2020年中考数学热点专题冲刺8份(付,94)
- 格式:docx
- 大小:4.96 MB
- 文档页数:95
湖北省中考数学黄金冲刺试卷(本试题共4页,满分120分,考试时间120分钟)★祝 考 试 顺 利★注意事项: 1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效. 3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔。
4.考试结束后,请将本试题卷与答题卡一并上交。
一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.在2-,1-,0,2这四个数中,最小的数是:A .2- B. 1- C. 0 D. 22.下列运算正确的是:A.2x ·63x x =B.x x x =÷56C.642)(x x =- D.532x x x =+ 3.如图所示,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是:A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等4.“六·一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是:A .⎩⎨⎧=+=+33602436,120y x y xB .⎩⎨⎧=+=+33603624,120y x y x C .⎩⎨⎧=+=+3360,1202436y x y x D .⎩⎨⎧=+=+3360,1203624y x y x 5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是:A.正方体B.圆柱C.圆椎D.球6.要得到抛物线1)4(22--=x y ,可以将抛物线22x y =: A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度7.关于x 的一元二次方程032=+-m x x 有两个不相等的实数根,则实数m 的取值范围为:A .m ≥49 B. m <49 C.m 49= D.m <49- 8. 为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(千瓦/户) 40 50 55 60那么这10户居民月用电量(单位:千瓦时),关于这组数据下列说法错误的是:A.中位数是55B.众数是60 C .方差是29 D.平均数是549.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是:A .①②B .①③C .③④D .②③10.函数m mx y +-=2与xm y =(x ≠0)在同一坐标系中的图象大致可能是: 11.如图,在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,如果要在AB 上找一点E ,使△ADE 与△ABC 相似,则AE 的长为:A.38B. 23C.3D. 38或23 12.如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC=36cm ;③sin ∠AOB=23;④四边形ABOC 是菱形. 其中正确结论的序号是: A.①③ B.①②③④ C. ②③④ D.①③④二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.分式方程xx 325=+的解为 . 14. 某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如图1,图2的两幅不完整的统计图,已知该校有1200名学生,估计全校最喜爱艺体类图书的学生约有 人.15.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处.已知折痕AE=55cm,且tan ∠EFC=43,则矩形ABCD 的周长为 . 16. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 .17.在△ABC 中,∠BAC=90°,∠C=30°,BC=6,P 为直线AC 上的一点(不与A 、C 重合),满足∠APB=60°,则CP= .三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本题满分6分)先化简,再求值:144)131(2+++÷+--x x x x x ,其中x 是方程05221=---x x 的解. 19.(本题满分6分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?20.(本题满分6分)如图,已知函数b x y +-=21的图象与x 轴,y 轴分别交于点A ,B ,与函数x y =的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a >2),过点P 作x 轴的垂线,分别交b x y +-=21和x y =的图象于点C ,D.(1)求点A 的坐标;(2)若OB=CD ,求a 的值.21.(本题满分6分)码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?22.(本题满分6分)某船以每小时 36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东 30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.23.(本题满分7分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.(1)求证:CE=CF ;(2)△CDF 可看成图中哪个三角形通过旋转变换得到的?写出旋转过程;(3)若点G 在AD 上,且∠GCE=45°,试判断线段GE ,BE ,GD 之间的数量关系,并说明理由.24.(本题满分10分)某地区发生了特大旱情,为抗旱保丰收,该地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下Ⅰ型 Ⅱ型 投资金额x (万元) x 5 x 2 4补贴金额y (万元) kx y =1(k ≠0) 2 bx ax y +=22(a ≠0) 2.4 3.2(1)分别求1y 和2y 的函数解析式;(2)有一农户投资10万元购买Ⅰ型、Ⅱ型两种设备,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. 25.(本题满分10分)如图,在△ABC 中,AB=AC ,D 是BC 的中点.AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O过A ,E 两点,交AB 于点F.已知BC=216,AD=4.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径;(3)求co s ∠BEF 的值.26.(本题满分12分)如图,在平面直角坐标系中,已知点A (-1,0)和点B (4,0),点C 在y 轴正半轴上,且∠ACB =90°,将△COB 绕点C 旋转180°得到△CDE ,连结AE .(1)求证:CE 平分∠AED ;(2)若抛物线c bx x y ++-=221过点E 和点C , 求此抛物线解析式;(3)点P 是(2)中抛物线上一点,且以A 、C 、E 、P为顶点的四边形是平行四边形,求点P 的坐标.答案 一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A B A B C D B C D B D B二.填空题13.3=x 14.160 15.36 16. 1-π 17.34或32三.解答题 18.解:原式142+-=x x ·22)2(12+-=++x x x x . (3分) 解方程05221=---x x ,得31=x , (5分) 代入原式75231231-=+-=. (6分) 19. 解:设两把不同的锁分别为1A ,2A ,则它们对应能打开的钥匙分别为1a ,2a ,第三把钥匙为3a . (1分)(3分)从表中看出,共有6种等可能情况,其中只有(1A ,1a ),(2A ,2a )可打开锁.(4分) 故一次打开锁的概率是P=31. (6分) 20.解:(1)∵点M 在函数x y =的图象上,且点M 的横坐标为2, ∴点M 的坐标为(2,2). (1分)把点M (2,2)代入b x y +-=21,得21=+-b ,解得3=b , ∴一次函数的解析式为321+-=x y . (2分) 把0=y 代入321+-=x y 得0321=+-x ,解得6=x , ∴点A 的坐标为(6,0). (3分)1a 2a 3a 1A (1A ,1a ) (1A ,2a ) (1A ,3a ) 2A(2A ,1a ) (2A ,2a ) (3A ,3a )(2)把0=x 代入321+-=x y ,得3=y , ∴点B 的坐标为(0,3).∵CD=OB ,∴CD=3. ∵PC ⊥x 轴,∴点C 的坐标为(a ,321+-a ),点D 的坐标为(a ,a ), ∴3)321(=+--a a ,∴4=a . (6分) 21.解:(1)设轮船上的货物总量为k 吨,根据已知条件得240830=⨯=k , (1分)所以v 关于t 的函数关系式为 tv 240=. (2分) (2)把5=t 代入t v 240=,得 485240==v (吨)(4分) 从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数tv 240=,当t >0时,t 越小,v 越大,这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.(6分)22. (1)如图 ,过点B 作BD ∥AE ,交AC 于点D.∵AB=36×0.5=18(海里),∠ADB=60°,∠DBC=30°,∴∠ACB=30°,又∵∠CAB=30°,∴BC=AB.(2分)∴BC=AB=18>16. ∴点B 在暗礁区域外.(3分)(2)如图,过点C 作CH ⊥AB ,垂足为点H .由(1)得BC=AB=18(海里)在Rt △CBH 中,∠CBH=60°,∴CH=392318=⨯<16.(5分) ∴船继续向东航行有触礁的危险.(6分)23.(1)证明:在正方形ABCD 中,∵BC=CD ,∠B=∠CDF ,BE=DF ,∴△CBE ≌△CDF (SAS ). (1分)∴CE=CF. (2分)(2)△CDF 可以看成是△CBE 绕点C 顺时针旋转90°得到的. (3分)(3)解:GE=BE+GD. (4分)理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF.∵∠GCE=45°,∴∠BCE+DCG=45°.∴∠GCF=∠DCF+∠DCG=45°.(5分)在△ECG 与△FCG 中,∵CE=CF ,∠GCE=∠GCF ,GC=GC ,∴△ECG ≌△FCG (SAS ). (6分)∴GE=GF. ∴GE=DF+GD=BE+GD. (7分)24. 解:(1)由题意得①25=k ,52=k ,∴x y 521=. (1分) ② ⎩⎨⎧=+=+,2.3416,4.224b a b a ∴51-=a ,58=b ,∴x x y 585122+-=.(3分) (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资)10(t -万元,共获补贴Q 万元.∴t t y 524)10(521-=-=,t t y 585122+-=, (5分) ∴4565158515242221++-=+--=+=t t t t t y y Q (7分) 529)3(512+--=t . (8分) ∵51-<0,∴Q 有最大值,即当3=t 时,529=最大Q , (9分) ∴710=-t (万元). 即投资7万元购Ⅰ型设备,投资3万元投资Ⅱ设备,共获得最大补贴5.8万元.(10分)25. 解:(1)连接OE. ∵AB=AC ,D 是BC 的中点. ∴∴AD ⊥BC. (1分)∵OA=OE ,∴∠OEA=∠OAE.又∵∠OAE=∠DAE. ∴∠OEA=∠DAE.(2分)∴O E ∥AD. ∴∠OED=∠ADC=90°.∴BC 是⊙O 的切线.(3分)(2)∵BC=216,AD=4,∴BD=28,AB=12.(4分)∵O E ∥AD. ∴△BE O ∽△BDA. ∴AB OB AD OE =.(5分) 设⊙O 的半径为r ,则12124r r -=,即r =3.(6分) (3)∵∠FAE=∠DAE ,∠AEF=∠ADE=90°,∴Rt △AFE ∽Rt △AED.(7分)∴ADAE AE AF =. ∴24462=⨯=⋅=AD AF AE .∴AE=62.(8分)∵∠BEF+∠AED=90°,∠AED+∠EAD=90°∴∠BEF=∠EAD.(9分)∴cos ∠BEF=cos ∠EAD=AE AD =36.(10分) 26.解:(1)由题意得:BC =EC ,∠ABC =∠DEC . (1分)∵AC ⊥BE ,∴AB =AE ,∴∠AEB =∠ABC . (2分)∴∠AEB =∠DEC . 即CE 平分∠AED . (3分)(2)∵∠ACB =90°,CO ⊥AB ,∴△AOC ∽△COB .(4分) ∴OBOC OC OA =. ∴OB OA OC ⋅=2=4,∴OC =2.∴点C 坐标为(0,2),点E 坐标为(-4,4). (6分)由⎪⎩⎪⎨⎧=+-⨯-=.441621,2c b c 得25-=b ,2=c . (7分) ∴所求抛物线解析式为225212+--=x x y . (8分)(3)若以AC 、CE 为邻边,则点E 可以看成点C 向左平移4个单位,再向上平移2个单位,将点A 向左平移4个单位,再向上平移2个单位得点P (-5,2).当x =-5时,()225252521=+-⨯-⨯-=y ,∴点P 在抛物线上.∴点P (-5,2)即为所求; (10分)若以EC 、EA 为邻边,同理可得点P (3,-2),经验证此点不在抛物线上,故舍去;(11分)若以AC 、AE 为邻边,同理可得点P (-3,6),经验证此点不在抛物线上,故舍去;∴点P 的坐标为(-5,2). (12分)。
浙江省中考数学黄金冲刺试卷温馨提示:1.本卷满分120分,考试时间120分钟.2.本次考试为开卷考试且不能使用计算器.3.请仔细审题,细心答题,相信你一定有出色的表现.一、选择题(本大题有10小题,每小题3分,共30分)1.给出四个数0,-2,31,27-,其中为无理数的是( ▲ ) A .0 B .-1 C .31D .27-2.下列各式计算正确的是( ▲ ) A .(a +1)2=a 2+1 B .a 2+a 3=a 5 C .a 8÷a 2=a 6D .3a 2-2a 2=13.如图所示的几何体的左视图是( ▲ )4.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同. 若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( ▲ ) A .2 B .4 C .12 D .165.如图,点D 、E 分别在AB 、AC 上,且∠B =∠AED .若DE =4, AE =5,BC =8;则AB 的长为( ▲ )A .16B .8C .10D .56.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ▲ )A .10B .9C .8D .77.河堤横断面如图,堤高BC =5米,迎水坡AB 的坡比是1∶ 3 (坡比是坡面的铅直高BC 与水平宽度AC 之比),则AC 的长是( ▲ ) A .53米 B .10米 C .15米 D .103米8.已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C ',若两条抛物线C和C '关于直线1x =对称,则下列平移方法中,正确的是( ▲ ) A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D .将抛物线C 向右平移6个单位正面 A . B . C . D .(第5题图)AB CDE9.如图,A 、C 分别是x 轴、y 轴上的点,双曲线2y x=(x >0)与 矩形OA BC 的边BC 、AB 分别交于E 、F ,若AF ︰BF =1︰2,则 △OEF 的面积为( ▲ )A .2B .83C .3D .10310.如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A ,B两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,作 C F ⊥AE 于点F .当点E 从点B 出发,逆时针运动到点C 时, 点F 所经过的路径长为( ▲ )A .34π B .33π C .32π D .233π二、填空题(本大题有6小题,每小题4分,共24分)11. 已知a 2﹣b 2=6,a ﹣b =2,则a +b = ▲ .12.一组数1、2、3、x 、5的众数是1,则这组数的中位数是 ▲ .13.已知关于x 的方程321x nx ++=2的解是负数,则n 的取值范围为 ▲ . 14.如图,在8×7的点阵中,任意两个竖直或水平相邻的点都相距1个单位长度.已知正方形ABCD 被线段EF 分割成两部分,则 阴影部分的面积为 ▲ .15.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为 “倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为 ▲ . 16.如图,直线122y x =+交y 轴于点A ,与直线12y x =- 交于点B ,把△AOB 沿y 轴翻折,得到△AOC ,(1)点C的坐标是 ▲ ;(2)若抛物线y =(x ﹣m )2+k 的顶点在直 线12y x =-上移动,当抛物线与△AOC 的边OC ,AC 都 有公共点时,则m 的取值围是 ▲ .三、解答题(本大题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:︒--+--60cos )21(28018.