八年级几何综合复习(2)
- 格式:doc
- 大小:665.00 KB
- 文档页数:8
主题几何证明综合(二)教学内容1.掌握直角三角形判定定理,熟练运用直角三角形的判定定理进行几何证明;2.认识等腰直角三角形,熟练运用等腰直角三角形性质解决综合问题。
(以提问的形式回顾)等腰直角三角形具有哪些性质?请尽可能多的列举。
两个底角相等均为45°;两腰相等;斜边上的中线等于斜边的一半;“三线合一”:顶角的平分线,底边上的中线,底边上的高的重合;练习:1.如图,已知BD⊥AE于B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是.(填一个条件)2.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.3.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是.答案:∠D=∠A或∠E=∠ACB或DE=AC或BD=AB;1;45°第2题图ABCDE第1题图第3题图(采用教师引导,学生轮流回答的形式)例1:我们知道在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,其证明全等的条件是“边边角”,那么符合“边边角”条件的两个三角形,是否可以全等呢? 为了解决案例1,我们先看看问题1;问题1:△ABC 与△DEF 中,AB=DE ,AC=DF ,∠B=∠E ,且∠B 与∠E 均为锐角,是否有△ABC ≌△DEF 成立呢?若成立,说明理由;若不成立,请画出反例图形。
问题2:△ABC 与△DEF 中,AB=DE ,AC=DF ,∠B=∠E ,且∠B 与∠E 均为钝角,是否有△ABC ≌△DEF 成立呢?若成立,说明理由;若不成立,请画出反例图形。
通过以上两个问题,概括出例1的结论。
答案:问题1:不成立;如下图所示问题2:成立;证明如下;分别过点A 、D 作AG ⊥CB 交CB 的延长线于点G ,DH ⊥FE 交FE 的延长线于点H . ∵∠ABC=∠DEF ∴∠ABG=∠DEH 而∠G=∠H=90°,AB=DE∴△ABG ≌△DEH (AAS ) ∴AG=DH ∴Rt △ACG ≌Rt △DFH (HL )∴∠C=∠F∴△ABC ≌△DEF (SAS )例1:当“边边角”中所给的相等角为直角或钝角时,可以证明两三角形全等; 当“边边角”中所给的相等角为锐角时,不可以证明两三角形全等例2:如图,Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 中点,联结OA ; 问题1:如图1,OA=OB=OC 成立吗?请说明理由;问题2:如图2,如果点M 、N 分别在边AB 、AC 上移动,且保持AN=BM ;请判断△OMN 的形状,并说明理DE FH AB C DE FAB CG由;问题3:如图3,若点M,N分别在线段BA、AC的延长线上移动,仍保持AN=BM,请判断△OMN的形状,并说明理由。
八年级数学几何知识要点汇总上册:三角形知识小结与复习1、三角形有关概念(1)三角形、内角、外角、高、中线、角平分线(2)三角形三中线相交于三角形内一点——重心(3)三角形三高或其延长线相交于一点——垂心(4)三角形三内角平分线相交于三角形内一点——内心(5)三角形三边垂直平分线相交于三角形内一点——外心(6)三角形高、中线、角平分线都是线段2、三角形有关性质(1)三边关系:任意两边之和大于第三边:a+b>c;a+c>b;b+c>a(2)内角关系:三角形三内角和等于180o,即:∠A+∠B+∠C=180o(3)外角定理:一个外角等于与其不相邻两个内角之和。
(4)中线平分对边,角平分线平分一个角,有高就有直角。
3、命题(1)概念的定义:对概念的含义加以描述说明或作出明确规定(2)命题的定义:对一件事情做出判断的语句。
(由条件和结论组成)(3)命题的真假:正确的命题叫做真命题,错误的命题叫做假命题假命题举反例说明,真命题通过证明说明。
(4)互逆命题:条件和结论互换,不一定同真假。
(5)证明:从条件出发,通过讲道理,得出结论成立。
(6)定理:经过证明为真的命题叫做定理,由定理得出的真命题叫做定理的推论。
4、等腰三角形(1)等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
(2)等腰三角形的性质:轴对称性;三线合一;等边对等角。
(3)等腰三角形的判定:等角对等边。
(4)等边三角形的特殊性质:三个角都相等,等于60o。
(5)等边三角形的判定:有一个角为60o的等腰三角形是等边三角形。
5、全等三角形的性质与判定(1)定义:能完全重合的两个三角形叫做全等三角形(2)性质:全等三角形对应边相等,对应角相等。
全等三角形周长相等、面积相等,对应边上的中线、高相等,对应角平分线相等。
(3)判定:SAS、ASA、AAS、SSS,至少有一条边相等。
(4)综合应用:证线段相等、线平行,角相等,找它们所在三角形,寻找条件证全等,全等三角形证明不超过两次。
8年级数学(上)专题复习二——尺规作图一、关于尺规作图在几何中,通常用和准确地按要求来画图,这种画图的方法叫做尺规作图。
特别注意:要求用尺规作图的题不能利用直尺的刻度、三角板现有的角度及量角器来画。
