()()818888417222S a a a =+=+=, 解得:839a =,又因为84739a d =+=,所以5d =;(3)由()()11121112352n n a a n n n S na ⎧=+-⨯=⎪⎨-=+⨯=⎪⎩,整理可得:212350n n -+=, 解得:153n a =⎧⎨=⎩或171n a =⎧⎨=-⎩;(4)()1747477274222a a a S a +⨯====,解得:46a =,所以()()()143645510222n n n n a a n a a n S -+++====, 解得:20n =.2.(2021·全国高二专题练习)已知等差数列{a n }中, (1)112a =,420S =,求6S ; (2)11a =,512n a =-,1022n S =-,求d . 【答案】(1)48;(2)-171.【解析】1)()140441242S a d -=+=,因为112a =,∵3d =.故()()16661661166348222S a d --=+=⨯+⨯=. (2)由()()151********n n n a a n S +-+===-,解得4n =,又由()11n a a n d +-=,即512141()d -=+-,解得171d =-. 3.(2021·全国)已知{}n a 是等差数列,n S 是其前n 项和. (1)若21a =-,1575S =,求n a 与n S ;(2)若1234124a a a a +++=,123156n n n n a a a a ---+++=,210n S =,求项数n .【答案】(1)3n a n =-,252n n nS -=;(2)6n =.【解析】(1)设等差数列{}n a 的公差为d ,根据题意可得211511151415752a a d S a d =+=-⎧⎪⎨⨯=+=⎪⎩, 解得12,1a d =-=,所以()2113n a n n =-+-⨯=-,()2152122n n n n nS n --=-+⨯=. (2)由题意,数列{}n a 是等差数列,其前n 项和为n S , 因为1234124a a a a +++=,123156n n n n a a a a ---+++=,由等差数列的性质,可得()()112341234n n n n n a a a a a a a a a a ---+=+++++++124156280=+=,解得170n a a +=,又由210n S =,所以()17021022n n n nS a a =+=⨯=,解得6n =. 考点二 等差数列前n 项和与中项性质【例2】(1)(2021·全国高二课时练习)在等差数列{a n }中,若S 10=120,则a 1+a 10的值是( ) A .12 B .24 C .36D .48(2)(2021·全国高二专题练习)设n S 是等差数列{}n a 的前n 项和,918S =,430(9)n a n -=>,已知336n S =,则n 的值为( ) A .18B .19C .20D .21【答案】(1)B(2)D 【解析】(1)由S 10=11010()2a a +,得a 1+a 10=101202455S ==,故选:B (2)由等差数列的性质可得19959()9182a a S a +===,解得52a =,故5432n a a -+=, 而154()()1633622n n n n a a nS a a n -+==+==,解得21n =,故选:D . 【一隅三反】1.(2021·湖南高二学业考试)等差数列{}n a 中,376a a +=,则{}n a 的前9项和等于( ) A .-18 B .27C .18D .-27【答案】B 【解析】()()19397999627222a a a a S ++⨯====.故选:B 2.(2021·全国高二课时练习)已知等差数列{a n }中,22383829a a a a ++=,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15【答案】D【解析】由22383829a a a a ++=得2839()a a +=,因为0n a <,所以383a a +=-, 所以110381010()10()10(3)15222a a a a S ++⨯-====-.故选:D 3.(2021·六盘山高级中学高二月考(理))设等差数列{}n a 的前n 项和为,n S 若68,a a 是方程2650x x -+=的两根,则13S =( ) A .39 B .52C .45D .72【答案】A【解析】由题可得,68762a a a +==,所以73a =,即1371339S a ==.故选:A .4.(2021·全国高二课时练习)已知等差数列{}n a 的前n 项和为n S .若1m ,且2110m m m a a a -++-=,2138m S -=,则m =( ) A .38 B .20 C .10 D .9【答案】C【解析】根据等差数列的性质可得112m m m a a a -++=.∵2110m m ma a a -++-=,∵0m a =或2m a =. 若0m a =,显然()212138m m S m a -=-=不成立,∵2m a =. ∵()212138m m S m a -=-=,解得10m =. 故选:C .5.(2021·广东潮阳·高二期末)已知等差数列{}n a 的前n 项和为n S ,11a =,若1118m m m a a a +-++=,且28m S =,则m 的值为( ) A .7 B .8C .14D .16【答案】B【解析】因为{}n a 是等差数列,所以11318m m m m a a a a -+++==,解得:6m a =, 所以()116()2822m m m m a a S ++===,解得:8m =. 故选:B .考点三 等差数列前n 项和的最值【例3】(1)(2021·全国高二课时练习)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( ) A .21B .20C .19D .18(2)(2021·全国高二课时练习)设等差数列{a n }的前n 项和为S n ,若a 11-a 8=3,S 11-S 8=3,则使a n >0的最小正整数n 的值是( ) A .8B .9C .10D .11(3)(2021·全国高二单元测试)在等差数列{a n }中,a 8>0,a 4+a 10<0,则数列{a n }的前n 项和S n 中最小的是( )A .S 4B .S 5C .S 6D .S 7【答案】(1)B(2)C(3)C【解析】(1)∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d , ∵99-105=3d .∵d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∵a 1=39. ∵S n =na 1+(1)2n n -d =-n 2+40n =-(n -20)2+400. ∵当n =20时,S n 有最大值. 故选:B.(2)设等差数列{a n }的公差为d ,由S 11-S 8=3,得a 11+a 10+a 9=3,即3a 10=3,解得a 10=1, 于是得a 1+9d =1,而a 11-a 8=3d =3,即d =1,则有a 1=-8, 从而得等差数列{a n }的通项公式为:a n =-9+n , 由-9+n >0得n >9,而n 是正整数,则min 10n =, 所以使a n >0的最小正整数n 的值是10.故选:C (3)等差数列{a n }中,a 8>0,a 4+a 10=2a 7<0, 故a 7<0,870d a a =->7n ∴≤时,有0n a <,8n ≥时,有0n a >所以数列{a n }的前n 项和S n 中最小的是7S . 故选:D 【一隅三反】1.(2021·全国高二课时练习)已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( ) A .8 B .9 C .10 D .11【答案】B【解析】设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∵-26+7d -26+12d =5,解得d =3,∵22(1)35535530252632222624n n n S n n n n -⎛⎫=-+⨯=-=--⎪⎝⎭,∵n 为正整数,∵{a n }的前n 项和S n 取最小值时,n =9.故选:B .2.(2021·全国高二专题练习)已知n S 为等差数列{}n a 的前n 项和,10S <,212520S S +=,则n S 取最小值时,n 的值为( ) A .11 B .12 C .13 D .14【答案】A【解析】10S <,212520S S +=,∴公差0d >.∴11212025242(21)25022a d a d ⨯⨯⨯+++=, 1677200a d ∴+=,67072067067<<+,1116767067720067737a d a d a d ∴+<+=<+,111267067a a ∴<<,即11120a a <<n S ∴取最小值时,11n =.故选:A .3.(2021·全国高二专题练习)数列{}n a 的前n 项和232n S n n =-,则当2n 时,下列不等式成立的是( ) A .1n n S na na >> B .1n n S na na >> C .1n n na S na >> D .1n n na S na >>【答案】C【解析】数列{}n a 的前n 项和232n S n n =-,11321a S ∴==-=. 