(本题6分)先化简,再求值:)1)(1()2(2a a a +--+,其中43-=a (第14题图) C DB AFEyxDBFCAGE(第10题图)(第9题图)精品资料19.(本题6分)如图,把直角坐标系xoy放置在边长为1的正方形网格中,O是坐标原点,点A、O、B均在格点上,将△OAB绕O点按顺时针方向旋转90°后,得到△BAO''.(1)画出△BAO'',点A的对应点A'的坐标是▲;(2)若点P是在y轴上的一个动点,当P A+AP'的值最小时,点P的坐标是▲.20.(满分8分)某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:(1)该校随机抽查了▲名学生;(2)将图1补充完整;在图2中,“视情况而定”部分所占的圆心角是▲度;(3)估计该校2600名学生中采取“马上救助”的方式约有多少人?21.(本题8分)如图,AB是半圆O的直径,过半圆O上一点D作DE⊥AB,垂足为E,作半圆O的切线DC,交AB的延长线于点C,连结OD、BD.(1)求证:BD平分∠CDE;(2)过点B作BF∥CD交DE于点F,若BE=4,sin∠BOD=45,求线段BC的长.22.(本题10分)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目品种单价(元/棵)成活率A80 92%B100 98%若购买(1)求y与x之间的函数关系式;(2)若购树的总费用82000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?AB O xy23.(本题10分)(1)将矩形OABC 放在平面直角坐标系中,顶点O 为原点,顶点C 、A分别在x 轴和y 轴上,OA =8,OC =10,点E 为OA 边上一点,连结CE ,将△EOC 沿CE 折叠. ①如图1,当点O 落在AB 边上的点D 处时,求点E 的坐标;②如图2,当点O 落在矩形OABC 内部的点D 处时,过点E 作EG ∥x 轴交CD 于点H ,交BC 于点G ,设H (m ,n ),求m 与n 之间的关系式;(2)如图3,将矩形OABC 变为边长为10的正方形,点E 为y 轴上一动点,将△EOC 沿CE 折叠.点O 落在点D 处,延长CD 交直线AB 于点T ,若12AE AO =,求AT 的长.24.(本题12分)如图,已知抛物线223y x x =--经过x 轴上的A ,B 两点,与y 轴交于点C ,线段BC 与抛物线的对称轴相交于点D ,点E 为y 轴上的一个动点. (1)求直线BC 的函数解析式,并求出点D 的坐标;(2)设点E 的纵坐标为为m ,在点E 的运动过程中,当△BDE 中为钝角三角形时,求m的取值范围; (3)如图2,连结DE ,将射线DE 绕点D 顺时针方向旋转90°,与抛物线交点为G ,连结EG ,DG 得到R t △GED .在点E 的运动过程中,是否存在这样的R t △GED ,使得两直角边之比为2:1,如果存在,求出此时点G 的坐标;如果不存在,请说明理由.图1图2图3y xDA BC OE y xHG DABC OExy TDEC BAO参考答案及评分意见题号 1 2 3 4 5 6 7 8 9 10 答案DCCBCAACBD二、填空题(本大题有6小题,每小题4分,共24分) 11. 3 12. 2 13. n <2且n ≠32 14. 4315. 312或 16. (1)(2,1);(2)116-≤m ≤933- 或133+≤m ≤933+ (每小题各2分)三、解答题(本大题有8小题,共66分)17.(本题6分)原式=122212-(4分) =212+(2分) 18.(本题6分)原式=4a +5 (4分)=2 (2分)19.(本题6分)(1)画出△B A O ''(2分),A '的坐标是(2,﹣1)(2分) (2)P 的坐标(0,1)(2分) 20.(本题8分) (1)200(2分)(2)将图1补充完整(2分),圆心角是 72 度(2分) (3)大约1560人(2分) (1)略(4分).(2)BC =203(4分) 22.(本题10分)(1)80100(900)y x x =+-2090000x =-+ (3分)精品资料(2)209000082000x -+≤ 解得x ≥400即购A 种树不少于400棵 (3分)(3)92%98%(900)94%900x x +-⨯≥ 解得x ≤600 (2分)2090000y x =-+Q 随x 的增大而减小当600x =时,购树费用最低为206009000078000y =-⨯+=(元) 当600x =时,900300x -= (2分) 此时应购A 种树600棵,B 种树300棵. 23.(本题10分) (1)E (0,5)(3分)(2)21520m n =+(3分) (3)解:52AT =或856(4分)24.(本题12分)(1)3y x =-,点D 的坐标是(1,﹣2) (4分) (2)m >3 (2分) 或m <﹣1且m ≠﹣3 (2分)(3)①当点G 在对称轴右侧的抛物线上时,G 1(3,0)、 G 23(1)22+-②当点G 在对称轴左侧的抛物线上时,G 3(1,0)-、 G 43(1)22-- (4分)。
2020年中考数学冲刺卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B 、CD 的四个答燕,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂1.(4分)下列各数中,是负整数的是( )A .﹣6B .3C .0D .12 2.(4分)如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是( )A .B .C .D . 3.(4分)抛物线y =x 2﹣2x +1的顶点坐标是( )A .(1,0)B .(﹣1,0)C .(﹣2,1)D .(2,﹣1)4.(4分)下列命题中,是假命题的是( )A .有3个内角是直角的四边形是矩形B .等腰三角形是轴对称图形C .平行四边形的对角线一定相互垂直D .菱形的四边相等5.(4分)中国古代数学著作《用锌算经》中记录了商高同周公的一段对话,其中就提出了勾广三,股修四,径隔五”,大意为:当直角三角形的两条直角边长分别为3和4时,斜边长为5.在与之形状相同的另一直角三角形中,斜边长为10,则它较短的一条直角边长为( )A .6B .8C .10D .12 6.(4分)估计√90×√15−√8×√12的值应在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间7.(4分)光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x 元/支,若使该种钢笔的月销量不低于105支,则x 应满足的不等式为( )A .180﹣15x ≥105B .180﹣(x ﹣14)≤105C .180+15(x +14)≥105D .180﹣15(x ﹣14)≥1058.(4分)按如图所示的运算程序,能使输出的结果为25的是( )A .x =2,y =1B .x =3,y =3C .x =1,y =3D .x =﹣6,y =19.(4分)如图所示,将形状、大小完全相同的小圆点“•”按照一定规律摆成下列图形,其中第①个图案中有4个小圆点,第②个图案中有7个小圆点,第个图案中有10个小圆点,…,按此规律排列下去则第⑥个图案中小圆点的个数为( )A .16B .19C .22D .2510.(4分)如图,点C 是⊙O 的直径BA 延长线上一点,CD 与⊙O 相切于点D .过点O 作OE ⊥AB 交⊙O 于点E ,交CD 的延长线于点F ,若⊙O 的半径为1,AC =√5−1,则EF =( )A .12B .1C .√5−12D .√5−2211.(4分)如图,一棵松树AB 挺立在斜坡CB 的顶端,斜坡CB 长为65米,坡度为t =12:5,小张从与点C 相距65米的点D 处向上爬12米到达观景台DE 的顶端点E ,在此测得松树顶端点A 的仰角为39°,则松树的高度AB 约为( )米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A .12.9B .22.2C .24.9D .63.112.(4分)若数m 使关于x 的一元一次不等式组{5x+32>x 3x −2m ≤−2有整数解,且整数解的个数不超过4个,同时使得关于x 的分式方程x+4m x−3+5m 3−x =3的解为整数,则满足条件的所有m 的值之和是( )A .5B .6C .9D .13二、填空题;(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)最近,电影市场最火爆的无疑是漫威电影《复仇者联盟4:终局之战》.该影片自上映以来不断打破全球电影影史各类记录.据报道,该影片全球首周末开画票房突破惊人的120000万美元.数字120000用科学记数法表示为 .14.(4分)如图,已知在Rt △ACB 中,∠C =90°,AC =BC =2,以斜边AB 为一边作菱形ABDE 再以B 为圆心BA 为半径作扇形ABD ,则图中的阴影部分面积为 .15.(4分)从分别写有﹣1,﹣2,1,2的四张卡片中随机抽取两张,把第一张卡片上的数字作为a ,第二张卡片上的数字作为b ,则a ,b 之和大于0的概率是 .16.(4分)如图,AC 为矩形ABCD 的对角线,且tan ∠ACB =12,将△ACB 沿AC 翻折得到△ACE ,CE 交AD 于点F ,再将△ACB 沿射线BC 方向平移至△FGH ,若CH =5,则EF = .17.(4分)上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A ,点B 及终点C 顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x(单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.18.(4分)2019年4月底,37国元首携代表团在我国出席“一带一路”国际合作高峰论坛,为表友好,我国政府选择将刺绣与陶瓷两类工艺品作为国礼赠送给所有来宾.甲乙两个工厂分别承接了制作A,B两种刺绣C种陶瓷的任务.甲工厂安排100名工人制作刺绣,每人只能制作其中一种刺绣,乙工厂安排50名工人制作C种陶瓷,A的人均制作数量比B的人均制作数量少3件,C的人均制作量比A的人均制作量少20%,若本次赠送的国礼(A,B,C三样礼品)的人均制作数量比B的人均制作数量少30%,且A的人均制作数量为偶数件,则本次赠送的国礼共制作了件.三、解答题(本大题8个小题,19-25题各10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(10分)化简:(1)(5a﹣b)(a+b)+(a﹣2b)2(2)(x+3+8x−3)÷x2−2x+12x−620.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.21.(10分)今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱高的爱国情怀和革命精神,重庆八中开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x表示数据分为6组:A:70≤x<75B:75≤x<80;C:80≤x<85;D:85≤x<90;E:90≤x<95;F:95≤x≤100)绘制了如下统计图表:年级平均数中位数众数极差七年级85.8 m n26八年级86.2 86.5 87 18七年级测试成绩在C、D两组的是:81 83 83 83 83 86 87 88 88 89 根据以上信息,解答下列问题(1)上表中m=,n=.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是(填“七”或“八”)年级,至少从两个不同角度说明理由:.22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a +10)%销售,每套乙款亲子装在第一批售价的基础上降低12a %销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a %,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a 的值.23.(10分)小岚根据学习函数的经验,对一个未知函数的图象与性质进行了探究. 已知:y =y 1•y 2,其中y 1=−12x ,y 2与x 成一次函数关系,当x =1时,y 2=﹣6;当x =2时,y 2=﹣4.(1)根据给定的条件,求y 与x 的函数关系式;(2)写出函数y 与x 合适的几组对应值,并根据表中数据,在如图所示的平面直角坐标系中描点并画出函数图象: x… 2 … y …… (3)结合画出的函数图象,解决问题:直接写出关于x 的方程y 1•y 2=12x −12(x >0)的实数解为 (结果保留一位小数).24.(10分)阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b 时,T(a,b)=a﹣b例如:T(1,3)=1+3=4:T(2,﹣1)=2﹣(﹣1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+…+100,则S=100+99+…+3+2+1②①+②:2S=(1+100)+(2+99)+(3+98)+⋯+(100+1)︸100个=100×101=10100,即S=100×(1+100)2=5050.根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)﹣T(5,y)的值;(2)对于正数m,有T(m2+1,﹣1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3√5,AD=6√2,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.26.(8分)如图抛物y=−√33x 2−2√33x+√3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.C,D两点关于抛物线对称轴对称,连接BD交y轴于点E,抛物线对称轴交x轴于点F.(1)点P为线段BD上方抛物线上的一点,连接PD,PE.点M是y轴上一点,过点M作MN⊥y轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+√32NF的最小值;(2)如图2,在(1)中PM+MN+√32NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PM′E′,点G是MN的中点,连接M′G交抛物线的对称轴于点H,过点H作直线l∥PM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.2020年中考数学冲刺卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B 、CD 的四个答燕,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂1.A ; 2.D ; 3.A ; 4.C ; 5.A ; 6.B ; 7.D ; 8.D ; 9.B ; 10.D ;11.C ; 12.B ;二、填空题;(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.1.2×105; 14.4√2−π; 15.13; 16.3; 17.2656; 18.945;三、解答题(本大题8个小题,19-25题各10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.原式=6a 2+3b 2;原式=2x+2x−120.45°; 21.86.5;75 83; 八; 从平均数、众数来看,八年级比七年级高,八年级比七年级好;从方差上看,八年级的比七年级的小,说明八年级的成绩比较稳定;22.购进甲款亲子装60套,乙款亲子装40套;a 的值为40;23.x =3.6; 24.10;19800 25.3;24.26.点S 的坐标为:S 1(−720,17√32),S 2(−2320,9√310)。
