广州高中数学奥赛班专题资料-由数列的递推公式求通项公式
- 格式:doc
- 大小:205.00 KB
- 文档页数:6
递推公式求数列通项公式求解数列的通项公式是数学中常见的问题。
在进行数列的通项公式推导时,有几种常见的方法可以使用,包括递归法、差分法、代数法、矩阵法等。
以下将针对这些方法进行详细阐述。
一、递归法递归法是数列求解中最常见的方法之一、利用递归关系式,可以将数列的第n项表示成前n-1项的表达式。
常见的递归方法有等差、等比数列等。
1.1等差数列的通项公式等差数列是指数列中每个相邻项之间的差值都相等的数列。
设数列的首项为 a1,公差为 d,则递推关系式为 an = a1 + (n-1)d,其中 n 表示项数。
首先求取数列的第一项和第二项的值,然后利用递推公式即可求得数列的通项公式。
1.2等比数列的通项公式等比数列是指数列中每个相邻项之间的比值都相等的数列。
设数列的首项为 a1,公比为 q,则递推关系式为 an = a1 * q^(n-1)。
首先求取数列的第一项和公比的值,然后利用递推公式即可求得数列的通项公式。
二、差分法差分法是通过找到数列的差分递推关系,进而进行推导。
通过一次差、二次差等操作,可以将数列的通项公式转化为关于n的多项式。
2.1一次差的差分法对于一个数列 {an},定义一次差数列 {bn} = {an+1 - an},即 b1 = a2 - a1,b2 = a3 - a2,以此类推。
如果一次差数列 {bn} 满足等差数列的递推关系,即 bn = c,则原数列的通项公式为 an = c*n +d。
其中 d 为首项的值。
2.2二次差的差分法对于一个数列 {an},定义二次差数列 {cn} = {bn+1 - bn},即 c1 = b2 - b1,c2 = b3 - b2,以此类推。
如果二次差数列 {cn} 满足等差数列的递推关系,即 cn = c,则原数列的通项公式为 bn = c*n^2 +d*n + e。
其中 d 为二次差数列首项的值,e 为数列首项的值。
三、代数法代数法以解线性方程组的形式求解数列的通项公式。
利用递推关系式求数列的通项公式数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式:1、1,3,7,15,31,………2、2,6,12,20,30,………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0……… ◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解.(注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.②已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
例3.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。
(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。
通项公式求解方法简介肖永钦解决“给出数列的递推公式,要求分析数列相关性质”这一类型的题目中,如果能够求解数列的通项公式,则求解、分析数列变得相当简单。
下面就高中常见的递推公式其通项公式一般解法作简要介绍。
高中常见的递推公式一般经过构造(例如:同时减去一个数或者移项)都可以转化成等比数列、等差数列类型。
(一)已知1a 及q pa a n n +=+1………………(1),求通项公式分析上述递推公式,显然,当0=p 时,数列}{n a 是常数列,通项公式是q a n =;当1=p 时,数列}{n a 是等比数列,通项公式是q a n a a n )(1-+=。
当时且10≠≠p p ,我们不妨设(1)式可以写成)(1x a p x a n n -=-+…………(2),若设x a b n n -=,则数列}{n b 为等比数列,即(1)式可以转化成等比数列。
我们整理(2)式,即px x pa a n n -+=+1,我们发现,如果令q px x =- (3),则(1)式便可以转化为(2)式,从而此类型的数列的通项公式能够求解。
我们整理(3)式有q px x +=,发现q px x +=方程与(1)式有着显著的关系,即形式上的一致性。
例1:已知数列{}n a 中有111,32n n a a a +==+且,求该数列的通项公式。