二、五种基本作图1作线段等于已知线段已知:线段a,求作:线段AB,使AB=a作法: 1作射线AC,2在射线AC上截取AB=a则线段AB就是所要求作的线段2作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB作法:1作射线O′A′2以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D3以点O′为圆心,以OC长为半径画弧,交O′A′于点C′4以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′5过点D′作射线O′B′∠A′O′B′就是所求作的角3作角的平分线已知:∠AOB,求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:1在OA和OB上,分别截取OD、OE,使OD=OE.2分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C. 3作射线OC. OC就是所求作的射线.4作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:1分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点2经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)5过直线外一点作直线的垂线已知点在直线外已知:直线a、及直线a外一点A画出直线a、点A求作:直线a的垂线直线b,使得直线b经过点A作法:1以点A为圆心,以适当长为半径画弧,交直线a于点C、D2以点C为圆心,以AD长为半径在直线另一侧画弧3以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B 4经过点A、B作直线AB直线AB就是所画的垂线b如图已知点在直线上已知:直线a、及直线a上一点A求作:直线a的垂线直线b,使得直线b经过点A作法:1以A为圆心,任一线段的长为半径画弧,交a于C、B两点2点C为圆心,以大于CB一半的长为半径画弧;3以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N4经过M、N,作直线MN直线MN就是所求作的垂线b三、常用作图语言:(1)过点×、×作线段或射线、直线;(2)连结两点××;(3)在线段××或射线××上截取××=××;(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;(5)分别以点×,点×为圆心,以×,×的长为半径作弧,两弧相交于Al1oBA图2A l1oBA图3点×;(6)延长××到点×,使××=××。
2021八年级下册反比例函数与几何综合解答题专题练习(2)1.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,点A 、B 在x 轴上,点C 、D 在第二象限,点M 是BC 中点.已知AB=6,AD=8,∠DAB=60°,点B 的坐标为(-6,0).(1)求点D 和点M 的坐标;(2)如图∠,将□ABCD 沿着x 轴向右平移a 个单位长度,点D 的对应点D 和点M 的对应点M '恰好在反比例函数ky x=(x>0)的图像上,请求出a 的值以及这个反比例函数的表达式; (3)如图∠,在(2)的条件下,过点M ,M '作直线l ,点P 是直线l 上的动点,点Q 是平面内任意一点,若以,B C '',P 、Q 为顶点的四边形是矩形,请直接写出所有满足条件的点Q 的坐标. 2.如图,正方形AOCB 的边长为4,反比例函数的图象过点()3,4E .(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线12y x b =-+过点D ,与线段AB 相交于点F ,求点F 的坐标;(3)连接,OF OE ,探究AOF ∠与EOC ∠的数量关系,并证明.3.阅读理解:己知:对于实数a≥0,b≥0,满足 a = b 时,等号成立,此时取得代数式a+b 的最小值.根据以上结论,解决以下问题:(1)拓展:若a>0,当且仅当a=___时,a+1a有最小值,最小值为____; (2)应用:∠如图1,已知点P 为双曲线y=4x(x>0)上的任意一点,过点P 作PA∠x 轴,PB 丄y 轴,四边形OAPB 的周长取得最小值时,求出点P 的坐标以及周长最小值: ∠如图2,已知点Q 是双曲线y=8x(x>0)上一点,且PQ∠x 轴, 连接OP 、OQ ,当线段OP 取得最小值时,在平面内取一点C ,使得以0、P 、Q 、C 为顶点的四边形是平行四边形,求出点C 的坐标.4.在平面直角坐标系第一象限中,已知点A 坐标为()1,0,点D 坐标为()1,3,点G 坐标为()1,1,动点E 从点G 出发,以每秒1个单位长度的速度匀速向点D 方向运动,与此同时,x 轴上动点B 从点A 出发,以相同的速度向右运动, 两动点运动时间为:(02)t t <<, 以AD AB 、分别为边作矩形ABCD , 过点E 作双曲线交线段BC 于点F ,作CD 中点M ,连接BE EF EM FM 、、、 (1)当1t =时,求点F 的坐标.(2)若BE 平分AEF ∠, 则t 的值为多少? (3)若EMF ∠为直角, 则t 的值为多少?5.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(6,0)-边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数ky x=的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE PF +的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得QEF PEF S S ∆∆=直接写出符合条件的Q 点坐标.6.如图,在平面直角坐标系中,直线12y x =-与反比例函数ky x=的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)点A 上方的双曲线上有一点C ,如果ABC 的面积为30,直线BC 的函数表达式.7.