高一数列通项公式常见求法
- 格式:doc
- 大小:413.93 KB
- 文档页数:6
高一数学解题技巧专题讲座求数列通项公式常用方法✧等差数列求通项公式的方法是累加法,累加法适用于具有变差结构()n f a a n n =--1的数列。
✧等比数列求通项公式的方法是累乘法,累乘法适用于具有变比结构()1nn a f n a -=的数列。
✧解题关键:把数列转化为变差结构或变比结构。
一、公式法:可以判别出数列{}n a 为等差或等比数列,用通项()d n a a n 11-+=或11-=n n qa a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a ∴()5211+-=-+=n d n a a n 二、n s 与n a 的关系式法:利用1--=n n n s s a (2≥n )例2:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .分析: 13+=n n a s ①∴nn a s 31=-()2≥n ②①-②得n n n a a a 331-=+∴134+=n n a a 即341=+n n a a ()2≥n 又1123131a s a ==不适合上式,∴数列{}n a 从第2项起是以34为公比的等比数列∴222343134--⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n 注:解决这类问题的方法,通俗而言就是“依葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.三、累加法:当数列{}n a 中有变差结构()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例3:()12,011-+==+n a a a n n ,求通项n a 分析:121-=-+n a a n n ,∴112=-a a ,323=-a a ,534=-a a ,┅,321-=--n a a n n ()2≥n 以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式,∴()21-=n a n ()*∈N n 四、累乘法:当数列{}n a 中有变比结构()1nn a f n a -=,即第n 项与第1-n 项的比是个有“规律”的数时就可以用这种方法.例4:111,1n n na a a n -==-()2,n n N *≥∈,求通项na 分析: 11n n n a a n -=-∴11n n a na n -=-()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===-()2,n n N *≥∈而11a =也适合上式,所以()n a n n N*=∈五、换元变形法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看na 是关于1n a -的“一次函数”的形式,用待定系数技巧可化成等比数列:设()1n n a m k a m -+=+(m 待定)则()11n n a ka k m -=+-而1n n a ka b -=+∴()1b k m =-即1b m k =-故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨-⎩⎭是以k 为公比的等比数列,借助它去求n a 例5:已知111,21n n a a a -==+()2,n n N *≥∈求通项na 分析: 121n n a a -=+∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列∴()111122n nn a a -+=+⋅=∴21n n a =-㈡、取倒数法:适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠)两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子.例6:已知11122,2n n n a a a a --==+()2,n n N *≥∈求通项na 解: 1122n n n a a a --=+∴111211122n n n n a a a a ---+==+即11112n n a a --=()2,n n N *≥∈∴数列1n a ⎧⎫⎨⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n nn a =+-⋅=∴2n a n=㈢、取对数法:一般情况下适用于1kln n a a -=(,k l 为非零常数)例7:已知()2113,2n n a a a n -==≥,求通项na 分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --==即1lg 2lg nn a a -=∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列.故112lg 2lg 3lg 3n n n a --==∴123n n a -=六、mn n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)型的数列求通项n a .例8:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a nn n ∈+==+,求通项n a .解:nn n s a 31+=+ 113--+=∴n n n s a ()2≥n 两式相减得1132-+⋅+=-n n n n a a a 即11322-+⋅+=n n n a a 上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键)令n nn a c 3=得92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的)∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列∴()nn n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又nn n a c 3=,所以()123223--⋅+⋅-=n n na a a a =1 不适合上式()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注1:mn n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)型的数列求通项公式的方法是等式的两边同除以1+n c,得到一个“1n n a ka b -=+”型的数列,再用上面第五种方法里面的“一次函数法”便可求出n nca 的通式,从而求出n a .注2:另外本题还可以由nn n s a 31+=+得到nn n n s s s 31+=-+即nn n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .。