分析:由132n n a a +=+有32,1x x x =+=-解得,故由递推公式可以有113(1)n n a a ++=+,即数列}1{+n a 为等比数列,所以有1113(1)n n a a -+=+,把11a =代入,并整理得1231n n a -=⋅-,即求出数列{}n a 的通项公式。
上述右边是加个常数,如果右边加一个与n 相关的变量,则需要再作一定的调整,接下来请看例2例2:已知数列{}n a 中有23,111++==+n a a a n n 且,求该数列的通项公式。
分析:显然本题与【例1】显著的差别就在于后面不是常数了,而是变量,这里我们仍然可以通过待定系统数,把2+n 分配到两边,并构造等比数列。
⾼中数学竞赛讲义(五)──数列⾼中数学竞赛讲义(五)──数列⼀、基础知识定义1 数列,按顺序给出的⼀列数,例如1,2,3,…,n,…. 数列分有穷数列和⽆穷数列两种,数列{a n}的⼀般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。
其中a1叫做数列的⾸项,a n是关于n的具体表达式,称为数列的通项。
定理1 若S n表⽰{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。
若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a-q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B⾄少有⼀个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等⽐数列,若对任意的正整数n,都有,则{a n}称为等⽐数列,q叫做公⽐。
定理3 等⽐数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等⽐数列,即b2=ac(b0),则b叫做a, c的等⽐中项;4)若m+n=p+q,则a m a n=a p a q。
定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 ⽆穷递缩等⽐数列,若等⽐数列{a n}的公⽐q满⾜|q|<1,则称之为⽆穷递增等⽐数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。
求数列通项公式的方法{a n }的通项公式。
二、累加法解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则出(a n a n 1) (a n 1 a n 2) L(a 3 a 2) (a ? aj a 1,即得数列{a n }的通项公式。
、公式法 例1已知数列{a n }满足a n i 2a n 3 2n, a i 2,求数列{a n }的通项公式。
解:a n 1 2a n 3 2n 两边除以2n 1,得開a n 3 a n 1 a n 3 2^ 2,人」2门1歹 2,得鱼 2n 以|1 2 1为首项,以3为公差的等差数列,由等差数列的通项公式, 212 2 故数列{》}是 1(n 1)1,3 1 所以数列{a n }的通项公式为a n ( n -)2n 。
评注:本题解题的关键是把递推关系式 a n 1 2a n 2n 转化为開{|讣是等差数列,再直接利用等差数列的通项公式求出a n1)3,进而求出数列-,说明数列2[2( n 1) 1] [2( n 2) 1] L (2 2 1) (2 1 1) 12[(n 1) (n 2) L 2 1] (n 1) 1 -(n 1)n(n 1) 1 2 -2(n 1)( n 1) 12na n (a n a n 1)(a n 1 a n 2) L(a3 a 2) (a 2 a 1 ) a 1例2已知数列{a n }满足a n 1 a n 2n 1,1,求数列{a n }的通项公式。
评注:本题解题的关键是把递推关系式 a n 1a n 2n 1转化为a n 1 a n 2n 1,进而求例3已知数列{a n }满足a n 1 a n 2 3n 1, a “ 3,求数列{务}的通项公式。
解:由 a n 1 a n 2 3n 1 得 a n 1所以 a n 3n n 1.a n 1 a n 2 3n 1 转化为 a n 1 a n 2 3n 1,已知数列{a n }满足a n 1 3a n 2 3n 1,a 1解:a n 1 3a n 2 3 1两边除以3 1,得一^4 n n3 3 3 3则旦L 丄旦L Z 丄故 3n 1 3n 3 3n 1,故an 1)a nan2(n 1) 3 存1 1 3n 1) 1 3 2n 1 13n32 2 3n' 则a n2 n 3n 13n132 2(a n a n 1 ) (a n 1 a n 2) L(a 3 a ?)(a 2 a 1 ) a 1n (2 3 1 1)(2 n 231) L(2 3211) (2 31) 312(33n2 L 3 3 ) (n 1) 33(13n 1) (n 1) 321 3n33 n 133 n 1a na n 2 3n 1 则评注:本题解题的关键是把递推关系式 进而求出 a n (a n a n 1) (a n 1 a n 2) L 项公式。