如图,双曲线y 1=1k x与直线y 2=2x k 的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b)是双曲线y 1=1k x上的任意一点,且0<a <4. (1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到∠PAB ,若4a =b ,求三角形ABP 的面积; (3)当点P 在双曲线y 1=1k x上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.8.已知边长为4的正方形ABCD ,顶点A 与坐标原点重合,一反比例函数图象过顶点C ,动点P 以每秒1个单位速度从点A 出发沿AB 方向运动,动点Q 同时以每秒4个单位速度从D 点出发沿正方形的边DC→CB→BA 方向顺时针折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .∠求出该反比例函数解析式;∠连接PD ,当以点Q 和正方形的某两个顶点组成的三角形和∠PAD 全等时,求t 值;9.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,AB AC =,(3,0)A -,(0,1)B ,(,)C m n . (1)请直接写出C 点坐标.(2)将ABC 沿x 轴的正方向平移t 个单位,'B 、'C 两点的对应点、正好落在反比例函数ky x=在第一象限内图象上.请求出t ,k 的值.(3)在(2)的条件下,问是否存x轴上的点M和反比例函数kyx图象上的点N,使得以'B、'C,M,N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.11.如图,A、B是双曲线y=kx上的两点,过A点作AC∠x轴,交OB于D点,垂足为C,过B点作BE∠x轴,垂足为E.若∠ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积.(2)求k 的值.12.如图,在∠ABC 中,AC=BC ,AB∠x 轴于A ,反比例函数y=kx(x >0)的图象经过点C ,交AB 于点D ,已知AB=4,BC=52. (1)若OA=4,求k 的值.(2)连接OC ,若AD=AC ,求CO 的长.13.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB的面积.14.已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ∠求m ,k 的值;∠直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .∠若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;∠过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d . 15.如图,已知一次函数y=32 x−3与反比例函数y=kx的图象相交于点A(4,n),与x 轴相交于点B .(1)填空:n 的值为___,k 的值为___;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)观察反比例函数y=kx的图象,当y∠−2时,请直接写出自变量x 的取值范围。
几何练习题一.选择题1.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC 的长等于()A.12B.10C.8D.62.下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形3.已知A(a,1)与B(5,b)关于原点对称,则a b的值为()A.B.C.﹣5D.54.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.46.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4B.5C.6D.8二.填空题7.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)8.如图,等腰△ABC中,AB=AC=10,∠B=15°,则S△ABC=.9.如图,已知动点P可在射线OB上运动,∠AOB=40°,当∠A=°时,△AOP为直角三角形.10.如图,AB=AC,AC的垂直平分线MN交AB于点D交AC于点E,若AE=5,△BCD的周长为17,则△ABC的周长为.11.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.12.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.13.如图,▱ABCD中,EF过对角线的交点O如果AB=4cm,AD=3cm,OF=1cm,则四边形BCEF的周长为.14.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EF A.其中正确结论的序号是.15.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.16.如图,已知在等边△ABC中,沿图中虚线剪去∠C,则∠1+∠2=.三.解答题17.已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EH∥BC,分别交AC、CF于点G、H.求证:GE=GH.18.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.19.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.20.