当2n 时,22132[3(1)2(1)]54n n n a S S n n n n n -=-=-----=-, 故数列{}n a 的通项公式为54n a n =-.故数列{}n a 是递减的等差数列,且公差等于4-,故当2n 时有112nn a a a a +>>, 再由1()2n n n a a S +=可得1n n na S na >>, 故选:C .4(2021·全国高二专题练习)已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .18B .19C .20D .21【答案】C【解析】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++,即1235a d +=,∵ 2461113599a a a a d a d a d ++=+++++=,即1333a d +=,∵由∵∵联立得139a =,2d =-,22(1)39(2)40(20)4002n n n S n n n n -∴=+⨯-=-+=--+, 故当20n =时,n S 取得最大值400. 故选:C .5.(2021·全国高二专题练习)已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8 D .S 15【答案】C【解析】∵等差数列{a n }的前n 项和为S n ,且S 15>0,S 16<0,()115151502a a S ⨯+∴=>,∵115820a a a +=>,()116161602a a S ⨯+∴=<,∵116890a a a a +=+<, ∵890,0a a ><, 980d a a =-<所以在数列{}n a 中,当9n <时,0n a >,当9n ≥时,0n a <, 所以当n =8时,S n 最大, 故选:C考点四 等差数列前n 项和的性质【例4】(1)(2021·河南高二月考)记等差数列{}n a 的前n 项和为n S ,已知55S =,1521S =,则10S =( ) A .9B .10C .12D .13(2)(2021·全国高二专题练习)等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有n n S T =1n n +,则77a b 等于( )A .34B .56C .910D .1314 (3)(2021·全国高二课时练习)设等差数列{}n a 的前n 项和为n S ,若20212020220212020S S-=,则数列{}n a 的公差d 为( ) A .1B .2C .3D .4【答案】(1)C(2)D(3)D【解析】(1)因为n S 是等差数列{}n a 的前n 项, 由等差数列前n 项和的性质可知: 5S ,105S S -,1510S S -成等差数列,所以()()105515102S S S S S -=+-,即()()101025521S S -=+-,解得:1012S =, 故选:C.(2)∵S 13=11313()2a a +=13a 7,T 13=11313()2b b +=13b 7,∵713713a S b T ==1314.故选:D.(3)由等差数列的性质,知n S n ⎧⎫⎨⎬⎩⎭为等差数列.又()112n n n S na d -=+,所以112n S n a d n -=+,则数列{}n a 的公差为数列n S n ⎧⎫⎨⎬⎩⎭的公差的2倍, 而n S n ⎧⎫⎨⎬⎩⎭的公差为20212020220212020S S -=,所以数列{}n a 的公差为4,故选:D .【一隅三反】1(2021·全国高二专题练习)设S n 是等差数列{a n }的前n 项和,若53a a =59,则95S S 等于( )A .1B .-1C .2D .12【答案】A【解析】95S S =19159()25()2a a a a ++=5395a a =1.故选:A. 2.(2021·河南高二月考)记等差数列{}n a 与{}nb 的前n 项和分别为n S 和n T ,若123n n S n T n +=+,则105510a b a b =( )A .8281B .8182C .4241D .4142【答案】C【解析】因为()()1191011919101191911919191202192193412a a a a a S b b b T b b +++=====+⨯++,()()1951995199199911029293212a a a a a S b b b T b b+++=====+⨯++,可得552110b a =,所以105510202142411041a b a b =⨯=, 故选:C.3.(2021·云南省楚雄天人中学高二月考(理))等差数列{}n a 中,n S 表示其前n 项和,若10100S =,20110S =,则30S =( ) A .-80 B .120 C .30 D .111【答案】C【解析】因为等差数列{}n a 中,n S 表示其前n 项和,所以1020103020,,S S S S S --成等差数列,即()30100,10,110S -成等差数列, 所以()3020110100S =-+,解得3030S = 故选:C4.(2021·南昌市豫章中学高二开学考试(理))已知等差数列{}n a 的前n 项和为n S ,且111n nS S n n+-=+,416S =,则1a =( ) A .1 B .2 C .3 D .4【答案】A【解析】由等差数列{}n a 的前n 项和为1()2n n n a a S +=,可得1112122n n n n S S a a dd n n ++--===⇒=+, 又由414342162S a ⨯=+⨯=,解得11a =. 故选:A.5.(2021·辽宁抚顺·高二期末)设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517SS =( ) A .2B .1-C .1D .0.5【答案】C【解析】因为在等差数列{}n a 中,891715a a =, 所以1151511588117171179915()15()152152117()17()172172a a S a a a a a a S a a a a ++⨯====⋅=++⨯, 故选:C考点五 含有绝对值的求和【例5】(2021·全国高二专题练习)若数列{}n a 的前n 项和是242n S n n =-+,则1210a a a ++=⋯+________.【答案】66【解析】因为242n S n n =-+当1n =时,111421a S ==-+=-;当2n ≥时,2215[()4211(2]2)4n n n a S S n n n n n -=-=----=+--+,所以20a <,30a >,40a >,. 故()()212012101210410221166a S a a a a ++=++=+⋯+-⨯++=故答案为:66【一隅三反】1.(2021·福建省连城县第一中学高二月考)(多选)已知公差为d 的等差数列{}n a ,n S 为其前n 项和,下列说法正确的是( )A .若90S <,100S >,则6a 是数列{}n a 中绝对值最小的项B .若3614S S =,则61247S S = C .若18a =,42a =,则12832a a a +++=D .若48a a =,0d ≠,则110S =【答案】CD 【解析】对于A :因为{}n a 为等差数列,且91000S S <⎧⎨>⎩,所以1911000a a a a +<⎧⎨+<⎩,即55600a a a <⎧⎨+>⎩, 所以65||a a >,即5a 是数列{}n a 中绝对值最小的项. 故选项A 错误;对于B :因为{}n a 为等差数列, 所以3S ,63S S -,96S S -,129S S -为等差数列, 设3S x =,由3614S S =得:64S x =, 故x ,3x ,94S x -,129S S -为等差数列 解得1216S x =, 所以61241164S x S x ==. 故选项B 错误;对于C :因为{}n a 为等差数列,且18a =,42a =, 所以36d =-,2d =-,则82(1)210n a n n =--=-+.则 128||||||a a a +++8642024632=+++++++=.故选项C 正确;对于D :因为{}n a 为等差数列,且48||||a a =,0d ≠, 所以48a a =-,480a a +=, 则481111111()11()022a a a a S ++===. 故选项D 正确;故选:CD.2.(2021·全国高二专题练习)已知等差数列{}n a 中,158a a +=,42a =.(1)求数列{}n a 的通项公式;(2)设123||||||||n n T a a a a =+++⋯+,求n T .【答案】(1)102n a n =-;(2)229,5940,5n n n n T n n n ⎧-=⎨-+>⎩. 【解析】(1)等差数列{}n a 中,158a a +=,42a =, ∴1124832a d a d +=⎧⎨+=⎩,解得18a =,2d =-, 8(1)(2)102n a n n ∴=+-⨯-=-.(2)由1020n a n =-,得5n ,50a =,620a =-<,123||||||||n n T a a a a =+++⋯+,∴当5n 时,2(1)8(2)92n n n T n n n -=+⨯-=-. 当5n >时,22(1)[8(2)]2(955)9402n n n T n n n -=-+⨯-+⨯-=-+. ∴229,5940,5n n n n T n n n ⎧-=⎨-+>⎩. 3.(2021·河南高二月考)已知数列{}n a 满足117a =-,121n n na a a +=+,*N n ∈. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和n T . 【答案】(1)证明见解析;(2)228,14,832, 5.n n n n T n n n ⎧-+≤≤=⎨++≥⎩. 【解析】(1)由121n n n a a a +=+,可得121112n n n n a a a a ++==+即1112n n a a +-=. 因为117a =-,所以117a =-, 故数列1n a ⎧⎫⎨⎬⎩⎭是以7-为首项,2为公差的等差数列. (2)由(1)可得()171229nn n a =-+-⨯=-, 设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()272982n n n S n n -+-==-.当14n ≤≤时,10na <, 212121111118n n n n T S n n a a a a a a ⎛⎫=+++=-+++=-=-+ ⎪⎝⎭; 当5n ≥时,10na >, 14514511111111n n nT a a a a a a a a ⎛⎫=++++=-+++++ ⎪⎝⎭ ()()2244216328328n S S S n n n n =-+-=--=-+-, 综上所述228,14832,5n n n n T n n n ⎧-+≤≤=⎨++≥⎩。