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共10小题,满分30分,每小题3分)1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.下列运算正确的是()A.a+a=a2B.(ab)2=ab2C.a2•a3=a5D.(a2)3=a5 3.物美超市试销一批新款衬衫,一周内销售情况如下表所示,超市经理想要了解哪种型号最畅销,那么他最关注的统计量应该是()型号(厘米)383940414243数量(件)132********A.平均数B.众数C.中位数D.方差4.下列一元二次方程没有实数根的是()A.x2+x+1=0B.x2+x﹣1=0C.x2﹣2x﹣1=0D.x2﹣2x+1=0 5.从正面、左面、上面观察一个由小正方体构成的几何体依次得到以下的形状图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.7个6.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮转发后,共有931人参与了转发活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=9317.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,并作了如下的思考:请你说明小华得到两个三角形全等的根据是()A.SSS B.SAS C.ASA D.AAS8.在平面直角坐标系xOy中,点A,B是直线y=x与双曲线的交点,点B在第一象限,点C的坐标为(6,﹣2).若直线BC交x轴于点D,则点D的横坐标为()A.2B.3C.4D.59.如图,在△ABC中,∠C=90°,AB=5,BC=4,将△ABC沿BD折叠,使点C落在AB边上的点E处,过点E作EH∥AD,交BD于点H,过点H作HF⊥AB于点F,则=()A.B.C.D.10.如图,点P从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,点P运动时,△PBC的面积y(cm2)随时间x(s)变化的关系图象是()A.B.C.D.二.填空题(共7小题,满分21分,每小题3分)11.数据0.000000407用科学记数法表示为.12.一个袋中有3个白球和2个红球,它们除颜色不同外都相同.任意摸出一个球后放回,再任意摸出一球,则两次都摸到红球的概率为.13.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.15.若关于x的不等式组.只有4个整数解,则a的取值范围是.16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,求图中阴影部分的面积.17.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2021=.三.解答题(共9小题,满分69分)18.计算:+()﹣1﹣|﹣5|+sin45°.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.在一个不透明的盒子中,放入2个红球,1个黄球和1个白球.这些球除颜色外都相同.(1)第一次摸出一个球后放回盒子中,搅匀后第二次再摸出一个球,请用画树状图法求出两次都摸到红球的概率;(2)直接写出“一次同时摸出两个红球”的概率.21.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.(≈1.732)22.某校想了解学生疫情期间每天宅家学习时间情况,随机抽查了部分学生,对学生每天的学习时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E“组对应的圆心角度数;(3)请估计该校600名学生中每周的课外阅读时间不小于6小时的人数.23.(8分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.24.如图,▱A BCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD 长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.25.在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.26.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.2.解:A、a+a=2a,故本选项不合题意;B、(ab)2=a2b2,故本选项不合题意;C、a2•a3=a5,故本选项符合题意;D、(a2)3=a6,故本选项不合题意.故选:C.3.解:要了解哪种型号最畅销,那么就看哪种型号买的最多,因此关注众数,故选:B.4.解:A、在方程x2+x+1=0中,△=12﹣4×1×1=﹣3<0,∴该方程没有实数根;B、在方程x2+x﹣1=0中,△=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相同的实数根;C、在方程x2﹣2x﹣1=0中,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相同的实数根;D、在方程x2﹣2x+1=0中,△=(﹣2)2﹣4×1×1=0,∴该方程有两个相等的实数根.故选:A.5.解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体.故选:B.6.解:由题意,得n2+n+1=931,故选:C.7.解:由尺规作图可知,OC=O'C',OD=O'D',CD=C'D',在△OCD≌△O′C′D′中,,∴△OCD≌△O′C′D′(SSS),∴∠DOC=∠D′O′C′(全等三角形的对应角相等),∴判定△OCD≌△O′C′D′的依据是“SSS”定理,故选:A.8.解:∵点A,B是直线y=x与双曲线的交点,∴联立方程得:,解得:或,∵点B在第一象限,∴B(2,2),∵点C的坐标为(6,﹣2),设直线BC的解析式为:y=kx+b,把B(2,2),C(6,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+4,∵直线BC交x轴于点D,∴令y=0,即﹣x+4=0,解得:x=4,∴点D横坐标是4,故选:C.9.解:∵EH∥AD,∴∠HEF=∠A,∵HF⊥AB,∠C=90°,∴∠C=∠HFE=90°,∴△EHF∽△ABC,∴=,∴=,∵AB=5,BC=4,∴=,故选:B.10.解:如图,当点P在AD边上运动时,△PBC的面积保持不变,当点P在BD边上运动时,过点P作PE⊥BC于点E,所以S=•PE△PBC因为BC的长不变,PE的长随着时间x增大而减小,所以y的值随x的增大而减小.所以符合条件的图象为A.故选:A.二.填空题(共7小题,满分21分,每小题3分)11.解:0.000000407=4.07×10﹣7.故答案为:4.07×10﹣7.12.解:画树状图如图:共有25个等可能的结果,两次都摸到红球的结果有4个,∴两次都摸到红球的概率为,故答案为:.13.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.14.解:设共有x人,物品的价格为y元,根据题意,可列方程组为,故答案为:.15.解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.解:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BOC=∠BCM=60°,∴∠AOC=120°,在Rt△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2,∴S阴=S扇形OAC﹣S△OAC=﹣=,故答案为.17.解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2021÷3=673…2,∴a2021=a2=﹣,故答案为:﹣.三.解答题(共9小题,满分69分)18.解:原式=﹣2+2﹣5+×=﹣2+2﹣5+1=﹣4.19.解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.解:(1)画树状图如下:共有16个等可能的结果,两次都摸到红球的结果有4个,∴两次都摸到红球的概率为=;(2)画树状图如下:共有12个等可能的结果,“一次同时摸出两个红球”的结果有2个,∴“一次同时摸出两个红球”的概率为=.21.解:有触礁危险.理由:过点P作PD⊥AC于D,由题意知∠PAD=90°﹣60°=30°,∠PBD=90°﹣45°=45°,AB=12海里,设PD=x海里,在Rt△PBD中,∵∠BPD=90°﹣45°=45°,∴∠PBD=∠BPD,∴BD=PD=x,在Rt△PAD中,∵tan∠PAD==,∴AD=x,∵AD=AB+BD,∴x=12+x,∴x==6(+1)≈16.392,∵PD≈16.392海里<18海里,∴有触礁危险,答:如果渔船不改变航线继续向东航行,有触礁危险.22.解:(1)10÷10%=100(人),100×25%=25(人),补全频率分布直方图如图所示:(2)40÷100×100%=40%,因此m=40,360°×=14.4°,答:m的值为40,“E“组对应的圆心角度数为14.4°;(3)600×=174(人),答:该校600名学生中每周的课外阅读时间不小于6小时的人数约为174人.23.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,依题意得:=×,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴x+2=4+2=6.答:每个A类摊位占地面积为6平方米,每个B类摊位的占地面积为4平方米.(2)设建A类摊位a个,建造这100个摊位的费用为y元,则建B类摊位(100﹣a)个,依题意得:y=6a×50+4×40(100﹣a)=140a+16000,∵140>0,∴y随a的增大而增大.∵100﹣a≥4a,解得:a≤20,∴当a取20时,费用最大,最大费用为140×20+16000=18800(元).答:建造这100个摊位的最大费用是18800元.24.解:(1)证明:∵G为的中点,∴∠MOG=∠MDN.∵四边形ABCD是平行四边形.∴AO∥BE,∠MDN+∠A=180°,∴∠MOG+∠A=180°,∴AB∥OE,∴四边形ABEO是平行四边形.∵BO平分∠ABE,∴∠ABO=∠OBE,又∵∠OBE=∠AOB,∴∠ABO=∠AOB,∴AB=AO,∴四边形ABEO为菱形;(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,则∠PAO=∠ABC,设AB=AO=OE=x,则∵cos∠ABC=,∴cos∠PAO=,∴=,∴PA=x,∴OP=OQ=x当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,∴在Rt△OBQ中,由勾股定理得:+=82,解得:x=2(舍负).∴AB的长为2.25.解:(1)∵∠ACB=90°,AB=5,BC=3,∴AC==4,∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,∴∠A'CB=90°,A'B=AB=5,Rt△A'BC中,A'C==4,∴AA'=AC+A'C=8;(2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴∠A'BC=∠ABC,BC'=BC=3,∵CE∥A'B,∴∠A'BC=∠CEB,∴∠CEB=∠ABC,∴CE=BC=3,Rt△ABC中,S=AC•BC=AB•CD,AC=4,BC=3,AB=5,△ABC∴CD==,Rt△CED中,DE===,同理BD=,∴BE=DE+BD=,C'E=BC'+BE=3+=,∵CE∥A'B,∴=,∴=,∴BM=;(3)DE存在最小值1,理由如下:过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,∴∠ACP=∠A'C'D,∵AP∥A'C',∴∠P=∠A'C'D,∴∠P=∠ACP,∴AP=AC,∴AP=A'C',在△APD和△A'C'D中,,∴△APD≌△A'C'D(AAS),∴AD=A'D,即D是AA'中点,∵点E为AC的中点,∴DE是△AA'C的中位线,∴DE=A'C,要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC =2,∴DE最小为A'C=1.26.解:(1)在直线y=﹣2x+4中,令x=0时,y=4,∴点B坐标(0,4),令y=0时,得:﹣2x+4=0,解得:x=2,∴点A(2,0),∵抛物线经过点A(2,0),C(6,0),E(5,3),∴可设抛物线解析式为y=a(x﹣2)(x﹣6),将E(5,3)代入,得:3=a(5﹣2)(5﹣6),解得:a=﹣1,∴抛物线解析式为:y=﹣(x﹣2)(x﹣6)=﹣x2+8x﹣12;(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,∴顶点D(4,4),∵点B坐标(0,4),∴BD∥OC,BD=4,∵y=﹣x2+8x﹣12与x轴交于点A,点C,∴点C(6,0),点A(2,0),∴AC=4,∵点D(4,4),点C(6,0),点A(2,0),∴AD=CD=2,∴∠DAC=∠DCA,∵BD∥AC,∴∠DPH=∠PQA,且∠DPH=∠DAC,∴∠PQA=∠DAC,∴PQ∥DC,且BD∥AC,∴四边形PDCQ是平行四边形,∴PD=QC,∴4﹣2t=3t,∴t=;②存在以点P,N,H,M为顶点的四边形是矩形,此时t=1﹣.如图,若点N在AB上时,即0≤t≤1,∵BD∥OC,∴∠DBA=∠OAB,∵点B坐标(0,4),A(2,0),点D(4,4),∴AB=AD=2,OA=2,OB=4,∴∠ABD=∠ADB,∴tan∠OAB===tan∠DBA=,∴PN=2BP=4t,∴MH=PN=4t,∵tan∠ADB=tan∠ABD==2,∴MD=2t,∴DH==2t,∴AH=AD﹣DH=2﹣2t,∵BD∥OC,∴=,∴=,∴5t2﹣10t+4=0,∴t1=1+(舍去),t2=1﹣;若点N在AD上,即1<t≤,∵PN=MH,∴点E、N重合,此时以点P,N,H,M为顶点的矩形不存在,综上所述:当以点P,N,H,M为顶点的四边形是矩形时,t的值为1﹣.21。
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共9小题,满分27分,每小题3分)1.比赛用的乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“﹣”表示不足标准质量)中,质量最接近标准质量乒乓球是()编号1234偏差/g+0.01﹣0.02﹣0.03+0.04 A.1号B.2号C.3号D.4号2.如图的三视图对应的物体是()A.B.C.D.3.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=46.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,87.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.8.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA =.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.50二.填空题(共8小题,满分24分,每小题3分)10.函数y=的自变量x的取值范围是.11.若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.12.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.13.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是三角形.14.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.15.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.17.已知函数y=kx2+2kx+1,当﹣3≤x≤2时,函数有最大值为4,则k =.三.解答题(共10小题,满分96分)18.(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.19.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.20.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)21.某校组织全校1400名学生进行了“八礼四仪”掌握情况问卷测试.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数.满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=.(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.22.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.23.如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.24.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A 旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.26.建立模型:(1)如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A 作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.参考答案与试题解析一.选择题(共9小题,满分27分,每小题3分)1.解:|+0.01|=0.01,|﹣0.02|=0.02,|﹣0.03|=0.03,|+0.04|=0.04,0.04>0.03>0.02>0.01,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A.2.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.3.解:3100000=3.1×106,故选:D.4.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.5.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.6.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.7.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.8.解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.9.解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.二.填空题(共8小题,满分24分,每小题3分)10.解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.11.解:∵x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,∴x1x2=﹣3.