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=度;(2)如图(2),若∠A=70°,则∠NMB=度;(3)如图(3),若∠A=120,则∠NMB=度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.23.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.24.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.25.如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF的中点,求证:GH⊥EF.26.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.27.已知:如图是某城市部分街道示意图,AF∥BC,且AF⊥CE,AB=DC,AB∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站?说明理由.28.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,BE=CF.(1)求证:四边形DEFC是平行四边形;(2)若∠ABC=60°,BD=4,求四边形DEFC的面积.29.如图,已知在等边△ABC中,AD,CF分别为边CB,BA上的中线,以AD为边作等边△ADE.求证:(1)四边形CDEF是平行四边形;(2)EF平分∠AED.30.如图,在△ABC中,D,E,F分别为边BC,AB,AC上的点,ED∥AF且ED=AF,延长FD到点G,使DG=FD,求证:ED,AG互相平分.答案一.选择题1.B.2.A.3.B.4.C.5.C.6.B.二.填空题7.①②③.8.25.9.50°或90°.10.27.11.32.12.等边三角形.13.9cm.14.①②③④.15.6.16.240°.三.解答题7.解:∵EH∥BC,∴∠BCE=∠GEC,∠GHC=∠DCH,∵∠GCE=∠BCE,∠GCH=∠DCH,∴∠GEC=∠GCE,∠GCH=∠GHC,∴EG=GC=GH,∴GE=GH.18.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.19.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=6cm,∴AD=2cm.20.解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(4)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.21.解:如图,点P为所作.22.证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.23.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.24.解:设每个内角度数为x度,则与它相邻的外角度数为180°﹣x°,根据题意可得x﹣(180﹣x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.25.证明:∵E,F,G分别是AB,CD,AC的中点,∴FG=AD,EG=BC,∵AD=BC,∴FG=GE,∵H是EF的中点,∴GH⊥EF.26.证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.27.解:同时到达,理由如下:连接AC,如图,∵AF∥BC,AB=CD,∴四边形ABCD为等腰梯形,∴AC=BD,∵AB∥DE,BD∥AE,∴四边形ABDE为平行四边形,∴AE=BD=AC,AB=DE,∵AF⊥CE,∴AF为线段CE的垂直平分线,∴CF=EF,∴甲乘1路车,路程=BA+AE+EF=CD+BD+CF,乙乘2路车,路程=BD+DC+CF,∴两人同时到达.28.解:(1)∵ED∥BC,∴∠BDE=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠BDE=∠ABD,∴BE=DE.∵BE=CF,∴DE=CF.又∵ED∥BC,∴四边形DEFC是平行四边形;(2)如图所示:过点B作BG⊥DE,垂足为G.由(1)可知∠EDB=∠ABC.∵∠ABC=60°.∴∠EDB=30°.又∵∠G=90°.∴BG=BD=2.∵ED∥FC,∴∠AED=∠ABC=60°.∴∠GEB=60°.∴ED=BE=BG÷=.∴平行四边形EDCF的面积=ED•BG=.29.证明:(1)∵△ABC是等边三角形,AD,CF分别为边CB,BA上的中线,∴AD=CF,AD⊥BC,∠BCF=30°,∵△ADE是等边三角形,∴DE=AD,∠ADE=60°,∴∠BDE=90°﹣60°=30°=∠BCF,∴DE=CF,DE∥CF,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形,∴EF∥CD,∴∠FED=∠BCF=30°,∵△ADE是等边三角形,∴∠AED=60°,∴∠AEF=30°=∠DEF,∴EF平分∠AED.30.证明:连接EG、AD,如图所示:∵ED∥AF,且ED=AF,∴四边形AEDF是平行四边形,∴AE=DF,又DG=DF,∴AE=DG,∴四边形AEGD是平行四边形,∴ED,AG互相平分.。