等差数列的前N项和公式等差数列是指数列中任意两个相邻项之差保持不变的数列。
前N项和指的是数列前N项之和。
首先,我们来推导等差数列的通项公式。
设等差数列的第一项为a1,公差为d,第n项为an。
根据等差数列的定义可知,第2项为a2 = a1 + d,第3项为a3 = a1 + 2d,以此类推,第n项为an = a1 + (n-1)d。
我们可以把等差数列展开,得到:a1,a1+d,a1+2d,a1+3d,...,a1+(n-2)d,a1+(n-1)d将这些项相加,得到:S=(a1+a1+d+a1+2d+a1+3d+...+a1+(n-2)d+a1+(n-1)d)我们可以将等差数列中的每一项按照公差d进行分组,得到:S=(a1+a1+(n-1)d)+(a1+d+a1+(n-2)d)+(a1+2d+a1+(n-3)d)+...+(a1+(n-2)d+a1+d)+(a1+(n-1)d+a1)根据等差数列的恒等差性质,每一组中的两项之和都等于2a1+(n-1)d。
因此,上式可以进一步化简为:S=n(2a1+(n-1)d)这就是等差数列的前N项和公式,也被称为等差数列求和公式。
为了更好地理解该公式,我们可以举一个具体的例子。
假设有一个等差数列:2,5,8,11,14,求前四项的和。
首先,确定已知量:a1=2(第一项)d=5-2=3(公差)n=4(前四项)代入前N项和公式,可得:S=4(2+(4-1)3)=4(2+3*3)=4(2+9)=4*11=44因此,2,5,8,11的和为44除了使用前N项和公式,我们还可以利用等差数列的性质进行计算。
等差数列可以通过两种方法计算前N项的和:方法一:逐项相加。
通过将每一项相加,可以得到等差数列的前N项和。
在大多数情况下,这种方法适用于较小的N。
方法二:首项加末项乘N除以2、由于等差数列的第一项和最后一项之和等于N,将这两项相加,并乘以N除以2,即可得到前N项和。
这个方法适用于所有的等差数列。
4.2.2 等差数列的前n 项和公式【题型归纳目录】题型一:等差数列前n 项和的有关计算 题型二:等差数列前n 项和的比值问题 题型三:等差数列前n 项和的性质 题型四:等差数列前n 项和的最值问题 题型五:求数列{}||n a 的前n 项和题型六:等差数列前n 项和公式的实际应用 题型七:由等差数列的前n 项和判断等差数列 题型八:等差数列片段和的性质 题型九:等差数列的奇数项与偶数项和 【知识点梳理】知识点一、等差数列的前n 项和公式 等差数列的前n 项和公式 公式一:1()2n n n a a S +=证明:倒序相加法 1231n n n S a a a a a -=+++++①1221n n n n S a a a a a --=+++++②①+②:1213212()()()()n n n n n S a a a a a a a a --=++++++++因为121321n n n n a a a a a a a a --+=+=+==+所以12()n n S n a a =+ 由此得:1()2n n n a a S +=公式二:1(1)2n n n dS na -=+证明:将1(1)n a a n d =+-代入1()2n n n a a S +=可得:1(1)2n n n dS na -=+ 知识点诠释:①倒序相加是数列求和的重要方法之一.②上面两个公式均为等差数列的求和公式,共涉及1a 、n 、d 、n a 、n S 五个量,已知其中任意三个量,通过解方程组,便可求出其余两个量.知识点二、等差数列的前n 项和的有关性质 等差数列{}n a 中,公差为d ,则①连续k 项的和依然成等差数列,即k S ,2k k S S -,32k k S S -,…成等差数列,且公差为2k d . ②若项数为2n ,则21()n n n S n a a +=+,S S nd -=奇偶,1nn S a S a +=奇偶③若项数为21n -,则21(21)n n S n a -=-,n S na =奇,(1)n S n a =-偶,n S S a -=奇偶,1S n S n =-奇偶知识点三、等差数列中的函数关系等差数列{}n a 的通项公式是关于n 的一次函数(或常数函数) 等差数列{}n a 中,11(1)()n a a n d dn a d =+-=+-,令1a d b -=,则: n a dn b =+(d ,b 是常数且d 为公差)(1)当0d =时,n a b =为常数函数,{}n a 为常数列;它的图象是在直线y b =上均匀排列的一群孤立的点.(2)当0d ≠时,n a dn b =+是n 的一次函数;它的图象是在直线y dx b =+上均匀排列的一群孤立的点.①当0d >时,一次函数单调增,{}n a 为递增数列; ②当0d <时,一次函数单调减,{}n a 为递减数列.等差数列{}n a 的前n 项和公式是关于n 的一个常数项为零的二次函数(或一次函数) 由211(1)()222n n n d d S na d n a n -=+=+-,令2d A =,12dB a =-,则: 2n S An Bn =+(A ,B 是常数)(1)当0d =即0A =时,1n S Bn na ==,n S 是关于n 的一个一次函数;它的图象是在直线1y a x =上的一群孤立的点.(2)当0d ≠即0A ≠时,n S 是关于n 的一个常数项为零的二次函数;它的图象是在抛物线2y Ax Bx =+上的一群孤立的点.①当0d >时n S 有最小值 ②当0d <时,n S 有最大值 知识点诠释:1、公差不为0的等差数列{}n a 的通项公式是关于n 的一次函数.2、n a pn q =+(p ,q 是常数)是数列{}n a 成等差数列的充要条件.3、公差不为0的等差数列{}n a 的前n 项和公式是关于n 的一个常数项为零的二次函数.4、2n S An Bn =+(其中A ,B 为常数)是数列{}n a 成等差数列的充要条件.【方法技巧与总结】 1、等差数列前n 项和的最值(1)在等差数列{}n a 中,当10a >,0d <时,n S 有最大值,使n S 取得最值的n 可由不等式组100n n a a +⎧⎨⎩确定;当10a <,0d >时,n S 有最少值,使n S 取到最值的n 可由不等式组10n n a a +⎧⎨⎩确定. (2)2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,若0d ≠,则从二次函数的角度看:当0d >时,n S 有最少值;当0d <时,n S 有最大值.当n 取最接近对称轴的正整数时,n S 取到最值.【典型例题】题型一:等差数列前n 项和的有关计算例1.(重庆市璧山来凤中九校2022届高三上学期联考模拟(二)数学试题)设等差数列{}n a 的前n 项和为n S ,若681012a a a ++=,则15S =( ) A .150 B .120 C .75 D .60【答案】D【解析】因为6810,,a a a 也成等差数列,故61082a a a +=,同理11582a a a += 因为681012a a a ++=,所以8312a =,故84a = 所以()115815815152156022a a a S a +⨯====. 故选:D例2.(2022·福建·泉州高三期中)已知等差数列{}n a 的前n 项和为n S ,若954S =,8530S S -=,则11S =( ) A .77 B .88 C .99 D .110【答案】B【解析】954S =,得5954a =,解得56a =, 8530S S -=,得6787330a a a a ++==,解得710a =,故7522a a d -==, 11651111()11888S a a d ==⨯+=⨯=.故选:B例3.(2022·江苏·盱眙县第二高级高二期中)等差数列{}n a 的前n 项和为n S ,满足:3111,3a a ==,则25S =( )A .72B .75C .60D .100【答案】B【解析】由133a =可得:12513251322525257522a a aS a +=⨯=⨯==, 故选:B变式1.(2022·浙江·镇海高二期中)等差数列{}n a 中,已知113a =,21a =,1200n S =,则n 为( )A .58B .59C .60D .61【答案】C【解析】由{}n a 是等差数列,113a =,21a =得2123d a a =-=则()211120023n n n n S na d -=+==即23600n =,60n = 故选:C.