故答案为﹣3.12.解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.13.解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.14.解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==215.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.16.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.17.解:∵函数y=kx2+2kx+1=k(x+1)2﹣k+1,当﹣3≤x≤2时,函数有最大值为4,∴该函数的对称轴是直线x=﹣1,当k<0时,x=﹣1时,函数取得最大值,即﹣k+1=4,得k=﹣3;当k>0时,x=2时,函数取得最大值,即9k﹣k+1=4,解得,k=,故答案为:﹣3或.三.解答题(共10小题,满分96分)18.解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.19.解:解不等式①得:x<3,解不等式②得:x≥﹣,故不等式组的解集为﹣≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.20.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.21.解:(1)a=400﹣(20+48+104+148)=80,故答案为:80;(2)补全频数分布直方图如下:(3)1400×=518(人),答:估计全校获奖学生的人数为518人.22.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.23.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.24.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.25.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.26.解:(1)如图1,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(2)∵直线y=x+8与y轴交于点A,与x轴交于点B,∴A(0,8)、B(﹣6,0),如图2,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴,在△BDC和△AOB中,∴△BDC≌△AOB(AAS),∴CD=BO=6,BD=AO=8,∴OD=OB+BD=6+8=14,∴C点坐标为(﹣14,6),设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得,∴l2的函数表达式为y=x+8;(3)∵点Q(a,2a﹣6),∴点Q是直线y=2x﹣6上一点,当点Q在AB下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),∴AE=QF,即8﹣(2a﹣6)=10﹣a,解得a=4;当点Q在线段AB上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,则AE=2a﹣14,FQ=10﹣a.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣14=10﹣a,解得a=8;综上可知,A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为4或8.27.解:(1)∵抛物线y=﹣x2+2x﹣与y轴交于点C,∴C(0,﹣),∵y=﹣x2+2x﹣=﹣(x﹣2)2+,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y=x﹣;(2)∵直线CE交抛物线于点F(异于点C),∴x﹣=﹣(x﹣2)2+,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,﹣a2+2a﹣)则H(a,a﹣),∴PH=﹣a2+2a﹣﹣(a﹣),=﹣a2+,=PH×3=﹣a2+,∵S△CFP∴当a=时,S面积最大,△CFP如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG==;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y=x﹣,∴当y=0时,x=1.即G(1,0),∴DG==2,∵tan∠DGI==,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4,∴G'(3,0),如图4,当G''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK =30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=2+2综上,GL的长为4或2+2.。
河北省中考数学黄金冲刺试卷(考试时间:120分钟 满分:150分)第一部分 选择题(共18分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共18分) 1.21-的相反数是 A .21 B .2 C .2- D .21-2.下列计算错误..的为 A .224)2(a a =- B .523)(a a = C .120= D .8123=- 3.方程0862=+-x x 的两根是三角形的边,则三角形的第三条边长可以是 A .2 B .6 C .4 D .8 4.下列图案中,属于轴对称图形的是A .B .C .D . 5.一个几何体的三视图如右图所示,则这个几何体可能是A .B .C .D . 6.已知下列命题:①若22b a =,则b a =; ②对角线互相垂直平分的四边形是菱形; ③过一点有且只有一条直线与已知直线平行; ④在反比例函数xy 2=中,如果函数值y < 1时,那么自变量x > 2. 其中真命题的个数是A .4个B .3个C .2个D .1个第二部分 非选择题(132分)二、填空题(每小题3分,共30分)7.若2a ﹣b =5,则6a ﹣3b 的值是 . 8.一组数据2、-2、4、1、0的中位数是 . 9.已知∠α的补角是130°,则∠α= 度. 10.因式分解: =+2ab ab _____________.11.PM2.5是大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为 .12.命题“平行四边形的对角线互相平分”的逆命题是______命题.(填“真”或“假”)13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的度数是__________ .14.已知⊙O 1的半径r 1=2,⊙O 2的半径r 2是方程3(x -1)=2x 的根,⊙O 1与⊙O 2的圆心距为1,那么两圆的位置关系为_________.15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ .16.如图,在△ABC 中,AB =AC =7,BC =2,点Q 是BC 的延长线上一点,且AQ =BQ +CQ ,求tanQ= .三、解答题(本大题共10题,共102分)17.(本小题满分12分) (1)计算:02201430cos 2312+︒+--- (2)先化简22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,再从-2,0,2,4中选择一个合适的数代入,求出 这个代数式的值.18.(本题8分)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩,并写出不等式组的整数解.19.(本小题满分8分)我市某中学九年级学生对市民“创建国家卫生城市“知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果 划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、 “从未听说”五个等级,统计后的数据整理如下表: 等级 非常了解 比较了解 基本了解 不太了解 从未听说 频数4060483616频率 0.2 m 0.24 0.18 0.08(1)本次问卷调查抽取的样本容量为________,表中m 的值为_______;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数; 20.(本小题满分8分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的过程:甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程各需几天?21.(本题满分10分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形OM A DA第13题 第15题 第16题状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35. (1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,请用画树状图或列表的方法求第二次取出小球标号大于第一次取出小球标号的概率.22.(本题满分10分)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处 的俯角为60°,已知该山坡的坡度i (即tan ∠ABC)为1∶3, 点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条 直线上,且PH ⊥HC .(1)山坡坡角(即∠ABC)的度数等于 度;(2)求A 、B 两点间的距离.(结果精确到0.1米,参考数据:3≈1.73).23.(本小题满分10分)如图,在平面直角坐标系中,反比例函数y =xk(x >0)的图象和矩形ABCD 在第一象限,AD 平行于x 轴,且AB =2,AD =4, 点A 的坐标为(2,6). (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点A 、C 恰好同时落在反 比例函数的图象上,请求矩形的平移距离和反比例函数的解析式.24.(本小题满分10分)如图,在△ABC 中,BE 是它的角平分线, ∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E , 交BC 于点F .(1)求证:AC 是⊙O 的切线; (2)已知sinA =21,⊙O 的半径为4,求图中阴影部分的面积.25.(本小题满分12分)如图,正方形ABCD 的边AB =8厘米,对角线AC 、BD 交于点O ,点P 沿射线AB 从点A 开始以2厘米/秒的速度运动;点E 沿DB 边从点D 开始向点B 以2厘米/秒的速度运动.如果P 、E 同时出发,用t 秒表示运动的时间(0< t <8).(1)如图1,当0< t <4时 ①求证:△APC ∽△DEC ; ②判断△PEC 的形状并说明理由;(2)若以P 、C 、E 、B 为顶点的四边形的面积为25,求运动时间t 的值.AA26.(本小题满分14分)如图1,抛物线234(0)y ax ax a a =--<交x 轴于点A 、B(A 左B 右),交y 轴正半轴于点C . (1)求A 、B 两点的坐标;(2)点D 在抛物线在第一象限的部分上一动点,当∠ACB =90°时 ①求抛物线的解析式;②当四边形OCDB 的面积最大时,求点D 的坐标;③如图2,若E 为的中点,DE 的延长线交线段AB 于点F ,当△BEF 为钝角三角形时,请直接 写出点D 的纵坐标y 的范围.参考答案15.20 16.324.(1)略 (2)63-π3825.(1)①略 ②等腰直角三角形,理由略 (2)t=3, t=425 26.(1)A(-1,0) B(4,0)(2)①y=-223212++x x ②D(2,3) ③913<y ≤825。
冲刺2020——2020年中考数学压轴题汇编(含解题过程,共69页)doc初中数学〔2018年北京〕25.如图,在平面直角坐标系xOy中,ABC三个机战的坐标分不为()6,0A-,()6,0B,()0,43C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.〔1〕求D点的坐标;〔2〕作C点关于直线DE的对称点F,分不连结DF、EF,假设过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;〔3〕设G为y轴上一点,点P从直线y kx b=+与y轴的交点动身,先沿y轴到达G点,再沿GA到达A点,假设P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时刻最短。
〔要求:简述确定G点位置的方法,但不要求证明〕〔2018年重庆市〕26.:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . 〔1〕求过点E 、D 、C 的抛物线的解析式;〔2〕将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .假如DF 与〔1〕中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?假设成立,请给予证明;假设不成立,请讲明理由;〔3〕关于〔2〕中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?假设存在,要求出点Q 的坐标;假设不存在,请讲明理由.26.解:〔1〕由,得(30)C ,,(22)D ,, 90ADE CDB BCD ∠=-∠=∠°,1tan 2tan 212AE AD ADE BCD ∴=∠=⨯∠=⨯=.∴(01)E ,. ····························································································· 〔1分〕设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠.26题图y xDBCA EO将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分不代入,得42129310.a b a b ++=⎧⎨++=⎩,······················································································ 〔2分〕 解那个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ··················································· 〔3分〕 〔2〕2EF GO =成立. ············································································ 〔4分〕 点M 在该抛物线上,且它的横坐标为65, ∴点M 的纵坐标为125. ··········································································· 〔5分〕 设DM 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分不代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴DM 的解析式为132y x =-+. ······························································ 〔6分〕∴(03)F ,,2EF =. ·············································································· 〔7分〕 过点D 作DK OC ⊥于点K , 那么DA DK =.90ADK FDG ∠=∠=°, FDA GDK ∴∠=∠.又90FAD GKD ∠=∠=°, DAF DKG ∴△≌△. 1KG AF ∴==.1GO ∴=. ···························································································· 〔8分〕 2EF GO ∴=. 〔3〕点P 在AB 上,(10)G ,,(30)C ,,那么设(12)P ,. ∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.①假设PG PC =,那么2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,现在点Q 与点P 重合.x∴(22)Q ,. ···························································································· 〔9分〕 ②假设PG GC =,那么22(1)22t 2-+=, 解得 1t =,(12)P ∴,,现在GP x ⊥轴.GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73. ∴713Q ⎛⎫⎪⎝⎭,. ························································································ 〔10分〕③假设PC GC =,那么222(3)22t -+=,解得3t =,(32)P ∴,,现在2PC GC ==,PCG △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H , 那么QH GH =,设QH h =,(1)Q h h ∴+,.2513(1)(1)166h h h ∴-++++=.