由数列的递推公式求通项公式一 准备知识所谓数列,简单地说就是有规律的(有限或无限多个)数构成的一列数,常记作{a n },a的公式叫做数列的通项公式.常用的数列有等差数列和等比数列.数列的前n 项和S n 与通项公式a n 的关系是:a n =S n -S n -1(n ≥2). 有些数列不是用通项公式给出,而是用a n 与其前一项或前几项的关系来给出的,例如:a n +1=2a n +3,这样的公式称为数列的递推公式.由数列的递推公式我们可以求出其通项公式.数列问题中一个很重要的思想是把数列的通项公式或递推公式变形,然后将它看成新数列(通常是等差或等比数列)的通项公式或递推公式,最后用新数列的性质解决问题. 二 例题精讲例1.(裂项求和)求S n =222222)12()12(853283118+⨯-⨯++⨯⨯+⨯⨯n n n.解:因为a n =22)12()12(8+⨯-⨯n n n =22)12(1)12(1+--n n 所以S n =⎥⎦⎤⎢⎣⎡+--++⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-222222)12(1)12(151313111n n =1-2)12(1+n例2.(倒数法)已知数列{a n }中,a 1=53,a n +1=12+nn a a ,求{a n }的通项公式.解:211211+=+=+nn n n a a a a∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n练习1.已知数列{a n }中,a 1=1,S n =1211+--n n S S ,求{a n }的通项公式.解:21121111+=+=---n n n n S S S S ∴⎭⎬⎫⎩⎨⎧n S 1是以1为首项,公差为2的等差数列. ∴n S 1=1+2(n -1)=2n -1,即S n =121-n . ∴a n =S n -S n -1=321121---n n =)32)(12(2---n n ∴a n =⎪⎩⎪⎨⎧---3211211n n )2()1(≥=n n例3.(求和法,利用公式a n =S n -S n -1,n ≥2)已知正数数列{a n }的前n 项和S n =⎪⎪⎭⎫⎝⎛+n n a a 121,求{a n }的通项公式. 解:S 1=a 1=⎪⎪⎭⎫⎝⎛+11121a a ,所以a 1=1. ∵a n =S n -S n -1 ∴2S n =S n -S n -1+11--n n S S∴S n +S n -1=11--n n S S ,即S n 2-S n -12=1∴{}2nS 是以1为首项,公差为1的等差数列.∴S n 2=n ,即S n =n∴a n =S n -S n -1=n -1-n (n ≥2) ∴a n =n -1-n .例4.(叠加法)已知数列{a n }的前n 项和S n 满足S n -S n -2=3×(-21)n -1(n ≥3),且S 1=1,S 2=-23,求{a n }的通项公式. 解:先考虑偶数项有:S 2n -S 2n -2=-3·1221-⎪⎭⎫⎝⎛nS 2n -2-S 2n -4=-3·3221-⎪⎭⎫⎝⎛n……S 4-S 2=-3·321⎪⎭⎫⎝⎛将以上各式叠加得S 2n -S 2=-3×4114112113-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-n ,所以S 2n =-2+)1(2112≥⎪⎭⎫⎝⎛-n n .再考虑奇数项有:S 2n +1-S 2n -1=3·n221⎪⎭⎫⎝⎛S 2n -1-S 2n -3=3·2221-⎪⎭⎫⎝⎛n……S 3-S 1=3·221⎪⎭⎫⎝⎛将以上各式叠加得S 2n +1=2-)1(212≥⎪⎭⎫⎝⎛n n.所以a 2n +1=S 2n +1-S 2n =4-3×n221⎪⎭⎫ ⎝⎛,a 2n =S 2n -S 2n -1=-4+3×1221-⎪⎭⎫⎝⎛n .