变式2.(2022·云南师大附中高三阶段练习)已知等差数列{}n a 的前3项和为27,5230a a +=,则8a =( ) A .31 B .32C .33D .34【答案】C【解析】设等差数列{}n a 的公差为d , 由题意313327S a d =+=,12530a d +=, 解得4d =,15a =,所以81752833a a d =+=+=. 故选:C【方法技巧与总结】 等差数列中的基本计算 (1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量1,,,n a d n a 和n S ,这五个量可以“知三求二”.一般是利用公式列出基本量1a 和d 的方程组,解出1a 和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若()*,,,m n p q m n p q +=+∈N ,则m n p q a a a a +=+,常与求和公式()12n n n a a S +=结合使用.题型二:等差数列前n 项和的比值问题例4.(2022·江苏省震泽高二阶段练习)已知,n n S T 分别是等差数列{}n a 与{}n b 的前n 项和,且()211,2,42n n S n n T n +==-,则1011318615a ab b b b +=++( )A .1120 B .4178C .4382D .2342【答案】B【解析】因为数列{}n b 是等差数列,所以318615b b b b +=+, 所以10101111318615615a a a ab b b b b b ++=+++, 又因为,n n S T 分别是等差数列{}n a 与{}n b 的前n 项和,且()211,2,42n n S n n T n +==-,所以101011120201131861561512020220141420278a a a a a S ab b b b b b b b T +⨯++=====+⨯-++++, 故选:B .例5.(2022·全国·高三专题练习)两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+,则220715a ab b ++等于( )A .10724B .724C .14912D .1493【答案】A【解析】两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+, 所以1212201212112171512121215212107221324212a a a a a a S b b b b b b T +⨯++⨯+=====++++⨯. 故选:A例6.(2022·全国·高三专题练习)设等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S ,n T .若对于任意的正整数n 都有2131n n S n T n +=-,则89a b =( ) A .3552B .3150C .3148D .3546【答案】B【解析】设()21n S n nt =+,()31n T n nt =-,0t ≠.则88713610531a S S t t t =-=-=,99823418450b T T t t t =-=-=,所以893150a b =. 故选:B.变式3.(2022·全国·高三专题练习)若等差数列{}n a 和{}n b 的前n 项的和分别是n S 和n T ,且21nnna b n =+,则1111S T =( ) A .1221B .1123C .613D .1223【答案】C【解析】因为{}n a 和{}n b 是等差数列,故()()1116111111161161113a a a S Tb b b +⨯===+⨯ 故选:C变式4.(2022·北京·北理工附中高二期中)已知两等差数列{}n a ,{}n b ,前n 项和分别是n A ,n B ,且满足2132n n A n B n +=+,则66a b =( ) A .1320B .2335C .2538D .2741【答案】B【解析】两等差数列{}n a ,{}n b ,前n 项和分别是n A ,n B ,满足2132n n A n B n +=+, 所以1116611111111661111111221112322311235112a a a a a a A b b b b b b B +⨯+⨯+======++⨯+⨯. 故选:B变式5.(2022·全国·高三专题练习)已知Sn 是等差数列{an }的前n 项和,若a 1=﹣2018,20192013620192013S S -=,则S 2020等于( ) A .﹣4040 B .﹣2020 C .2020 D .4040【答案】C【解析】∵Sn 是等差数列{an }的前n 项和,∴数列{nS n}是等差数列. ∵a 1=﹣2018,20192013620192013S S -=, ∴数列{nS n }的公差d 616==,首项为﹣2018, ∴20202020S =-2018+2019×1=1, ∴S 2020=2020. 故选:C .变式6.(2022·全国·高三专题练习)等差数列{}n a 的前n 项和为n S ,若20212020120212020S S =+且13a =,则( ) A .21n a n =+ B .1n a n =+ C .22n S n n =+ D .24n S n n =-【答案】A【解析】设{}n a 的公差为d , ∵()112n n n S na d -=+∴111222n S n d d a d n a n -=+⋅=⋅+-, 即{nS n }为等差数列,公差为2d , 由20212020120212020S S -=知122d d =⇒=, 故()23212122n n n n a n S n n ++=+==+,﹒故选:A ﹒【方法技巧与总结】设{}n a ,{}n b 的前n 项和为n S ,n T ,则2121::n n n n a b S T --=. 题型三:等差数列前n 项和的性质例7.(2022·四川·成都市新津区成实外高级高二阶段练习(文))已知等差数列{}n a 的前n 项和为n S ,则( )A .若98S S >,910S S >,则170S >,180S <B .若170S >,180S <,则98S S >,910S S >C .若170S >,180S <,则170a >,180a <D .若170a >,180a <,则170S >,180S <【答案】B【解析】设等差数列{}n a 的公差为d ,A 选项,若98S S >,910S S >,8989,0S a S a +>>,991010,0S S a a >+<,则0d <, 11791792171717022a a aS a +=⨯=⨯=>,则90a >, ()118189101892a a S a a +=⨯=+,无法判断符号,A 选项错误. B 选项,11791792171717022a a aS a +=⨯=⨯=>,则90a >, 所以898S a S +>,所以98S S >. ()1181891018902a a S a a +=⨯=+<,则100a <,所以9910S S a >+,910S S >,B 选项正确.C 选项,若170S >,180S <,171181880,0S S a a <=<+, 11791792171717022a a aS a +=⨯=⨯=>,则90a >, ()1181891018902a a S a a +=⨯=+<,则100a <, 则10,0a d ><,170a <,C 选项错误. D 选项,若170a >,180a <,则10,0a d ><, 当*117,N n n ≤≤∈时0n a >,所以170S >, 但()1181891018902a a S a a +=⨯=+>,所以D 选项错误. 故选:B例8.(2022·陕西·榆林市第一高一期末(理))等差数列{}n a 的前n 项和为n S ,若56S S <,67S S =,78S S >,则下列结论错误的是( )A .680a a +=B .58S S =C .数列{}n a 是递减数列D .130S >【答案】D【解析】由67S S =,则7670S S a -==,即1760a d a +==, 又86720a a a +==,故A 正确; ()1553552a a S a +==,()()182********a a a a S a ++===, 则3215460a a a d -=+=,故58S S =,B 正确; 由56S S <,78S S >,即6560S S a -=>,8780S S a -=< 所以0d <,数列{}n a 是递减数列,故C 正确; 137130S a ==,D 错误.故选:D例9.(2022·河南·舞阳县第一高级高二阶段练习(理))已知等差数列{}n a 的前n 项和为n S ,若10911S S S <<,则下列选项不正确的是( )A .0d >B .10a <C .200S >D .210S <【答案】D【解析】等差数列{}n a 的前n 项和n S 满足109S S <,1011S S <,则100a <,110a >, 所以0d >,10a <,故A ,B 正确;由911S S <,可知10110a a +>,所以()()20120101110100S a a a a =+=+>,故C 正确; 因为110a >,所以2111210S a =>,故D 不正确. 故选: D变式7.