解得12725h h ==-,〔舍去〕.12755Q ⎛⎫∴ ⎪⎝⎭,. ····································· 〔12分〕综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫⎪⎝⎭,或12755Q ⎛⎫⎪⎝⎭,.〔2018年重庆綦江县〕26.〔11分〕如图,抛物线(1)20)y a x a =-+≠通过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .〔1〕求该抛物线的解析式;〔2〕假设动点P 从点O 动身,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时刻为()t s .咨询当t 为何值时,四边形DAOP 分不为平行四边形?直角梯形?等腰梯x形?〔3〕假设OC OB =,动点P 和动点Q 分不从点O 和点B 同时动身,分不以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时刻为t ()s ,连接PQ ,当t小?并求出最小值及现在PQ 的长.*26.解:〔1〕抛物线2(1)0)y a x a =-+≠通过点(20)A -,,09a a ∴=+= ·············································································· 1分 ∴二次函数的解析式为:2y x =++ ··········································· 3分 〔2〕D 为抛物线的顶点(1D ∴过D 作DN OB ⊥于N ,那么DN = 3660AN AD DAO =∴==∴∠=,° ············································ 4分 OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形66(s)OP t ∴=∴= ·········································· 5分 ②当DP OM ⊥时,四边形DAOP 是直角梯形过O 作OH AD ⊥于H ,2AO =,那么1AH = 〔假如没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求AH 55(s)OP DH t ∴=== ················································································ 6分 ③当PD OA =时,四边形DAOP 是等腰梯形 26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t =、5、4时,对应四边形分不是平行四边形、直角梯形、等腰梯形. · 7分〔3〕由〔2〕及,60COB OC OB OCB ∠==°,,△是等边三角形那么6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,过P 作PE OQ ⊥于E,那么2PE t =···························································· 8分116(62)222BCPQ S t ∴=⨯⨯⨯-⨯=2322t ⎫-+⎪⎝⎭··················································································· 9分 当32t =时,BCPQ S························································· 10分 ∴现在33393324444OQ OP OE QE PE ==∴=-==,=,PQ ∴=== ·············································· 11分〔2018年河北省〕26.〔本小题总分值12分〕如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 动身沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后赶忙以原先的速度沿AC 返回;点Q 从点A 动身沿AB 以每秒1个单位长的速度向点B 匀速运动.相伴着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时动身,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时刻是t 秒〔t〔1〕当t = 2时,AP =,点Q 到AC 的距离是 ; 〔2〕在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;〔不必写出t 的取值范畴〕〔3〕在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?假设能,求t 〔4〕当DE 通过点C 时,请直截了当....写出t 的值.26.解:〔1〕1,85;〔2〕作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC ,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.〔3〕能.P P图4P图3F①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.现在∠AQP=90°.由△APQ ∽△ABC,得AQ AP AC AB=,即335t t-=.解得98t=.②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.现在∠APQ =90°.由△AQP ∽△ABC,得AQ APAB AC=,即353t t-=.解得158t=.〔4〕52t=或4514t=.【注:①点P由C向A运动,DE通过点C.方法一、连接QC,作QG⊥BC于点G,如图6.PC t=,222QC QG CG=+2234[(5)][4(5)]55t t=-+--.由22PC QC=,得22234[(5)][4(5)]55t t t=-+--,解得52t=.方法二、由CQ CP AQ==,得QAC QCA∠=∠,进而可得B BCQ∠=∠,得CQ BQ=,∴52AQ BQ==.∴52t=.②点P由A向C运动,DE通过点C,如图7.22234(6)[(5)][4(5)]55t t t-=-+--,4514t=】〔2018年河南省〕23.〔11分〕如图,在平面直角坐标系中,矩形ABCD的三个顶点B〔4,0〕、C〔8,0〕、D〔8,8〕.抛物线y=ax2+bx过A、C两点.(1)直截了当写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A动身.沿线段AB向终点B运动,同时点Q从点C动身,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时刻为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判定有几个时刻使得△CEQ是等腰三角形?请直截了当写出相应的t值.BPQED图5AC(E)BPQD图6GAC(E)BPQD图7G解.(1)点A 的坐标为〔4,8〕 …………………1分 将A (4,8)、C 〔8,0〕两点坐标分不代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4 ∴抛物线的解析式为:y =-12x 2+4x …………………3分〔2〕①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为〔4+12t ,8-t 〕.∴点G 的纵坐标为:-12〔4+12t 〕2+4(4+12t 〕=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分(2018年山西省)26.〔此题14分〕如图,直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分不交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分不在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.〔1〕求ABC △的面积;〔2〕求矩形DEFG 的边DE 与EF 的长;〔3〕假设矩形DEFG 从原点动身,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时刻为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范畴.26.〔1〕解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ 〔2分〕由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· 〔3分〕 ∴111263622ABC C S AB y ==⨯⨯=△·.·················································· 〔4分〕 〔2〕解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· 〔5分〕 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· 〔6分〕 ∴8448OE EF =-==,. ································································ 〔7分〕〔3〕解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR 〔0t =时,为四边形CHFG 〕.过C 作CM AB ⊥于M ,那么Rt Rt RGB CMB △∽△.〔第26题〕〔图3〕〔图1〕〔图2〕∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.·························································· 〔10分〕 〔2018年山西省太原市〕29.〔本小题总分值12分〕 咨询题解决如图〔1〕,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E 〔不与点C ,D 重合〕,压平后得到折痕MN .当12CE CD =时,求AMBN的值.类比归纳在图〔1〕中,假设13CE CD =,那么AM BN 的值等于 ;假设14CE CD =,那么AMBN 的值等于 ;假设1CE CD n =〔n 为整数〕,那么AMBN的值等于 .〔用含n 的式子表示〕联系拓广 如图〔2〕,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E 〔不与点C D ,重合〕,压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,那么AMBN的值等于 .〔用含m n ,的式子表示〕29.咨询题解决解:方法一:如图〔1-1〕,连接BM EM BE ,,.方法指导:为了求得AMBN 的值,可先求BN 、AM 的长,不妨设:AB =2图〔2〕N ABCD EFM图〔1〕A BCDEFMNA EFM由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,那么NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ········································· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. ····························································· 5分设AM y =,那么2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ····································································· 6分∴15AM BN =.····················································································· 7分 方法二:同方法一,54BN =. ································································ 3分如图〔1-2〕,过点N 做NG CD ∥,交AD 于点G ,连接BE .N图〔1-2〕A BC DEFMG第23题图〔1〕∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. 在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ························· 5分∵114AM AG MG AM =--=5,=.4 ····················································· 6分 ∴15AM BN =.··················································································· 7分 类比归纳25〔或410〕;917; ()2211n n -+ ······························································· 10分 联系拓广2222211n m n n m -++ ······················································································ 12分 评分讲明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分讲明进行估分. 2.如解答题由多个咨询题组成,前一咨询题解答有误或未答,对后面咨询题的解答没有阻碍,可依据参考答案及评分讲明进行估分.〔2018年安徽省〕23.某种水果的批发单价与批发量的函数关系如图〔1〕所示. 〔1〕请讲明图中①、②两段函数图象的实际意义.【解】〔2〕写出批发该种水果的资金金额w 〔元〕与批发量m 〔kg 〕之间的〕第23题图〔2〕函数关系式;在以下图的坐标系中画出该函数图象;指出金额在什 么范畴内,以同样的资金能够批发到较多数量的该种水果.【解】〔3〕经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图〔2〕所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你关心该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】23.〔1〕解:图①表示批发量许多于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分〔2〕解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如下图.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分〔3〕解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,现在m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg 〔x >60〕那么由图②日零售价p 满足:32040x p =-,因此32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,现在p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分〔2018年江西省〕25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. 〔1〕求点E 到BC 的距离; 〔2〕点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时〔如图2〕,PMN △的形状是否发生改变?假设不变,求出PMN △的周长;假设改变,请讲明理由;②当点N 在线段DC 上时〔如图3〕,是否存在点P ,使PMN △为等腰三角形?假设存在,要求出所有满足要求的x 的值;假设不存在,请讲明理由.25.〔1〕如图1,过点E 作EG BC ⊥于点G . ··················· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ············ 2分A D E BF C图4〔备用〕AD EBF C图5〔备用〕A D E BF C图1 图2 A D EBF C PNM 图3 A D EBFCPNM 〔第25题〕 图1A D EBF CG∴112BG BE EG ====, 即点E 到BC····································· 3分 〔2〕①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.那么35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,那么MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.现在,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN =时,如图4,这时MC MN MP ===现在,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF 〔P 〕 CMN GGRG图2A D EBF CPNMG H那么120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.现在,6114x EP GM ===--=.综上所述,当2x =或4或()53-时,PMN △为等腰三角形. ···················· 10分 〔2018年广东广州〕25.〔本小题总分值14分〕如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C 〔0,-1〕,ΔABC 的面积为45。