2021-2022学年华师大版八年级数学上册几何部分期末综合复习训练(附答案)1.如图,已知∠AOB=40°,点D在OA边上,点C、点E在OB边上,连接CD、DE.若OC=OD=DE,则∠CDE的度数为()A.20°B.30°C.40°D.50°2.如图,在△ABC中,AB=AC,点P是△ABC内一点,且∠PBC=∠PCA,若∠BPC=115°,则∠A的度数为()A.50°B.55°C.60°D.65°3.等腰三角形的两边长分别为8和14,则这个三角形的周长为()A.22B.30或22C.36D.30或364.如图,在△ABC中,AB=BC,△BDE的顶点D、E分别在AB、AC上,且∠DBE=100°,BD=BE.若∠C=30°,则∠AED的度数为()A.20°B.10°C.15°D.18°5.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24cm和30cm的两部分,则BC的长为()A.14B.16或22C.22D.14或226.如图,已知在△ABC中,AB=AC,∠ACB和∠BAC的平分线交于点O,过点A作AD ⊥AO交CO的延长线于点D,若∠ACD=α,则∠BDC度数为()A.45°﹣αB.C.90°﹣2αD.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E…按此做法继续下去,则第2021个三角形中以A2021为顶点的内角度数是()A.()2019•75°B.()2020•75°C.()2021•75°D.()2022•75°8.等腰三角形一边长9cm,另一边长4cm,它的第三边是()cm.A.4B.9C.4或9D.不能确定9.如图,在△ABC中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFE的度数为()A.30°B.40°C.50°D.60°10.已知:如图,△ABC中,AB=AC,D是BC上一点,点E、F分别在AB、AC上,BD =CF,CD=BE,G为EF的中点.求证:DG⊥EF.11.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)AM⊥DM;(2)M为BC的中点.12.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.13.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.14.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是、.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是、.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.15.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)16.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.17.已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求证:∠AFC=120°;(2)若AD=6,CE=4,求AC的长?18.【探究】如图①,在△ABC中,O是BC边中点,连接AO并延长,使DO=AO,连接CD.求证:AB∥CD.【应用】如图②,在四边形ABCD中,AB∥CD,O是BC的中点,连接AO并延长交DC的延长线于点E,若AE平分∠BAD,求证:AD=CD+AB.19.(1)观察理解:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A,B 在直线l同侧,BD⊥l,AE⊥l,垂足分别为D,E,由此可得:∠AEC=∠CDB=90°,所以∠CAE+∠ACE=90°,又因为∠ACB=90°,所以∠BCD+∠ACE=90°,所以∠CAE=∠BCD,又因为AC=BC,所以△AEC≌△CDB();(请填写全等判定的方法)(2)理解应用:如图2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积S=;(3)类比探究:如图3,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(4)拓展提升:如图4,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF.设点P运动的时间为t秒.①当t=秒时,OF∥ED;②当t=秒时,OF⊥BC;③当t=秒时,点F恰好落在射线EB上.20.(1)探究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF的度数;②DE与EF相等吗?请说明理由;(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.21.如图,在△ABC与△ADE中,∠DAE=∠BAC=90°,AC=AE,BC=DE,过A作AF ⊥DE,垂足为F,过A作AH⊥BC,垂足为H,延长CB交DE于点G,连接GA.求证:GA平分∠DGC.22.已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG.若AG平分∠CAD,求证:AH=AC.23.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.24.若a、b是△ABC的两边且|a﹣3|+(b﹣4)2=0(1)试求a、b的值,并求第三边c的取值范围.(2)若△ABC是等腰三角形,试求此三角形的周长.(3)若另一等腰△DEF,其中一内角为x°,另一个内角为(2x﹣20)°试求此三角形各内角度数.25.在△ABC中,AB=AC,点D是线段BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,如果∠BAC=90°,则∠BCE=;(2)如图2,设∠BAC=α,∠BCE=β.