(2022·四川成都·高一期中(理))已知等差数列{}n a 的前n 项和为n S ,若10a >,且1215S S =,则使0n S >成立的最大n 值为( ) A .13 B .14 C .26 D .27【答案】C【解析】由12151314150S S a a a =⇒++=1414300a a ⇒=⇒= 又10a >,所以公差0d < ()()126261314261302a a S a a +==+> ()1272714272702a a S a +=== 所以使0n S >成立的最大n 值为26 故选:C变式8.(2022·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,满足19160,a S S <=,则( ) A .0d < B .n S 的最小值为25SC .130a =D .满足0n S >的最大自然数n 的值为25【答案】C【解析】由于916S S = ,101112131415160a a a a a a a ++++++= , ∴上式中等差中项130a =,13110120a a a d -=-=> ,即0d > , 故A 错误;由等差数列的性质可知2513250S a == ,110S a =< ,即125S S < , 故B 错误;由以上分析可知C 正确,D 错误; 故选:C.变式9.(2022·陕西渭南·一模(理))已知数列{}n a 为等差数列,其前n 项和为n S ,若15=90S ,则8=a ( ) A .12 B .6 C .4 D .3【答案】B【解析】因为数列{}n a 为等差数列,所以()115815815152=159022a a S a a +⨯===, 所以86a =.故选:B.变式10.(2022·全国·高三专题练习)已知等差数列{}n a 的前n 项和为n S ,若12a =,且319S S =,则21S =( ) A .1 B .2 C .3 D .4【答案】B【解析】方法一:∵319S S =∴()193451941980S S a a a a a -=+++=+=∴4190a a +=∴()2112345192021S a a a a a a a a =+++++++()12320211419122a a a a a a a a a =++++=++==,方法二:由于2n S An Bn =+是二次函数2()f x Ax Bx =+,当x n =时的函数值()n S f n =,根据二次函数的对称性,由319S S =可知,n S 的关于11n =对称,因此21112S S a ===, 故选:B变式11.(2022·全国·高二课时练习)在各项不全为零的等差数列{}n a 中,n S 是其前n 项和,且20112014S S =,2003k S S =,则正整数k 的值为( )A .2020B .2021C .2022D .2023【答案】C【解析】设等差数列{}n a 公差为d ,所以 ()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 所以n S 可看成关于n 的二次函数,由二次函数图象的对称性及20112014S S =,2003k S S =,可得20112014200322k ++=,解得2022k =. 故选:C .【方法技巧与总结】利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出1a 和d ,再求所求,是基本解法,有时运算量大些; (2)等差数列前n 项和n S 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法. 题型四:等差数列前n 项和的最值问题例10.(2022·陕西·镇巴高二期中(文))在等差数列{}n a 中,1102029,a S S ==,则数列{}n a 的前n 项和n S 的最大值为( )A .15SB .16SC .15S 或16SD .17S【答案】A【解析】因为{}n a 是等差数列,1020S S =, 所以111092019102022a d a d ⨯⨯+=+,整理得12290a d +=, 又因为129a =,所以2d =-; 所以()()()22129230152252n n n S n n n n -=+⨯-=-+=--+. 故当15n =时,n S 取得最大值. 故选:A.例11.(2022·全国·高二课时练习)已知等差数列{}n a 的前n 项和为n S ,当且仅当6n =时n S 取得最大值,若130a =,则公差d 的取值范围为( ) A .()6,5--B .[]6,5--C .()(),65,-∞-⋃-+∞D .()[),65,-∞-⋃-+∞【答案】A【解析】由已知可得6700a a >⎧⎨<⎩,即30503060d d +>⎧⎨+<⎩,解得65d -<<-,故选:A .例12.(2022·北京高二期中)等差数列{}n a 中,68a a <,680a a +=,则当前n 项和n S 最小时,n =( ) A .7 B .8 C .6或7 D .7或8【答案】C【解析】设公差为d ,因为68a a <,所以20d >,所以0d >,因为680a a +=,所以720a =,所以70a =,所以160a d +=,160a d =-<,所以1(1)(1)622n n n n n S na d nd d --=+=-+2113169224d n ⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以当6n =或7n =时,n S 取得最小值. 故选:C变式12.(2022·湖南·南县第一高二期中)已知等差数列{}n a 的前n 项和为n S ,若20210S <,20220S >,则当n S 最小时,n 的值为( )A .1010B .1011C .1012D .2021【答案】B【解析】由于等差数列的前n 项和2n S An Bn =+的形式,图象是由经过坐标原点的抛物线上的横坐标为正整数的所有点构成,由20210S <,20220S >可知抛物线的开口向上,且大于零的零点在区间(2021,2022)之间,因此对称轴在区间()1010.5,1011之间,离对称轴最近的横坐标为整数的点的横坐标为1011n =, ∴n S 取得最小值时n 的值为1011. 故选:B变式13.(2022·山西·怀仁市第高二阶段练习(文))等差数列{}n a 是递增数列,且公差为d ,满足753a a =,前n 项和为n S ,下列选项错误的是( )A .0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8【答案】C【解析】对于A 选项,因为等差数列{}n a 是递增数列,则10n n d a a +=->,A 对; 对于B 选项,因为753a a =,即116312a d a d +=+,可得130a d =-<,B 对;对于C 选项,()()()2217117493222224n n n d n n d n n d d S na dn n -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以,当3n =或4时,n S 最小,C 错; 对于D 选项,()2702n n n d S -=>,因为N n *∈,解得7n >,故0n S >时n 的最小值为8,D 对.故选:C.变式14.(2022·全国·高二课时练习)设数列{}n a 为等差数列,其前n 项和为n S ,已知14799a a a ++=,25893a a a ++=,若对任意*n ∈N 都有n k S S ≤成立,则k 的值是( )A .10B .20C .30D .40【答案】B【解析】设等差数列{}n a 的公差为d ,由147125813999,31293,a a a a d a a a a d ++=+=⎧⎨++=+=⎩解得139,2,a d =⎧⎨=-⎩ ∴()()()221139140204002n n n d S na n n n n n n -=+=--=-+=--+. ∴当20n =时,n S 取得最大值. ∵对任意*n ∈N 都有n k S S ≤成立, ∴k S 为数列{}n S 的最大值,∴20k =. 故选:B.变式15.(2022·陕西·武功县普集高级高二阶段练习)记n S 为等差数列{}n a 的前n 项和,且122a =,716S S =,则n S 取最大值时n 的值为( )A .12B .12或11C .11或10D .10【答案】B【解析】设等差数列{}n a 的公差为d ,由716S S =,得1172116120a d a d +=+,即1110a d +=, 又122a =,所以2d =-,所以()2221242n a n n =--=-,令0n a =,可得12n =, 所以数列{}n a 满足:当11n ≤时,0n a >;当12n =时,0n a =;当13n ≥时,0n a <, 所以n S 取得最大值时,n 的取值为11或12.变式16.(2022·安徽·歙县教研室高二期末)已知等差数列{}n a 中,514a a =,且公差0d <,则其前n 项和取得最大值时n 的值为( ) A .8 B .9 C .10 D .11【答案】B【解析】由等差数列的公差0d <,514a a =知,5140a a +=,所以9100a a +=,故9100,0a a ><,则数列{}n a 的前n 项和取得最大值时n 的值为9.故选:B变式17.