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
高中数列的通项公式的几种常用求法数列是高考的必考内容,也是同学们比较怕的一个知识点。
其实归结起来数列常考的就三个知识点:等差等比数列性质的应用、求数列的通项公式、求数列的前n 项和。
而数列的通项公式往往又决定着前n 项和的求法,所以求出数列的通项公式至关重要。
下面我将对数列通项公式的几种常用求法进行总结。
一. 观察法1 适用类型:已知数列前若干项,求该数列的通项时。
2 具体方法:一般对所给的项观察分析,找出项数n 与项n a 之间的关系,从而根据规律写出此数列的一个通项.3 例题示范例1:根据数列的前4项,写出它的一个通项公式:(1)4,44,444,4444,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21--4 方法总结:(1)有分式又有整式的统一表示成假分式,再分子分母分别观察规律。
(2)正负相间的先把负号去了观察规律,再用1)1()1(+--n n 或来调节符号.二. 公式法1 适用类型:当已知数列为等差或等比数列时。
2 具体方法:可直接利用等差或等比数列的通项公式,只需求得首项及公差公比.等差数列:d n a a n )1(1-+=等比数列:)0(11≠=-q q a a n n三. 已知n s 求n a1适用类型:已知数列的前n 项和求通项时。
2具体发方法:通常用公式⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 。
3例题示范例1、已知数列{}n a 的前n 项和为:① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。
四. 由递推式求数列通项1 适用类型:已知数列的递推公式求通项公式时.2 具体方法:(1)形如d a a n n +=-1或q a a n n 1-=——-—利用等差等比来求例1 n n n a a a a 求已知2,111=-=+的通项公式(2)形如q pa a n n +=+1--——---构造等比数列例2 已知数列}{n a 满足11=a ,321+=+n n a a ,求n a【解析】123n n a a +=+,∴1326n n a a ++=+,即)3(231+=++n n a a ,1323n n a a ++∴=+. ∴{3}n a +是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⨯=,即321-=+n n a .(3)形如--——--——累加法例3 已知数列}{n a 满足12a = ,121,(2)n n a a n n -=+-≥,求n a【解析】∵当2n ≥时,121n n a a n -=+-,∴121n n a a n --=-,∴11221()()()n n n n n a a a a a a a ---=-+-++-1a +[(21)(23)3]2n n =-+-+++2[(21)3](1)212n n n -+=⋅-+=+, ∵21211a ==+,∴21n a n =+(4)形如——-—--——-累乘法例4 已知数列}{n a 满足11a =,12n n n a a +=⋅,求n a .【解析】∵12n n n a a +=⋅,∴12n n na a +=, ∴3241231n n a a a a a a a a -⋅⋅⋅⋅⋅⋅⋅121222n -=⨯⨯⋅⋅⋅⋅⨯, ∴(1)12(1)2122n n n n a a -++⋅⋅⋅+-==, 又11a =,∴(1)22n n n a -=.(5)形如1n n n a pa q +=+方法:①将原递推公式两边同除以1n q +,②得111n n n n a a p q q q q ++=⋅+,③n n n a b q =,得11n n p b b q q+=+, ④再利用“递推关系形如1n n a pa q +=+”方法来求. 例5 已知数列}{n a 满足11a =,123n n n a a +=+,求n a【解析】在123n n n a a +=+两边除以13n +,得11213333n n n n a a ++=⋅+, 令3n n n a b =,则12133n n b b +=+,∴121(1)3n n b b +-=-, ∴11221(1)()()33n n n b b --=-⋅=-, ∴21()3n n b =-.∴332n n n n n a b =⋅=-. 总之,数列的通项公式的求法有很多,着需要我们多做题,多总结.做到从题目中来到题目中去.。
数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法例2 已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 已知数列满足,求的通项公式。
解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。
所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法例7已知数列满足,求数列的通项公式。
解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设⑥将代入⑥式,得整理得。
令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
求数列通项公式常用的七种方法一、公式法:数列符合等差、等比数列定义例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.变式训练1 :已知数列{}n a ,若n n n a a a a ,求,1121-==三、n s 与n a 的关系式法:形如()n f a S n n += 应用{1,2,11=≥--n S n S S n n 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .变式训练2:已知数列{n a }满足n n a n n S ,求12++=例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .变式训练3:已知数列{n a }满足n n n a a S ,求-=1四、累加法:形如)(1n f a a n n +=+ 例4:()12,011-+==+n a a a n n ,求通项n a变式训练4:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a .