当点D在线段BC上移动时,请写出α,β之间的数量关系,请说明理由.26.如图,在△ABC中,AB=AC,∠C=2∠A,BD是AC边上的高,求∠A和∠DBC的度数.27.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.参考答案1.解:∵OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠ODC=(180°﹣∠AOB)÷2=(180°﹣40°)÷2=70°,∵OD=DE,∴∠OED=∠AOB=40°,∴∠ODE=180°﹣40°×2=100°,∴∠CDE=∠ODE﹣∠ODC=100°﹣70°=30°.故选:B.2.解:∵∠BPC=115°,∴∠PBC+∠PCB=65°,∵∠PBC=∠PCA,∴∠PCB+∠PCA=65°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠ACB=65°,∴∠A=180°−∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,故选:A.3.解:当腰长为8时,则三角形的三边长分别为8、8、14,满足三角形的三边关系,此时周长为30;当腰长为14时,则三角形的三边长分别为14、14、8,满足三角形的三边关系,此时周长为36;综上可知,三角形的周长为30或36.故选:D.4.解:∵AB=BC,∠C=30°,∴∠A=∠C=30°,又∵∠DBE=100°,BD=BE,∴∠BDE=∠BED=40°,∴∠AED=∠BDE﹣∠A=10°,故选:B.5.解:如图,∵AB=AC,BD是AC边上的中线,即AD=CD,∴|(AB+AD)﹣(BC+CD)|=|AB﹣BC|=30﹣24=6(cm),AB+BC+AC=2AB+BC=24+30=54(cm),若AB>BC,则AB﹣BC=6(cm),又∵2AB+BC=54(cm),联立方程组:,解得:AB=20cm,BC=14cm,20、20、14三边能够组成三角形;若AB<BC,则BC﹣AB=6(cm),又2AB+BC=54(cm),联立方程组:,解得:AB=16,BC=22,16、16、22三边能够组成三角形;∴BC=14或22.故选:D.6.解:∵AB=AC,∠ACD=α,OC平分∠ACB,∴∠ABC=∠ACB=2α,∵∠ACB和∠BAC的平分线交于点O,∴∠OBC=∠OBA=∠OCB=α,∴∠DOB=∠OBC+∠OCB=2α,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣4α,∴∠BOA=90°﹣2α,∵AD⊥AO,∴∠DAB=∠DOB=2α,∴O、A、D、B四点共圆,∴∠BDC=∠DOA=90°﹣2α.故选:C.7.解:∵∠B=30°,A1B=CB,∴∠BA1C=∠C,30°+∠BA1C+∠C=180°.∴2∠BA1C=150°.∴∠BA1C=×150°=75°.∵A1A2=A1D,∴∠DA2A1=∠A1DA2.∴∠BA1C=∠DA2A1+∠A2DA1=2∠DA2A1.∴∠DA2A1=∠BA1C=××150°.同理可得:∠EA3A2=∠DA2A1=×××150°.…以此类推,以A n为顶点的内角度数是∠A n=()n×150°=()n﹣1×75°.∴以A2021为顶点的内角度数是()2020×75°.故选:B.8.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故选:B.9.解:∵△ABC中,AC=BC,∠C=50°,∴∠ABC=(180°﹣50°)=65°,∵∠ABC是△BEF的外角,∴∠BFE=∠ABC﹣∠E=65°﹣25°=40°,故选:B.10.证明:∵AB=AC,∴∠B=∠C,在△BED和△CDF中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G是EF的中点,∴DG⊥EF.11.证明:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.12.(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.13.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;14.解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.15.(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.16.(1)证明:∵CB=CA,DB=DA,∴CD垂直平分线段AB,∴CD⊥AB.(2)①证明:∵AC=BC,∴∠CBA=∠CAB,又∵∠ACB=90°,∴∠CBA=∠CAB=45°,又∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,∵AC=BC,∠CAD=∠CBD=15°,BD=AD,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴∠ACD=∠BCD=45°,∴∠CDE=60°,∵∠CDE=∠BDE=60°,∴DE平分∠BDC;②解:结论:ME=BD,理由:连接MC,∵DC=DM,∠CDE=60°,∴△MCD为等边三角形,∴CM=CD,∵EC=CA,∠EMC=120°,∴∠ECM=∠BCD=45°在△BDC和△EMC中,,∴△BDC≌△EMC(SAS),∴ME=BD.③当EN=EC时,∠ENC=7.5°或82.5°;当EN=CN时,∠ENC=150°;当CE=CN 时,∠CNE=15°,所以∠CNE的度数为7.5°、15°、82.5°、150°.17.