(2022·广东·石门高级高二阶段练习)设n S 是等差数列{}n a 的前n 项和,27a =-,512S a =,当n S 取得最小值时,n =( )A .1B .4C .7D .8【答案】D【解析】设数列{}n a 的公差为d ,由已知得111754252a d a a d +=-⎧⎪⎨⨯=+⎪⎩,解得1103a d =-⎧⎨=⎩, 2(1)32310322n n n n nS n --=-+⨯=,由于41a =-0<,520a =0>,即4n ≤时0n a <,5n ≥时,0n a >, 所以4n ≤时,n S 递减,5n ≥时,n S 递增,其中1110S a ==-, 由n S 的表达式得77S =-,84S =,78S S >, 所8n =时,n S 最小. 故选:D .变式18.(2022·安徽省临泉第一高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,若20210S >,20220S <,则使得前n 项和n S 取得最大值时n 的值为( )A .2022B .2021C .1012D .1011【答案】D【解析】因为等差数列{}n a 的前n 项和为n S ,20210S >,20220S <, 所以()()()()120211011202110111202220221202210111012202120212202102220221011101102a a a S a a a S a a a a ⎧+⨯===>⎪⎪⎨+⎪==+=+<⎪⎩,所以10110a >,101110120a a +<,所以10110a >,10120a <,即等差数列{}n a 的公差0d <, 所以,1011n ≤时,0n a >;1012n ≥时,0n a <, 所以,使得前n 项和n S 取得最大值时n 的值为1011. 故选:D变式19.(2022·山西·康杰高二开学考试)已知等差数列{}n a 的通项公式为31n a tn =-(t Z ∈),当且仅当10n =时,数列{}n a 的前n 项和n S 最大,则当10k S =-时,k =( )A .17B .18C .19D .20【答案】D【解析】由条件可知,当10n =时,1031100a t =->,1131110a t =-<, 解得:31311110t <<,因为t Z ∈, 所以3t =,得313n a n =-, ()28313102k k k S +-==-,解得:20k =或13k =-(舍).故选:D变式20.(2022·安徽·淮南第二高二开学考试)在等差数列{}n a 中,n S 为其前n 项的和,已知678125a a a a ++=,且10a >,当n S 取得最大值时,n 的值为( )A .17B .18C .19D .20【答案】C【解析】设等差数列{}n a 的公差为d , ∵678125a a a a ++=, ∴()11318511a d a d +=+, ∴13702a d =->, ∴0d <, ∴1902d a =->,2002da =<,∴19S 取得最大值. 故选:C.【方法技巧与总结】(1)等差数列前n 项和n S 最大(小)值的情形①若10a >,0d <,则n S 存在最大值,即所有非负项之和. ②若10a <,0d >,则n S 存在最小值,即所有非正项之和. (2)求等差数列前n 项和n S 最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用 100n n a a +⎧⎨⎩或10n n a a +⎧⎨⎩来寻找. ②运用二次函数求最值. 题型五:求数列{}||n a 的前n 项和例13.(2022·河南安阳·高二期中)已知数列{}n a 的前n 项和为{}n a 的前n 项和为210n S n n =-.(1)求数列{}n a 的通项公式; (2)求1220a a a ++⋅⋅⋅+.【解析】(1)因为210n S n n =-,所以当1n =时,21111019a S =⨯=-=-,当2n ≥时,()()22111011211n S n n n n -=---=-+, 所以1211n n n a S S n -=-=-, 经检验:19a =-满足211n a n =-, 所以211n a n =-.(2)由(1)可知,令0n a ≥,则2110n -≥,得112n ≥, 又*N n ∈,所以当6n ≥时,0n a >;当5n ≤时,0n a <;所以1220122056a a a a a a a a ++⋅⋅⋅⋅--+++=-⋅⋅-⋅⋅⋅+()()5121220562a a a a a a a a =+++-⋅⋅⋅++⋅⋅⋅++⋅⋅+++⋅()22520225105201020S S =-=-⨯--+⨯+⨯250=.例14.(2022·山东青岛·高二期中)已知n S 是数列{}n a 的前n 项和,且214n S n n =-.(1)求{}n a 的通项公式; (2)若123n n T a a a a =++++,求n T .【解析】(1)()214N*n S n n n =-∈当1n =时,211141113a S ==⨯-=,当2n ≥时,()()221141411152n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦, 1a 也符合上式,所以152n a n =-,(2)因为152n a n =-,所以17n ≤≤时,0n a >;7n >时,0n a <, 当17n ≤≤时,()212312313152142n n n n n n T a a a a a a a a S n n +-=++++=++++===-,当7n >时,()123123789n n n T a a a a a a a a a a a =++++=++++-+++()()212371237897221498n n a a a a a a a a a a a S S n n =++++-++++++++=-=-+.综上: 2214,171498,7n n n n T n n n ⎧-≤≤=⎨-+>⎩例15.(2022·山西省浑源高二阶段练习)表示n S 等差数列{}n a 的前n 项的和,且49S S =,112a =-. (1)求数列{}n a 的通项n a 及n S ; (2)求和12n n T a a a =+++【解析】(1)设等差数列{}n a 的公差为d ,由49S S =可得1143984922a d a d ⨯⨯+=+, 因为112a =-,解得2d =,所以,()()111221214n a a n d n n =+-=-+-=-, ()()12122141322n n n a a n n S n n +-+-===-. (2)142,17214214,8n n n a n n n -≤≤⎧=-=⎨-≥⎩,当17n ≤≤且N n *∈时,()212142132n n n T n n +-==-;当8n ≥且N n *∈时,()()()()2722147426713842n n n T T n n n n +--=+=+--=-+.综上所述,2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩. 变式21.(2022·江苏·常熟高二期中)已知等差数列{}n a 的前n 项和为n S .公差1,3,32m m d a S =-=-=-(其中m>2). (1)求m ; (2)求1mi i a =∑.【解析】(1)∵{}n a 是等差数列,1,3,32m m d a S =-=-=-,所以()()111132134a m m m ma ⎧--=-⎪⎪⎨-⎪-=-⎪⎩,解得15212a m ⎧=⎪⎨⎪=⎩, 即12m =;(2)由(1)可知()51113222n a n n =--=-+, ∴()513112242n n n n S n ⎛⎫⎪⎝=⎭-+-=, ∴12111221m i i i i a a a a a ====+++∑∑ ()1267812a a a a a a =+++-+++()()61263116224S S -=-=⨯-- 18=.变式22.(2022·广东·中山纪念高二期中)数列{}n a 的前n 项和为n S ,若117a =-,点1(,)n n S S +在直线122n y x n n+=++(N )n *∈上. (1)求证:数列{}nS n是等差数列,并求{}n a 的通项公式; (2)若n n b a =,求数列{}n b 的前n 项和n T . 【解析】(1)因为点1(,)n n S S +在直线122n y x n n+=++上, 所以1122(1)(2)n n n S n S S n n n n++=++=++, 从而112211n n n n S S S Sn n n n ++=+⇒-=++, 因为11171S a ==-, 所以数列{}nS n是首项为17-,公差为2的等差数列; 故172(1)219nS n n n=-+-=-,即2219n S n n =- ①, 当2n ≥时,2212(1)19(1)22321n S n n n n -=---=-+ ②,由①②相减可得,421n a n =-,当1n =时,421n a n =-也满足题意, 故{}n a 的通项公式为:421n a n =-. (2)因为||n n b a =, 所以123||||||||n n T a a a a =++++,当4210n a n =-<时,5n ≤;当4210n a n =->时,6n ≥, 由(1)中结论可知,当5n ≤时,212219n n n T a a a S n n =----=-=-+;当6n ≥时,2555()221990n n n T S S S S S n n =-+-=-=-+,从而22219,521990,6n n n n T n n n ⎧-+≤=⎨-+≥⎩. 【方法技巧与总结】已知等差数列{}n a ,求绝对值数列{}||n a 的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.