中考数学冲刺卷学校:___________姓名:___________班级:___________考号:___________一、选择题(12小题,每小题4分,共48分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A .+4B .﹣9C .﹣4D .+92.下列计算正确的是( ).A .3a −a =2B .a 2⋅a 3=a 6C .(a +b)2=a 2+b 2D .a 2+2a 2=3a 23.下列调查中,适宜采用全面调查(普查)方式的是(( )A .对一批圆珠笔使用寿命的调查B .对韩江水质现状的调查C .对某品牌烟花爆竹燃放安全的调查D .对一枚用于发射于卫星的运载火箭各零部件的检查4.下列扑克牌中,中心对称图形有A .1张B .2张C .3张D .4张5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .196.为估计池塘两岸A ,B 间的距离,小明的办法是在地面上取一点O ,连接OA ,OB ,测得OB=15.1m ,OA=25.6m .这样小明估算出A ,B 间的距离不会大于( )A .26mB .38mC .40mD .41m7.某商场把一个双肩背包按进价提高50%标价,然后再按标价八折出售,这样商场每卖出一个书包仍可赢利8元,则这款双肩包的进价是( )A .16元B .24元C .30元D .40元试卷第2页,总25页8.“圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD 长为( )A .252寸B .13寸C .25寸D .26寸9.在某次海上搜救工作中,A 船发现在它的南偏西30°方向有一漂浮物,同时在A 船正东10 km 处的B 船发现该漂浮物在它的南偏西60°方向,此时,B 船到该漂浮物的距离是( )A .5√3kmB .10√3kmC .10kmD .20km10.关于的不等式组{x ≤−12x >m的所有整数解的积为2,则的取值范围为( ) A .m >−3 B .m <−2 C .−3≤m <−2 D .−3<m ≤−211.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 2018,若点P (4035,m )在第2018段抛物线C 2018上,则m 的值是A .1B .-1C .0D .403512.如图,在△ABC 中,AC =50 cm ,BC =40 cm ,∠C =90°,点P 从点A 开始沿AC 边向点C 以2 cm/s 的速度匀速运动,同时另一点Q 由点C 开始以3 cm/s 的速度沿着CB 向点B 匀速运动,当其中一点到达终点时,另一点也随之停止运动,则当△PCQ 的面积等于300 cm 2时,运动时间为( )A .5 sB .20 sC .5 s 或20 sD .不确定二、填空题(6小题,每小题4分,共24分)13.计算:(3-π)0+(-0.2)-2=________.14.现有两张铁片:长方形铁皮长为x+2y,宽为x﹣2y(其中x﹣2y>0);正方形铁皮的边长为2(x﹣y),根据需要把两张铁皮裁剪后焊接成一张长方形的铁片,铁皮一边长为6x,则新铁片的另一边长为_____(不计损失)AC长为半径画弧,两15.已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于12弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于1BD长为半2径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=_____.16.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m2.17.小明到商场购买某个牌子的铅笔x支,用了y元(y为整数).后来他又去商场时,发现这种牌子的铅笔降阶20%,于是他比上一次多买了10支铅笔,用了元钱,那么小明两次共买了铅笔________支.18.大于1的正整数的三次方可“分裂”成若干个连续奇数的和,23=3+5,33= 7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则的值是_________.三、解答题(8小题,共78分)19.已知:如图,在等边△ABC 中,DB 是 AC 边上的高,E 是 BC 延长线上一点,且 DB =DE,求∠E 的度数.试卷第4页,总25页20.(1)计算:(a +1)(a −1)−(a −2)2;(2)解不等式:x −1≥x−22+321.2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果技照“A 非常了解.B 了解.C 了解较少.D 不了解”四类分别统计,并绘制了下列两幅统计图不完整).请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)扇形统计图中D 所在的扇形的圆心角为______;(3)将条形统计图补充完整;(4)若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.22.如图,直线y=﹣x+1与x 轴,y 轴分别交于B ,A 两点,动点P 在线段AB上移动,以P 为顶点作∠OPQ=45°交x 轴于点Q .(1)求点A 和点B 的坐标;(2)比较∠AOP 与∠BPQ 的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.23.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元. (1)求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?(2)学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺素材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺素材和陶艺素材的数量在原计划基础上分别增加了2.5 %和m%,结果在结算时发现,两种耗材的总价相等,求的值.24.如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB 交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想−−转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程√2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26.如图,二次函数y=ax2+bx+√3的图像经过A(−1,0),B(3,0),与y轴相交于点C.点P为第一象限的抛物线上的一个动点,过点P分别做BC和x轴的垂线,交BC 于点E和F,交x轴于点M和N.(1)求这个二次函数的解析式;(2)求线段PE的最大值,并求出线段PE最大时点P的坐标;(3)若S△PMN=3S△PEF时,求出点P的坐标.答案解析一、选择题(12小题,每小题4分,共48分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【考点】正负数的运用【分析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.解:收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.2.下列计算正确的是().A.3a−a=2 B.a2⋅a3=a6 C.(a+b)2=a2+b2 D.a2+2a2=3a2【考点】合并同类项的法则,同底数幂的乘法,完全平方公式【分析】根据合并同类项的法则,同底数幂的乘法,完全平方公式进行计算,即可求得答案.解:A、3a-a=2a,故原选项错误;试卷第6页,总25页B、a3•a2=a5,故原选项错误;C、(a+b)2=a2+2ab+b2,故原选项错误;D、a2+2a2=3a2,故本选项正确.故选D.【点睛】此题考查了合并同类项的法则,同底数幂的乘法,完全平方公式.解题的关键是熟记公式.3.下列调查中,适宜采用全面调查(普查)方式的是(()A.对一批圆珠笔使用寿命的调查 B.对韩江水质现状的调查C.对某品牌烟花爆竹燃放安全的调查 D.对一枚用于发射于卫星的运载火箭各零部件的检查【考点】抽样调查和全面调查【分析】普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.由此即可解答.解:选项A,对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查;选项B,对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查;选项C,对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查;选项D,对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查.故选D.【点睛】本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.下列扑克牌中,中心对称图形有()A.1张B.2张C.3张D.4张【考点】中心对称图形【分析】根据中心对称图形的概念求解.解:根据中心对称图形的概念可得:①③是中心对称图形.试卷第8页,总25页故选:B .【点睛】本题考查了中心对称图形的概念,关键是根据中心对称图形是要寻找对称中心,旋转180度后与原图重合解答.5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .19【考点】列表法或树状图法【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A .【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.6.为估计池塘两岸A ,B 间的距离,小明的办法是在地面上取一点O ,连接OA ,OB ,测得OB=15.1m ,OA=25.6m .这样小明估算出A ,B 间的距离不会大于( )A .26mB .38mC .40mD .41m【考点】三角形的三边关系【分析】根据三角形的三边关系定理得到10.5<AB <40.7,根据AB 的范围判断即可.解:连接AB,根据三角形的三边关系定理得:25.6﹣15.1<AB<25.6+15.1,即:10.5<AB<40.7,∴AB的值在10.5和40.7之间.故选:D.【点睛】此题主要考查了三角形的三边关系定理,能正确运用三角形的三边关系定理是解此题的关键.7.某商场把一个双肩背包按进价提高50%标价,然后再按标价八折出售,这样商场每卖出一个书包仍可赢利8元,则这款双肩包的进价是()A.16元 B.24元 C.30元 D.40元【考点】一元一次方程的应用【分析】设这款双肩包的进价为x元,根据利润=售价-成本价,即可得出关于x的一元一次方程,解之即可得出结论.解:设这款双肩包的进价为x元,根据题意得:(1+50%)×0.8x−x=8,解得:x=40.故选D.【点睛】本题考查的是一元一次方程的应用,正确列出方程是解题的关键.8.“圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图,CD是⊙O的直径,弦AB⊥CD,垂足为E,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD长为()A.25寸 B.13寸 C.25寸 D.26寸2【考点】垂径定理,勾股定理【分析】连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x-1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD的长.解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x-1,试卷第10页,总25页∵OA 2=OE 2+AE 2,则x 2=(x-1)2+25,解得:x=13.则CD=2×13=26(cm ).故选D .【点睛】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.9.在某次海上搜救工作中,A 船发现在它的南偏西30°方向有一漂浮物,同时在A 船正东10 km 处的B 船发现该漂浮物在它的南偏西60°方向,此时,B 船到该漂浮物的距离是( )A .5√3kmB .10√3kmC .10kmD .20km【考点】解直角三角形的应用【分析】首先根据等角对等边证明△ABC 是等腰三角形,作AD ⊥BC 于点D ,则BC =2BD ,在直角△ABD 中利用三角函数求的BD ,则BC 即可求得.解:∵△ABC 中,∠ABC =90°-60°=30°,∠CAB =30°+90°=120°, ∴∠C =30°,∴∠C =∠ABC ,∴AB =AC =10km .作AD ⊥BC 于点D ,则BC =2BD .在直角△ABD 中,BD =AB •cos30°=5√3(km ).则BC =10√3(km ).故选B .【点睛】本题考查了方向角以及等腰三角形的判定和三角函数,解题关键是正确理解方向角的定义,证明△ABC 是等腰三角形.10.关于x 的不等式组{x ≤−12x >m 的所有整数解的积为2,则m 的取值范围为( )A .m >−3B .m <−2C .−3≤m <−2D .−3<m ≤−2 【考点】一元一次不等式组的整数解【分析】首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围. 解:原不等式组的解集为m <x ≤−12.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m <-2. 故选C .【点睛】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,要借助数轴做出正确的取舍. 11.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 2018,若点P (4035,m )在第2018段抛物线C 2018上,则m 的值是A .1B .-1C .0D .4035 【考点】二次函数与几何变换【分析】根据抛物线与x 轴的交点问题,得到图象C 1与x 轴交点坐标为:(0,0),(2,0),再利用旋转的性质得到图象C 2与x 轴交点坐标为:(2,0),(4,0),则抛物线C 2:y=(x-2)(x-4)(2≤x≤4),于是可推出横坐标x 为偶数时,纵坐标为0,横坐标是奇数时,纵坐标为1或-1,只要判断n 的值即可解决问题. 解:∵一段抛物线C 1:y=-x (x-2)(0≤x≤2), ∴图象C 1与x 轴交点坐标为:(0,0),(2,0), ∵将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;, ∴抛物线C 2:y=(x-2)(x-4)(2≤x≤4), 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; …∴P (4035,m )在抛物线C 2018上,∵n=2018是偶数,∴P(4035,m)在x轴的下方,m=-1,∴当x=4035时,m=-1.故选:B.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在△ABC中,AC=50 cm,BC=40 cm,∠C=90°,点P从点A开始沿AC边向点C以2 cm/s的速度匀速运动,同时另一点Q由点C开始以3 cm/s的速度沿着CB 向点B匀速运动,当其中一点到达终点时,另一点也随之停止运动,则当△PCQ的面积等于300 cm2时,运动时间为( )A.5 s B.20 s C.5 s或20 s D.不确定【考点】一元二次方程的应用【分析】设x秒后,△PCQ的面积等于300 cm2,根据路程=速度×时间,可用时间x表示出CP和CQ的长,然后根据直角三角形的面积公式,得出方程,求出未知数,然后看看解是否符合题意,将不合题意的舍去,即可得出时间的值.解:设x秒后,△PCQ的面积等于300 cm2,有:1(50-2x)×3x=300,2∴x2-25x+100=0,∴x1=5,x2=20.当x=20s时,CQ=3x=3×20=60>BC=40,即x=20s不合题意,舍去.答:5秒后,△PCQ的面积等于300 cm2.故选:A.【点睛】此题主要考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程求出是解题关键.二、填空题(6小题,每小题4分,共24分)13.计算:(3-π)0+(-0.2)-2=________.【考点】实数的运算试卷第12页,总25页【分析】由任意一个非0实数的0次幂为1及实数的负指数幂概念即可求出。