解:(1)∵AE、CD分别为△ABC的角平分线,∴∠F AC=∠BAC,∠FCA=∠BCA,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠F AC﹣∠FCA=180°﹣×120°=120°.(2)在AC上截取AG=AD=6,连接FG.∵AE、CD分别为△ABC的角平分线∴∠F AC=∠F AD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,∴△ADF≌△AGF(SAS)∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,∴△CGF≌△CEF(ASA),∴CG=CE=4,∴AC=10.18.解:【探究】如图①,∵O是BC边中点,∴BO=CO.在△AOB与△DOC中,,∴△AOB≌△DOC(SAS).∴∠BAO=∠D.∴AB∥CD.【应用】如图②,∵O是BC边中点,∴BO=CO.∵AB∥CD,∴∠BAO=∠E.在△AOB与△EOC中,.∴△AOB≌△EOC(AAS).∴EC=AB.∵AE平分∠BAD,∴∠BAO=∠DAE.∴∠E=∠DAE.∴AD=DE.∵DE=DC+CE,∴AD=CD+AB.19.解:(1)在△AEC和△CDB中,∵,∴△AEC≌△CDB(AAS),故答案为:AAS;(2)∵AE=AB,∠EAB=90°,BC=CD,∠BCD=90°,由(1)得:△EF A≌△AGB,△BGC≌△CHD,∴AG=EF=6,AF=BG=3,CG=DH=4,CH=BG=3,∴S=S梯形EFHD﹣2S△AEF﹣2S△CHD=(4+6)×16﹣2×﹣2×=80﹣18﹣12=50,故答案为:50;(3)如图3,过B′作B′E⊥AC于E,由旋转得:AB=AB′,∵∠BAB′=90°,∴△AEB′≌△BCA,∴AC=B′E=4,∴S△AB′C=AC•B′E==8;(4)由题意得:EP=t,则PC=3﹣t,①如图4,∵OF∥ED,∴∠POF+∠OPC=180°,∵∠POF=120°,∴∠OPC=60°,∵△BEC是等边三角形,∴∠E=60°,∴∠E=∠OPC,∴OP∥AE,∴2=3﹣t,t=1,即当t=1秒时,OF∥ED;②如图5,∵OF⊥BC,∴∠FOC=90°,∵∠FOP=120°,∴∠COP=30°,∴OC=2PC,2=2(3﹣t),t=2,即当t=2秒时,OF⊥BC;③如图6,∵∠FOP=120°,∴∠FOB+∠COP=60°,∵∠BCE=60°,∴∠COP+∠OPC=60°,∴∠FOB=∠OPC,∵OF=OP,∠OBF=∠OCP=120°,∴△PCO≌△OBF,∴PC=OB=1=t﹣3,t=4,即当t=4秒时,点F恰好落在射线EB上.故答案为:①1;②2;③4.20.解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.21.证明:∵∠DAE=∠BAC=90°,∴在Rt△ABC与Rt△AED中,,∴Rt△ABC≌Rt△ADE(HL),∴S△ABC=S△AED,又∵AF⊥DE,AH⊥BC,即×DE×AF=×BC×AH,∴AF=AH,又∵AF⊥DE,AH⊥BC,∴GA平分∠DGB.22.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC.23.解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.24.解:(1)∵|a﹣3|+(b﹣4)2=0,∴a=3 b=4,∵b﹣a<c<b+a,∴1<c<7;(2)当腰长为3时,此时三角形的三边为3、3、4,满足三角形三边关系,周长为10;当腰长为4时,此时三角形的三边长为4、4、3,满足三角形三边关系,周长为11;综上可知等腰三角形的周长为10或11;(3)当底角为x°、顶角为(2x﹣20)°时,则根据三角形内角和为180°可得x+x+2x﹣20=180,解得x=50,此时三个内角分别为50°、50°、80°;当顶角为x°、底角为(2x﹣20)°时,则根据三角形内角和为180°可得x+2x﹣20+2x﹣20=180,解得x=44,此时三个内角分别为44°、68°、68°;当底角为x°、(2x﹣20)°时,则等腰三角形性质可得x=2x﹣20,解得x=20,此时三个内角分别为20°、20°、140°;综上可知三角形三个内角为50度、50度、80度或44度、68度、68度或20度、20度、140度.25.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.26.解:∵AB=AC,∴∠ABC=∠C,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠C=2×36°=72°,∵BD是AC边上的高,∴∠DBC=90°﹣∠C=90°﹣72°=18°.27.解:(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN,此时,理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴=;(2)猜想:结论仍然成立,证明:在NC的延长线上截取CM1=BM,连接DM1,∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴=;(3)证明:在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.。