题型六:等差数列前n 项和公式的实际应用例16.(2022·甘肃·天水市第一高二阶段练习)如果数列1,6,15,28,45,中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第9个六边形数为______.【答案】153 【解析】因为:1,615=+, 15159=++, 2815913=+++, 451591317=++++;即这些六边形数是由首项为1,公差为4的等差数列的和组成的; 所以:2(1)1422n n n c n n n -=⋅+⨯=-; ∴第9个六边形数为:2299153⨯-=.故答案为:153.例17.(2022·全国·高二课时练习)有n 台型号相同的联合收割机,现收割一片土地上的小麦,若同时投入工作,则到收割完毕需要24h .现在这些收割机是每隔相同的时间依次投入工作的,每一台投入工作后都一直工作到小麦收割完毕.如果第一台收割机工作的时间是最后一台的5倍,则用这种方法收割完这片土地上的小麦需要______h . 【答案】40【解析】设这n 台收割机工作的时间(单位:h )依次为1a ,2a ,…,n a , 依题意,{}n a 是一个等差数列,且15n a a =①,1224n a a a n ++⋅⋅⋅+=②; 由②得()1242n n a a n +=,所以148n a a +=③. 将①③联立,解得140a =.故用这种方法收割完这片土地上的小麦需要40h . 故答案为:40例18.(2022·全国·高二课时练习)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺.斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤.问依次每一尺各重多少斤?”假定该金杖被截成长度相等的若干段时,其质量从大到小构成等差数列.若将该金杖截成长度相等的20段,则中间两段的质量和为______斤.【答案】32【解析】解法一:设该若干段的质量从大到小构成等差数列{}n a ,其公差为d ,前n 项和为n S ,由题意每4段为1尺,可得44S =,20162S S -=,∴1114344,22019161520162,22a d a d a d ⨯⎧+=⎪⎪⎨⨯⨯⎛⎫⎪+-+= ⎪⎪⎝⎭⎩解得16764a =,132d =-,∴中间两段的质量和为10111671321921964322a a a d ⎛⎫+=+=⨯+⨯-= ⎪⎝⎭.解法二:设该若干段的质量从大到小构成等差数列{}n a ,由题意每4段为1尺,可得12344a a a a +++=,201918172a a a a +++=, 两式相加得()12046a a +=,则101112032a a a a +=+=. 故答案为:32.变式23.(2022·安徽滁州·高二阶段练习)《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:“有依次为第一等,第二等,第三等,第四等,第五等的5个诸侯分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,可以得到第二等诸侯分得的橘子个数是______. 【答案】9【解析】设第一等,第二等,第三等,第四等,第五等的5个诸侯分得的橘子个数组成数列{}n a ,其公差为3, 所以515453602S a ⨯=+⨯=,解得16a =, 所以29a =,即第二等诸侯分得的橘子个数是9. 故答案为:9变式24.(2022·内蒙古·赤峰高二阶段练习(文))将数列{}13n -按“第n 组有n 个数”的规则分组如下:()1,()3,9,()27,81,243,…,则第100组中的第一个数是______.【答案】49503 【解析】由题意知, 前99组数共包含 991001239949502⨯++++==个数, 则第100组数中的第一个数应是原数列的第4951项, 即49503. 故答案为:49503变式25.(2022·浙江·杭州市余杭高级高二阶段练习)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,均为9环,则三层共有扇面形石板(不含天心石)数量是___________.【答案】3402【解析】从上层第一环石板数记为1a ,向外向下石板数依次记为{}n a ,此数列是等差数列,公差为9d =,首项19a =,三层共27项. 所以和为272726279934022S ⨯=⨯+⨯=. 故答案为:3402.【方法技巧与总结】(1)与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体观.题型七:由等差数列的前n 项和判断等差数列例19.(2022·湖南·雅礼高二期中)已知数列{}n a 的前n 项和为11,1,0,41n n n n n S a a a a S +=≠=-. (1)证明:24n n a a +-=. (2)求数列{}n a 的通项公式.【解析】(1)证明:141n n n a a S +=-∴当2n ≥时,141n n n a a S +=-,1141n n n a a S --=- ∴ 111444n n n n n n n a a a a a S S +--==--又0n a ≠,故可知114n n a a +--= 所以24n n a a +-= (2)由题意得:当1n =时,12141a a a =-,又因为11a =,故可知23a =由114n n a a +--=,可知数列{}n a 的奇数项与偶数项分别为等差数列,公差为4,首项分别为:1,3 ∴当*21(N )n k k =-∈时,2114(1)4321n k a a k k n -==+-=-=-当*N )2(n k k =∈时,()234121n k a a k n ==+-=- 21n a n ∴=-例20.(2022·全国·高二课时练习)已知一个数列{}n a 的前n 项和2252n S n n r =-+.(1)当0r =时,求证:该数列{}n a 是等差数列; (2)若数列{}n a 是等差数列,求r 满足条件.【解析】(1)当0r =时,2252=-n n n S ,令1n =,125223=-=S ,所以2n ≥时,()()2125121-=---n S n n ,所以()()22125225121274-=-=---+-=-n n n a S S n n n n n , 此时127423=-=a , 所以274n a n =-,所以()()127427414--=--+-=-n n a a n n , 可得数列{}n a 是公差为4-的等差数列.(2)2252n S n n r =-+,令1n =,得125223=-+=+S r r , 所以2n ≥时,()()2125121-=---+n S n n r ,所以()()22125225121274-=-=---+-=-n n n a S S n n n n n , 所以()()127427414--=--+-=-n n a a n n , 可得2n ≥时,数列{}n a 是公差为4-的等差数列, 若数列{}n a 是等差数列,则12742323=-==+a r , 所以0r =.例21.(2022·全国·高二)数列{}n a 的前n 项和2*100()n S n n n N =-∈.(1)判断{}n a 是不是等差数列,若是,求其首项、公差; (2)设n n b a =,求数列{}n b 的前n 项和.【解析】(1)当2n ≥时,221(100)[100(1)(1)]n n n a S S n n n n -=-=-----1012n =-. ∵2111001199a S ==⨯-=适合上式, ∴*1012()n a n n N =-∈.∵12n n a a +-=-为常数,∴数列{}n a 是首项为99,公差为-2的等差数列.(2)由(1),令10120n a n =-≥,得50.5n ≤,∵*n ∈N ,∴*50()n n N ≤∈, 即当*50,()n n N ≤∈时,0n a >,当*51,()n n N ≥∈时,0n a <,①当150n ≤≤时,0n a >,此时n n n b a a ==,∴{}n b 的前n 项和'2100n S n n =-.②当51n ≥时,0n a <,此时n n n b a a ==-,由51525152...(...)n n b b b a a a +++=-+++5050()n n S S S S =--=-,得数列{}n b 的前n 项和'5050()n n S S S S =+-250222500(100)n S S n n =-=⨯--25000100n n =-+.由①②得数列{}n b 的前n 项和为2*'2*100(,150)5000100(,51)nn n n N n S n n n N n ⎧-∈≤≤=⎨-+∈≥⎩. 变式26.(2022·云南大理·高二期末)数列{}n a 满足12a =,()1n n S na n n =--. (1)求数列{}n a 的通项公式n a ; (2)令()11n n b n a =+,求数列{}n b的前n 项和n T .【解析】(1)当2n ≥时,()()()11112n n S n a n n --=----,()11122n n n n n a S S na n a n --∴=-=---+,12n n a a -∴=+,∴数列{}n a 是以2为首项,2为公差的等差数列,()2212n a n n ∴=+-=.