2020年中考数学冲刺卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题的四个选项中,只有一个正确答案,请将正确答案的字母代号填入下表相应的空格.) 1.(3分)下列四个数中是无理数的是( ) A .3B .3πC .3.14159D .√92.(3分)将一幅三角板如图所示摆放,若BC ∥DE ,那么∠1的度数为( )A .45°B .60°C .75°D .80°3.(3分)一元一次不等式组{2(x +3)−4≤0x+13>x −1的最大整数解是( )A .﹣1B .0C .1D .24.(3分)据报道,人类首张黑洞照片于北京时间2019年4月10日子全球六地同步发布,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球5500万光年.其中5500万用科学记数法表示为( ) A .55×106B .5.5×106C .0.55×108D .5.5×1075.(3分)下列计算正确的是( ) A .a 3•a 2=a 6B .a 5+a 5=a 10C .(﹣2a 3)3=﹣6a 9D .(a +2b )(a ﹣2b )=a 2﹣4b 26.(3分)如图所示几何体的俯视图是( )A .B .C .D .7.(3分)若(a a 2−b 2−1a+b)÷M 的化简结果是−1a+b ,那么分式M 为( ) A .aa+bB .bb−aC .a a−bD .−b a+b8.(3分)二次函数y =x 2+bx +c 的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为y =x 2﹣2x +1,则b +c 的值为( ) A .16B .6C .0D .﹣129.(3分)如图中的古印度的“无字证明”直观的证明一个重要定理,这个定理早在三千多年前就被周朝的数学家商高提出,它被记载于我国古代著名的数学著作是( )A .《周髀算经》B .《九章算术》C .《几何原本》D .《海岛算经》10.(3分)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD̂的长为4π3,则图中阴影部分的面积为( )A .6√3−4π3B .9√3−8π3C .3√32−2π3D .6√3−8π3二.填空题(本大题共5个小题,每小题3分,共15分) 11.(3分)计算√27√6√2的结果是 .12.(3分)某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为45°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走4米至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1:2.4,那么大树CD 的高度为 .13.(3分)如图,在矩形ABCD 中,O 是对角线AC 的中点.将ABCD 绕点B 顺时针旋转90°.旋转后的四边形为A 'B ′C ′D ',点A ,C ,D ,O 的对应点分别为A ′,C ',D ',O ’,若AB =8,BC =10,则线段CO ’的长为 .14.(3分)我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n 个“平行四边形数”和“正六边形数”分别为a 和b ,若a +b =103,则ab 的值是 .15.(3分)如图,矩形ABCD 中,AB =32,BC =AB 2,E 为射线BA 上一动点,连接CE 交以BE 为直径的圆于点H ,则线段DH 长度的最小值为 .三.解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.(10分)(1)计算:|√3−2|−(−12)−2+2cos30°−(1−√2)0 (2)解方程:x 2x−1=2−31−2x17.(9分)山西省实验中学欲向清华大学推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图1:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示: 测试项目测试成绩/分 甲乙 丙 笔试 92 90 95 面试8595 80图2是某同学根据上表绘制的一个不完全的条形图. 请你根据以上信息解答下列问题: (1)补全图1和图2;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?(4)若学校决定从这三名候选人中随机选两名参加清华大学夏令营,求甲和乙被选中的概率.(要求列表或画树状图)18.(8分)如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =mx的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =3,OD =6,△AOB 的面积为3. (1)求一次函数与反比例函数的表达式; (2)当x >0时,比较kx +b 与mx 的大小.19.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,∠DAC=∠B.(1)求证:CA是⊙O的切线.(2)在AB上取一点E,若∠BCE=∠B,AB=2AC,求tan∠ACE的值.20.(8分)某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于50元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是元/件;(2)一次性购买多少件产品时,该公司的销售总利润为728万元;21.(7分)阅读下列材料,并完成相应的任务.古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S=√p(p−a)(p−b)(p−c)(其中a,b,c是三角形的三边长,p=a+b+c2,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p=a+b+c2=6∴S=√p(p−a)(p−b)(p−c)=√6×3×2×1=6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.根据上述材料,解答下列问题:如图,在△ABC中,BC=7,AC=8,AB=9(1)用海伦公式求△ABC的面积;(2)如图,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.22.(12分)综合与实践:问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点G.特例探究实验小组的同学发现:(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;(2)当AB=BC=4时,求CG的长;延伸拓展(3)实知小组的同学在实验小组的启发下,进一步探究了当AB:BC=√3:2时,线段AG、BC、CG之间的数量关系,请你直接写出实知小组的结论.23.(13分)如图,抛物线y=−34x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=34x+3经过点A、C.(1)求抛物线的解析式;(2)P是抛物线上一动点,过P作PM∥y轴交直线AC于点M,设点P的横坐标为t.①若以点C、O、M、P为顶点的四边形是平行四边形,求t的值.②当射线MP,AC,MO中一条射线平分另外两条射线的夹角时,直接写出t的值.2020年中考数学冲刺卷参考答案一、选择题(本大题共10个小题,每小题3分,共30分.每小题的四个选项中,只有一个正确答案,请将正确答案的字母代号填入下表相应的空格.)1.B ; 2.C ; 3.A ; 4.D ; 5.D ; 6.D ; 7.B ; 8.C ; 9.A ; 10.D ;二.填空题(本大题共5个小题,每小题3分,共15分) 11.2√3; 12.11米; 13.√61; 14.1291; 15.34;三.解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.﹣3;x =−1317.(2)甲的票数是:200×34%=68(票), 乙的票数是:200×30%=60(票), 丙的票数是:200×28%=56(票); (3)应该录取乙;(4)甲和乙被选中的概率=26=1318.y =12x ; 19.tan ∠ACE =AEAC =34; 20.70;14 21.12√5;S △ABI =12AB •FI =12×9×√5=9√52 22.略;23.(1)抛物线的解析式y =−34x 2−94x +3;(2)满足条件的t 的值为﹣2或﹣2+2√2或﹣2﹣2√2;(3)t 的值为−7225,125。
热点专题8 二次函数综合题型《课程标准》对二次函数这一知识点的学习要求比较高,它最能体现初中代数的综合性和能力性,因此,二次函数在近几年中考试卷中已形成必不可少的题型,2019年中考中对二次函数的考查角度有所调整,将二次函数的性质和特征作为试题主体来考查,促使我们在复习中把二次函数作为最核心的内容之一来学习,预计仍会以二次函数的性质和特征作为试题主体来考查,在此过程中会以周长、面积、相似、等腰三角形,特殊四边形以及新定义问题为载体进行命题.考向1 二次函数之周长与最值问题1.(2019·常德中考改编)如图11,已知二次函数图象的顶点坐标为A (1,4),与坐标轴交于B 、C 、D 三点,且B 点的坐标为(-1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值.考向2二次函数之面积问题xx yy备用图图11CADB B H N G DAMCOO2.(2019·衡阳)如图,二次函数y=x 2+bx +c 的图象与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E .(1)求该抛物线的函数关系表达式;(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M ,连接MN 、MB ,请问:△MBN 的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.考向3 二次函数之等腰三角形问题3.(2019·兰州)二次函数22y ax bx =++的图象交x 轴于点(-1,0),B (4,0)两点,交y 轴于点C ,动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN ⊥x 轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒.(1)求二次函数22y ax bx =++的表达式;(2)连接BD ,当t=32时,求△DNB 的面积; (3)在直线MN 上存在一点P ,当△PBC 是以∠BPC 为直角的等腰直角三角形时,求此时点D 的坐标; (4)当t=54时,在直线MN 上存在一点Q ,使得∠AQC+∠OAC=90°,求点Q 的坐标.考向4 二次函数之相似三角形问题4.(2019·娄底)如图(14),抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值. (3)直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.考向5 二次函数之特殊四边形问题5.(2019•广安)如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线:l y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)A -,(5,6)D -,P 点为抛物线2y x bx c =-++上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式; (2)当点P 在直线l 上方的抛物线上时,过P 点作//PE x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.考向6 二次函数之角度存在性问题6. (2019·泰安) 若二次函数y=ax 2+bx+c 的图象与x 轴、y 轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且S △PBA =4,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M,使∠ABO=∠ABM ?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.考向7 二次函数之新定义问题7.(2019江西省)特例感知:(1)如图1,对于抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 下列结论正确的序号是 ;①抛物线1y ,2y ,3y 都经过点C(0,1);②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移21个单位得到;③抛物线1y ,2y ,3y 与直线y=1的交点中,相邻两点之间的距离相等. 形成概念:(2)把满足12+--=nx x y n (n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由;③在②中,直线y=1分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n A C ,11--n n A C ,判断n n A C ,11--n n A C 是否平行?并说明理由.。
热点专题1 新定义型问题综观2019年中考“新定义”问题的解答,效果并不是很理想,普遍出现“题没看清、没看懂”、“理解错了”等状况,究其原因是阅读理解能力太弱.这就要求我们在平时关注理解能力的培养,从而使学生综合分析解决问题的能力得到提升.1.“新定义”问题的概念及特征“新定义”问题其主要特征是以初中生已学过的知识为出发点,通过类比、引申、拓展给出新的数学概念(数学公式);或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,通过分析近年来中考试卷中出现的这类“新定义”型试题大致分为三种类型:(1)定义“新规则,新运算”型;(2)定义数学新概念型;(3)定义新函数、新知识型.2.“新定义”问题类型和常用解题方法(1)定义“新规则,新运算”型“新规则,新运算”型一般是先通过阅读示例的解题过程,理解方法要点,并体会蕴含其中的数学思想;再由特殊到一般对新方法加以应用,特别是在解决一般情况时要注意题目中看似不经意的限制条件.(2)定义数学新概念型定义数学新概念型在中考试题中一般以中档题出现,能较好的考查学生领悟定义的性质与判定的功能,认真审题、缜密思维的习惯以及对数学知识的综合运用能力、迁移能力和发现探究能力.(3)定义新函数,新知识型定义新函数,新知识型主要考查学生的阅读理解能力,应变能力和创新能力.解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握教学中的基本概念和基本的性质.3. “新定义”问题类型应对策略数学教学也就是数学语言的教学,这是因为数学语言是数学知识和数学思想的载体,数学知识与数学思想最终要通过数学语言表达出来并获得理解、掌握、交流和应用.因此,在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法. 在中考复习中,要关注初、高中内容的衔接,对与初中数学知识密切相关,或简单的高中数学问题要尽量关注,适当进行“一题多变”、“一题多解”、“一法多用”的教学活动.考向1定义新概念1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y=x 2+2x+c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <-3B .c <-2C .14c <D .c <1【答案】B【解析】 当y=x 时,x=x 2+2x+c ,即为x 2+x+c=0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c +=-⎧⎨⋅=⎩,∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0,即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0,∴c <-2.又知方程有两个不相等的实数根,故Δ>0,即12-4c >0,解得:c <14∴c 的取值范围为c <-2 . 2.(2019•山东临沂)一般地,如果x 4=a (a≥0),则称x 为a 的四次方根,一个正数a 4a 44m =10,则m=__________.【答案】±10 44m =10,∴m 4=104,∴m=±10.故答案为:±10.3.(2019•湖北十堰)对于实数a ,b ,定义运算“◎”如下:a ◎b=(a+b )2﹣(a ﹣b )2.若(m+2)◎(m ﹣3)=24,则m=__________.【答案】﹣3或4【解析】根据题意得[(m+2)+(m ﹣3)]2﹣[(m+2)﹣(m ﹣3)]2=24,(2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0,2m ﹣1+7=0或2m ﹣1﹣7=0,所以m 1=﹣3,m 2=4.故答案为:﹣3或4.4.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y=14x 2的图象上在第一象限内的任意一点,PQ 垂直直线y=-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P(m ,0)(m >0),∵214m +1,PQ=214m -(-1)=214m +1,∴PM=PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.5.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A=80°,则它的特征值k= . 