专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2022·河南濮阳市·八年级期末)已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅ ;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【答案】(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB AC BAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.例2.(2022·绵阳市·八年级课时练习)(1)如图1,在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:△ABD ≌△CAE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论△ABD ≌△CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE ,若∠BDA =∠AEC =∠BAC ,求证:△DEF是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得90BDA CEA ∠=∠=︒,而90BAC ∠=︒,根据等角的余角相等得CAE ABD ∠=∠,然后根据“AAS ”可判断ADB CEA ∆∆≌;(2)利用BDA BAC α∠=∠=,则180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,得出CAE ABD ∠=∠,然后问题可求证;(3)由题意易得,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,由(1)(2)易证ADB CEA ∆∆≌,则有AE BD =,然后可得FBD FAE ∠=∠,进而可证DBF EAF ∆∆≌,最后问题可得证.【详解】(1)证明:BD ⊥ 直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒ ,90BAD CAE ∴∠+∠=︒,90BAD ABD ∠+∠=︒ ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;解:(2)成立,理由如下:α∠=∠= BDA BAC ,180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;(3)证明:∵△ABF 和△ACF 均为等边三角形,∴,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,∴∠BDA =∠AEC =∠BAC =120°,∴180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒,∴CAE ABD ∠=∠,∴()ADB CEA AAS ∆∆≌,∴AE BD =,∵,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠,∴FBD FAE ∠=∠,∴DBF EAF ∆∆≌(SAS ),∴,FD FE BFD AFE =∠=∠,∴60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒,∴△DFE 是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.例3.(2022秋·河北张家口·八年级校考期中)如图1,在长方形ABCD 中,4AB cm =,3BC cm =,点P 在线段AB 上以1/cm s 的速度由A 向终点B 运动,同时,点Q 在线段BC 上由点B 向终点C 运动,它们运动的时间为()t s .【解决问题】若点Q 的运动速度与点P 的运动速度相等,当1t =时,回答下面的问题:(1)_________AP cm =;(2)此时ADP ∆与BPQ ∆是否全等,请说明理由;(3)求证:DP PQ ⊥;【变式探究】若点Q 的运动速度为 /x cm s ,是否存在实数x ,使得ADP ∆与BPQ ∆全等?若存在,请直接【答案】解决问题(1)1;(2)全等;【分析】解决问题(1)当t=1时,AP 判定;(3)利用同角的余角相等证明∠①ADP ∆≌BPQ ∆②ADP ∆≌BQP ∆【详解】解:解决问题(1)∵t=1,点P 的运动速度为1cm (2)全等,理由是:当t=1时,可知在△ADP 与△BPQ 中,AD PB A B AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△(3)∵△ADP ≌△BPQ ,∴∠APD=∠②若ADP ∆≌BQP ∆,AP=BP ,即点AB 中点,此时AP=2,t=2÷1=2s ,AD=BQ=3综上:当ADP ∆与BPQ ∆全等时,x 的取值为1或32.【点睛】本题考查了全等三角形的判定和性质,注意在运动中对三角形全等进行分类讨论,从而得出不同情况下的点Q 速度.例4.(2023·湖南岳阳·统考一模)如图,在与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=______°,∠AED=______°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【答案】(1)25°,65°;(2)2,理由见详解;(3)可以,110°或80°.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【详解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,ADB DECB CAB DC∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.【点睛】本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。