(2)由(1)得:()11112121n b n n n n ⎛⎫==- ⎪++⎝⎭,11111111111111222334112122n n T n n n n n n ⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 【方法技巧与总结】2n S An Bn =+(其中A ,B 为常数)是数列{}n a 成等差数列的充要条件.题型八:等差数列片段和的性质例22.(2022·江苏省苏州实验高二阶段练习)已知等差数列{}n a 前n 项和为n S ,若41216,48S S =-=,则8S 的值为__________.【答案】0【解析】依题可知484128,,S S S S S --成等差,所以()882161648S S +=-+-,解得:80S =. 故答案为:0.例23.(2022·陕西·蓝田县城关高二期中(理))已知n S 是等差数列{}n a 的前n 项和,若2015S =,6075S =,则40S =__________.【答案】40【解析】由等差数列性质知:20S ,4020S S -,6040S S -成等差数列,()()40202060402S S S S S ∴-=+-,即()()40402151575S S -=+-,解得:4040S =.故答案为:40.例24.(2022·江苏南通·高二期中)已知等差数列{}n a 的前n 项和为n S ,若1020S =,3090S =,则20S =___________ 【答案】50【解析】由题设1020103020,,S S S S S --成等差数列, 所以20101030202()S S S S S -=+-,则20103033150S S S =+=, 所以2050S =. 故答案为:50变式27.(2022·全国·高二课时练习)设等差数列{}n a 的前n 项和为n S ,若2k S =,28k S =,则4k S =______. 【答案】32【解析】由等差数列{}n a 前n 项和的性质, 可得k S ,2k k S S -,32k k S S -,43k k S S -成等差数列, ∴()2322k k k k k S S S S S -=+-,解得318k S =, ∴ 2,6,10,418k S -成等差数列,可得4210618k S ⨯=+-, 解得432k S =. 故答案为:32.变式28.(2022·浙江·杭州市富阳区场口高二阶段练习)已知等差数列{}n a 的前n 项和为n S .若57S =,1021S =,则15S =__________.【答案】42【解析】因为数列{}n a 为等差数列,所以n S ,2n n S S -,32n n S S -也是等差数列.由题意得57S =,10514S S -=,则151021S S -=,所以15212142S =+=.故答案为:42【方法技巧与总结】连续k 项的和依然成等差数列,即k S ,2k k S S -,32k k S S -,…成等差数列,且公差为2k d . 题型九:等差数列的奇数项与偶数项和例25.(2022·江苏省苏州第高二阶段练习)一个等差数列共有偶数项,偶数项之和为84,奇数项之和为51,最后一项与第一项之差为63,则该数列公差为________. 【答案】3【解析】解:由题知不妨设等差数列为{}n a ,首项为1a ,公差为d ,项数为2,n n Z ∈, 故有221()84,2n n n a a S na ++===偶 121()512n n n a a S na -+===奇, 两式相减133n n S S na na nd +-=-==奇偶, 因为21(21)63n a a n d -=-=, 故11(21)21nd n d =-,故11,3n d ==. 故答案为:3例26.(2022·河南·高二阶段练习(理))在等差数列{}n a 中,已知公差12d =,且1359960a a a a ++++=,则123100a a a a ++++=__________.【答案】145【解析】等差数列{}n a 中,已知公差12d =, 12310013599246100a a a a a a a a a a a a ++++=+++++++++24610013599a a a a a d a d a d a d ++++=++++++++605085d =+=1231001260501452a a a a ++++=⨯+⨯=. 故答案为:145.例27.(2022·全国·高二)在等差数列{an }中,S 10=120,且在这10项中,S S 奇偶=1113,则公差d =________. 【答案】2【解析】解:由1201113S S S S+=⎧⎪⎨=⎪⎩奇偶奇偶,得5565S S =⎧⎨=⎩奇偶, 所以S S -奇偶=5d =10,所以d =2. 故答案为:2.变式29.(2022·全国·高二课时练习)已知等差数列{}n a 的前n 项和为377,项数n 为奇数,且前n 项中,奇数项的和与偶数项的和之比为7:6,则中间项为________. 【答案】29【解析】因为n 为奇数,所以1716S n S n +==-奇偶,解得13n =. 所以13713377S a ==,所以729a =.故所求的中间项为29. 故答案为:29变式30.(2022·江苏·苏州市苏州高新区第一高二阶段练习)一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,则公差d 为_________. 【答案】5【解析】设偶数项和为32k ,则奇数项和为27k ,由322759354k k k +== 可得6k =, 故公差32275566k k kd -===, 故答案为:5.变式31.(2022·甘肃·武威十高二课时练习)项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则该数列的中间项和项数分别为______. 【答案】11,7【解析】设等差数列{}n a 项数为21n , 12113211(1)()(1)2n n n n a a S a a a n a +++++=+++==+奇,2224621()2n n n n a a S a a a a na ++=++++==偶,∴144=33S n S n +=奇偶,解得n =3,∴项数2n +1=7, 又因为1n S S a a +=-=奇中偶,所以4443311a S S ==--=奇偶,所以中间项为11. 故答案为:11,7.【方法技巧与总结】(1)若项数为2n ,则21()n n n S n a a +=+,S S nd -=奇偶,1nn S a S a +=奇偶(2)若项数为21n -,则21(21)n n S n a -=-,n S na =奇,(1)n S n a =-偶,n S S a -=奇偶,1S n S n =-奇偶【同步练习】一、单选题 1.(2022·江苏·马坝高中高二期中)已知n S 是等差数列{}n a 的前n 项和,若1107,43a a ==-,则10S =( ) A .250 B .180- C .180 D .250-【答案】B【解析】由已知,数列{}n a 为等差数列, 1107,43a a ==-, 所以()()11010101074318022a a S ⨯-+⨯===-.故选:B.2.(2022·陕西·无高二期中(理))已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS 的值为( )A .717B .310C .314D .38【答案】B【解析】因为{}n a 为等差数列,所以36396129,,,S S S S S S S ---成等差数列,因为936S S =,设39,6S k S k ==,由()()363962S S S S S -=+-,即()()6626S k k k S -=+-,则63S k =, 所以1294S S k -=,所以1210S k =, 所以612310S S =. 故选:B.3.(2022·陕西·礼泉县第二高二期中)设数列{}n a 为等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论不正确的是( )A .0d <B .70a =C .95S S >D .6S 与7S 均为n S 的最大值【答案】C【解析】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 正确; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:C4.(2022·江苏省苏州实验高二阶段练习)在等差数列{}n a 中,n S 为其前n 项和,若345a a +=,77S =,则其公差为( ) A .2 B .3 C .2- D .3-【答案】D【解析】由已知得,3417125576772a a a d S a d +=+=⎧⎪⎨⨯=+=⎪⎩,解得,1103a d =⎧⎨=-⎩ 故选:D.5.(2022·江苏苏州·高二期中)n S 为等差数列{}n a 前n 项和,若613S a =,10a >,则使n n S a >的n 的最大值为( ) A .2 B .12C .11D .10【答案】C【解析】由6116153S a d a =+=,可得15a d =-, 而10a >,所以0d <,21(1)11222n n n d dS na d n n -=+=-,1(1)6n a a n d nd d =+-=-, n n S a >可转化为211622d dn n nd d ->-, 即2111622n n n -<-, 即213120n n -+<,解得112n <<, 而N n *∈,所以n 的最大值为11. 故选:C6.(2022·陕西·延安市第一高二阶段练习(理))设n S 为等差数列{}n a 的前n 项和,且1=1a ,728S =.记。