【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=o o ;当∠A 是底角时,则底角是20°,k=201804=o o ,故答案为:85或14. 6. (2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【答案】(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个;③当这个数为100时,易知100是“纯数”.综上,不大于100的“纯数”的个数为3+9+1=13.7.(2019·宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,求邻余线AB的长.【答案】:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余.∴四边形ABEF是邻余四边形;(2)如图所示,四边形ABEF即为所求.(答案不唯一)(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M为EF的中点,∴DM=ME.∴∠MDE=∠MED.∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴35QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.8.(2019·达州)箭头四角形模型规律,如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B. 因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠C+∠B”这个规律,所以我们把这个模型叫做“箭头四角形”模型应用:.(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=________②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°∠BAC=50°,则∠BFC=__________.③如图4,BO1、CO2分别为∠ABO、∠ACO的2019等分线(i=1,2,3,…,2017,2018),它们的交点从上到下依次为O1,O2,O3,…,O2018. 已知∠BOC=m°,∠BAC=n°,则∠BO1000C=______度(2)拓展应用:如图5,在四边形ABCD中,BC=CD ,∠BCD=2∠BAD. O是四边形ABCD内的一点,且OA=OB=OD. 求证:四边形OBCD 是菱形.【答案】(1)①∵∠A+∠B+∠C=α∠,∠D+∠E+∠F=α∠∴∠A+∠B+∠C+∠D+∠E+∠F=2α∠ ②∵∠BEC=∠A+∠ABC+∠ACB ∠BFC=∠A+21∠ABC+21∠ACB ,∠BEC=120°∠BAC=50° ∴21∠BEC=21∠A+21∠ABC+21∠ACB ∴60°=25°+21∠ABC+21∠ACB ∴21∠ABC+21∠ACB=35°∴∠BFC=∠A+21∠ABC+21∠ACB=50°+35°=85°∴∠BFC=85° ③οοn m 2019101920191000+ (2)证明:(1)如图,延长AO 到E ,∵OA =OB ,∴∠ABO =∠BAO .又∵∠BOE =∠ABO +∠BAO ,∴∠BOE =2∠BAO ,同理∠DOE =2∠DAO ,∴∠BOE +∠DOE =2∠BAO +2∠DAO =2(∠BAO +∠DAO ),即∠BOD =2∠BA D.又∵∠BCD =2∠BAD ,∴∠BOD =∠BC D.(2)如图,连接OC ,∵OB =OD ,CB =CD ,OC =OC ,∴△OBC ≌△ODC ,∴∠OBC =∠OD C.又∵∠BOD =∠BCD ,∴四边形OBCD 是平行四边形.又∵OB =OD ,∴四边形OBCD 是菱形.9.(2019 ·扬州)如图,平面内的两条直线1l 、2l ,点A ,B 在直线1l 上,点C 、D 在直线2l 上,过A 、B 两点分别作直线2l 的垂线,垂足分別为1A ,1B ,我们把线段11A B 叫做线段AB 在直线2l 上的正投影,其长度可记作(,)AB AD T 或2(,)AB l T ,特别地线段AC 在直线2l 上的正投影就是线段1A C .请依据上述定义解决如下问题:(1)如图1,在锐角ABC ∆中,5AB =,(,)3AC AB T =,则(,)BC AB T = ;(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,(,)4AC AB T =,(,)9BC AB T ==,求ABC ∆的面积;(3)如图3,在钝角ABC ∆中,60A ∠=︒,点D 在AB 边上,90ACD ∠=︒,(,)2AD AC T =,(,)6BC AB T =,求(,)BC CD T ,【答案】(1)如图1中,作CH AB ⊥.(,)3AC AB T =Q ,3AH ∴=,5AB =Q ,532BH ∴=-=,(,)2BC AB T BH ∴==,故答案为2.(2)如图2中,作CH AB ⊥于H .(,)4AC AB T =Q ,(,)9BC AB T ==,4AH ∴=,9BH =,90ACB CHA CHB ∠=∠=∠=︒Q ,90A ACH ∴∠+∠=︒,90ACH BCH ∠+∠=︒,A BCH ∴∠=∠,ACH CBH ∴∆∆∽,∴CH AH BH CH =,∴49CH CH =, 6CH ∴=,111363922ABC S AB CH ∆∴==⨯⨯=g g . (3)如图3中,作CH AD ⊥于H ,BK CD ⊥于K .90ACD ∠=︒Q ,(,)2AD AC T =,2AC ∴=,60A ∠=︒Q ,30ADC BDK ∴∠=∠=︒,323CD ∴==24AD AC ==,112AH AC ==,3DH AD AH =-=, (,)6BC AB T =Q ,CH AB ⊥,6BH ∴=,3DB BH DH ∴=-=,在Rt BDK ∆中,90K ∠=︒Q ,3BD =,30BDK ∠=︒,cos30DK BD ∴=︒=g ,CK CD DK ∴=+==,(,)BC CD T CK ∴==. 考向2 定义新运算1.(2019·济宁)−1,差倒数,…,依此类推,那么a 1+a 2+…+a 100的值是()A .-7.5B .7.5C .5.5D .-5.5【答案】A2. (2019·深圳)定义一种新运算:a b n ò=n n a b -,例如:132ò=2213-=1-9=-8,若51mm -ò=-2,则m=( )A .-2B .52-C .2D .52 【答案】B 【解析】由题意得1m --()15m -=1m -15m =-2,则m=52-,故选B . 3. (2019·襄阳)定义:a*b=ab ,则方程2*(x +3)=1*(2x)的解为________.【答案】x=1【解析】本题考查了可化为一元一次的分式方程的解法.按新定义可知:32)3(2+=+*x x ,x x 21)2(1=*,可得方程x x 2132=+,解得x=1,经检验此解为方程的根. 4.(2019·枣庄)对于实数a 、b ,定义关于的一种运算:a ⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x=-1,求x+y 的值.【答案】(1)根据题意得:4⊗(-3)=2×4+(-3)=5.(2)∵x ⊗(-y)=2,(2y)⊗x=-1,∴2x+(-y)=2,2×2y+x=-1,解这个二元一次方程组,得,x=79,y=49-,∴x+y=135.(2019·毕节)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a ,b ,c ,用{M a ,b ,}c 表示这三个数的平均数,用{min a ,b ,}c 表示这三个数中最小的数.例如:{1M ,2,1299}43++==,{1min ,2,3}3-=-,{3min ,1,1}1=.请结合上述材料,解决下列问题:(1)①2{(2)M -,22,22}-= ; ②{sin30min ︒,cos60︒,tan 45}︒= ;(2)若{2M x -,2x ,3}2=,求x 的值;(3)若{32min x -,13x +,5}5-=-,求x 的取值范围.【答案】(1)①43;②12; (2)1x =-或3;(3)-2≤x≤4 【解析】解:(1)①2{(2)M -,22,2222(2)2242}33-+--==; ②{sin30min ︒,cos60︒,1tan 45}2︒=; (2)){2M x -Q ,2x ,3}2=,∴22323x x -++=,解得1x =-或3; (3){32min x -Q ,13x +,5}5-=-,解得: -2≤x≤4.6.(2019·随州)若一个两位数十位、个位上的数字分别为m ,n ,我们可将这个两位数记为mn ,易知mn =10m+n ,同理,一个三位数、四位数等均可以用此记法,如abc =100a+10b+c .(1)解方程填空:①若2x +3x =45,则x=;②若7y -8y =26,则y=;③若93t +58t =131t ,则t= ;(2)交换任意一个两位数mn 的个位数字与十位数字,可得到一个新数nm ,则mn +nm 一定能被整除,mn -nm 一定能被整除,mn ·nm -mn 一定能被整除;(请从大于5的整数中选择合适的数填空)(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚,数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532-235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数” .①该“卡普雷卡尔黑洞数”为;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.【答案】(1)t=7;(2)mn+一定被11整除;mn-nm一定被9整除;mn·nm-mn一定能被10整除;(3)①反复运算可得495;②证明过程见解析.【解析】解:(1)∵mn=10m+n,∴2x+3x=45=20+x+10x+3=11 x+23=45,得x=2,同理可得y=4,t=7;(2)mn+nm=10m+n+10n+m=11(m+n)故一定被11整除;同理mn-nm一定被9整除;mn·nm-mn一定能被10整除;(3)①反复运算可得495;②∵a>b>c,∴第一次运算得到100a+10b+c-(100c+10b+a)=99(a-c),可以看出结果必为99的倍数,∵a>b>c,∴a≥b+1,b≥c+1,即a≥b+1≥c+2,∴a-c≥2,9≥a>c,∴a-c≤9,则a-c=2,3,4,5,6,7,8,9,∴第一次运算得到99(a-c)可以是198,297,396,495,594,693,792,891,再让这些数字依据“卡普雷卡尔黑洞数”的推算规则进行运算,分别可以得到:981-198=792,972-279=693,963-369=594,954-459=495,954-459=495,以后均重复运算,故可以得到该黑洞数为495.考向3 定义新函数1.(2019 ·荆州)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积. (2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n 的值.【答案】(1)∵y=x 2﹣4,∴其顶点坐标为(0,﹣4),∵y=x 2﹣4是y=﹣x+p 的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p 的图象上,∴﹣4=0+p .∴p=﹣4,∴一次函数为:y=﹣x ﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p 与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p 与两坐标轴围成的三角形的面积为:.(2)设函数y=x 2+2x+n 与x 轴两个交点的横坐标分别为x 1,x 2,则x 1+x 2=﹣2,x 1x 2=n ,∴,∵函数y=x 2+2x+n 与x 轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x 2+2x+n 为:y=x 2+2x ﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x 2+2x+n 是y=mx ﹣3(m≠0)的伴随函数,∴﹣4=﹣m ﹣3,∴m=1.2.(2019·济宁)阅读下面材料:如果函数y=f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f(x 1) <f(x 2),则称f(x)是增函数;(2)若x 1<x 2,都有f(x 1) >f(x 2),则称f(x)是减函数.例题:证明函数f(x)=6x(x >0)是减函数. 证明:设0<x 1<x 2,f(x 1) -f(x 2)=1266x x -=()21211212666.x x x x x x x x --= ∵0<x 1<x 2,∴x 2-x 1>0,x 1x 2>0.∴()21126x x x x ->0,即f(x 1) — f(x 2)>0.∴f(x 1) >f(x 2),∴函数f(x)=6x(x >0)是减函数.根据以上材料,解答下面的问题:已知函数()21f x x x=+(x <0),()()()()()()22117110,22412f f -=+-=-=+-=--- (1)计算:f(-3)=________,f(-4)=________; (2)猜想:函数()21f x x x=+(x <0)是________函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 【答案】(1)()()()()()()2212616333,4491634f f -=+-=--=+-=---(2)增;(3)证明:设x1<x2<0,f(x1) -f(x2)=2221 1212122222221212121111x xx x x x x xx x x x x x⎛⎫⎛⎫-+-+=-+-=+-⎪ ⎪⎝⎭⎝⎭()()()()()2121212121222212121x x x x x x x xx xx x x x+--+-=--=.∵x1<x2<0,∴x2—x1>0,x12x22>0,x2+x1-1<0,∴()()212122121x x x xx x-+-<0,即f(x1)-f(x2)<0.∴f(x1) <f(x2),∴函数()21f x xx=+是增函数.3.(2019·金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=-(x-2)2+m+2的顶点.(1)当m=0时,求该抛物线下放(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.【答案】(1)当m=0时,二次函数的表达式为y=-x2+2,画出函数图象(图1),∵当x=0时,y=2;当x=1时,y=1;∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2).(1,0)和(1,1)共5个.(2)当m=3时,二次函数的表达式为y=-(x-3)2+5,画出函数图象(图2).∵当x=1时,y=1;当x=4时,y=4.∴抛物线上存在好点,坐标分别是(1,1)和(4,4).(3)∵抛物线顶点P的坐标为(m,m+2),∴点P在直线y=x+2上.由于点P在正方形内,则0<m<2.如图3,点E(2,1),F(2,2).∴当顶点P在正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外).当抛物线经过点E(2,1)时,-( 2-m)2+m+2=1,解得m1=5132-,m2=5132+(舍去).当抛物线经过点F(2,2)时,-( 2-m)2+m+2=2,解得m1=1,m2=4(舍去).∴当5132-<m<1时,点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.4. 城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A (x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.(1)①已知点A(﹣2,1),则d(O,A)= .②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【答案】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E ,过点E 作EH ⊥MN ,垂足为H ,修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l2与x 轴相交于点G .∵∠EFH=45°,∴EH=HF ,d (O ,E )=OH+EH=OF ,同理d (O ,P )=OG , ∵OG≥OF,∴d (O ,P )≥d(O ,E ),∴上述方案修建的道路最短.5.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x=3a c +,y=3b d +,那么称点T 是点A ,B 的融合点.例如:A (-1,8),B (4,一2),当点T (x.y )满是x=143-+=1,y=8(2)3+-=2时.则点T (1,2)是点A ,B 的融合点. (1)已知点A (-1,5),B (7,7).C (2,4).请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0).点E (t ,2t+3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.xyl11OD①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.【答案】(1)∵173-+=2,573+=4,∴点C(2,4)是点A.B的融合点。