综上所述a n =⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛⨯+-⎪⎭⎫⎝⎛⨯---为偶数,为奇数n n n n 112134,2134,即a n =(-1)n -1·⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--12134n . 例5.(a n +1=pa n +r 类型数列)在数列{a n }中,a n +1=2a n -3,a 1=5,求{a n }的通项公式.解:∵a n +1-3=2(a n -3)∴{a n -3}是以2为首项,公比为2的等比数列. ∴a n -3=2n ∴a n =2n +3.练习2.在数列{a n }中,a 1=2,且a n +1=212+n a ,求{a n }的通项公式.解:a n +12=21a n 2+21 ∴a n +12-1=21(a n 2-1)∴{a n +12-1}是以3为首项,公比为21的等差数列. ∴a n +12-1=3×121-⎪⎭⎫⎝⎛n ,即a n =1231-+n例6(a n +1=pa n +f (n )类型)已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:(待定系数法)设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n-1比较可知p =-21.所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .练习3.已知数列{a n }满足S n +a n =2n +1,其中S n 是{a n }的前n 项和,求{a n }的通项公式.解:∵a n =S n -S n -1 ∴S n +S n -S n -1=2n +1 ∴2S n =S n -1+2n +1(待定系数法)设2(S n +pn +q )=S n -1+p (n -1)+q化简得:-pn -p -q =2n +1,所以⎩⎨⎧=+-=-12q p p ,即⎩⎨⎧=-=12q p∴2(S n -2n +1)=S n -2(n -1)+1,又∵S 1+a 1=2+1=3,∴S 1=23,S 1-2+1=21 ∴{S n -2n +1}是以21为公比,以21为首项的等比数列.∴S n -2n +1=n ⎪⎭⎫ ⎝⎛21,即S n =n ⎪⎭⎫ ⎝⎛21+2n -1,a n =2n +1-S n =2-n⎪⎭⎫⎝⎛21.例7.(a n +1=pa n r 型)(2005年江西高考题)已知数列{a n }各项为正数,且满足a 1=1,a n +1=)4(21n n a a -.(1)求证:a n <a n +1<2;(2)求{a n }的通项公式. 解:(1)略.(2)a n +1=-21(a n -2)2+2 ∴a n +1-2=-21(a n -2)2∴2-a n +1=21(2-a n )2∴由(1)知2-a n >0,所以log 2(2-a n +1)=log 221(2-a n )2=2·log 2(2-a n )-1 ∴log 2(2-a n +1)-1=2[log 2(2-a n )-1]即{log 2(2-a n )-1}是以―1为首项,公比为2的等比数列∴log 2(2-a n )-1=-1×2n -1化简得a n =2-1212--n .练习4.(2006年广州二模)已知函数4444(1)(1)()(1)(1)x x f x x x ++-=+--(0x ≠).在数列{}n a 中,12a =,1()n n a f a +=(n *∈N ),求数列{}n a 的通项公式.解:4444114441(1)(1)1(1)1(1)(1)1(1)1n n n n n n n n n n n a a a a a a a a a a a +++⎛⎫++-+++=⇒== ⎪+-----⎝⎭,从而有1111ln4ln 11n n n n a a a a ++++=--,由此及111lnln 301a a +=≠-知: 数列1ln 1n n a a ⎧⎫+⎨⎬-⎩⎭是首项为ln 3,公比为4的等比数列,故有11141441131ln 4ln331131n n n n n n n n n a a a a a ----+++=⇒=⇒=---(n *∈N )。
例8.(三角代换类型)已知数列{a n }中,a 1=2,a n =1111---+n n a a ,求{a n }的通项公式.解:令a n -1=tan θ,则a n +1=θπθπtan 4tan 1tan 4tan⋅-+=tan ⎪⎭⎫ ⎝⎛+θπ4∴a n =tan ⎥⎦⎤⎢⎣⎡+-2tan 4)1(atc n π.。