五、累乘法:形如)(1n f a a n n ⋅=+ 例5:111,1n n n a a a n -==- ()2,n n N *≥∈ 求通项n a变式训练5:已知数列{n a }满足1a =1,n n n a a 21=+,求n a六、构造法:1、构造等比数列:形如q pa a n n +=+1例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a变式训练6:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .2、构造等差数列:形如n n n q pa a +=+1 例7:在数列{}n a 中, 12a =,()11222n n n a a n +-=+≥,求{}n a 通项公式变式训练7:数列{n a }满足1n a += 12(2)n n a +-+- , 12a =-,求n a 的通项公式七、取倒数法::)()()(1n h a n g a n f a n n n +=+ 例8:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a变式训练8:已知数列{n a },1a = 1-,11n n n a a a +=- n N *∈,求n a。
求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=例1例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
2、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +===,,, n a例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
高中数学求解数列通项公式常用方法总结(共15种类型类型1(迭加法1112212212(212(log 1(n 1n nn n n n n n n a a f n n-++-⎧⎪⎪⎪-+⎪⎪--==⎨⎪⎪⎪⎪⎪+⎩,n a a求,11=以上6种情况都要试着做一遍例1:已知数列{}n a满足11211,2n n a a a n n+=-=+,求n a。
解:由条件知:121111(11n n a a n n n n n n+-===-+++分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累加之,即21 32431((((n n a a a a a a a a--+-+-++-1111111(1(((223341n n=-+-+-++--所以111n a a n-=-111131, 1222n a a n n=∴=+-=-类型2(迭乘法11(=2n n n n a f n n a++⎧⎪=⎨⎪⎩,n a a求,11=例2:已知数列{}n a满足112,31n n n a a a n+==+,求n a。
解:由条件知11n n a n a n+=+,分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累乘之,即3241231112311234n n n a a a a a n a a a a n a n--=⨯⨯⨯⨯⇒=又122,33n a a n=∴=∵类型3(退一相减法递推公式为S n与a n的关系式。
(或(n n S f a=解法:这种类型一般利用11(1(2n n n S n a S S n-=⎧=⎨-≥⎩与11((n n n n n a S S f a f a--=-=-消去n S(2n≥或与1 ((2n n n S f S S n-=-≥消去n a进行求解。
常见题型:1、12++=n n S n,n a求(关系与n S n2、n n n a a S求,23+=(关系与n n a S3、n n a a a a n 22223133221+⋅⋅⋅+++=+,求n a(n a n与例:已知数列{}n a前n项和214 2n n n S a-=--.(1求1n a+与n a的关系;(2求通项公式n a.解:(12142n n n S a-=--得:111142n n n S a++-=--于是112111((22n n n n n n S S a a++---=-+-所以1111111222n n n n n n n a a a a a+++-=-+⇒=+.类型3(构造法1 n 1n a pa q+=+(其中,p q均为常数,((10pq p-≠。
数列通项公式的常见求法一、公式法高中重点学了等差数列和等比数列,当题中已知数列是等差或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。
1、等差数列公式例1、已知等差数列{a n }满足a 2=0,a 6+a 8=-10,求数列{a n }的通项公式。
解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩ 解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =-2、等比数列公式例2、设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式。
解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),因此 2.q =所以{}n a 的通项为1*222().n n n a n N -=⋅=∈3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n nn n 求解。
一般先求出11S a =,若计算出的n a 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。
例3、已知数列}{n a 的前n 项和12-=n S n ,求}{n a 的通项公式。
解:011==s a ,当2≥n 时12]1)1[()1(221-=----=-=-n n n s s a n n n由于1a 不适合于此等式 。
∴⎩⎨⎧≥-==)2(12)1(0n n n a n二、当题中告诉了数列任何前一项和后一项的递推关系即:n a 和1+n a 的关系时,我们可以根据具体情况采用下列方法:1、累加法一般地,对于形如)(1n f a a n n +=+类型的通项公式,且)()2()1(n f f f +++ 的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
例4、数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =A .0B .3C .8D .11解:由已知知128,28,n n n b n a a n +=--=-由累加法21328781()()()642024603a a a a a a a a -+-++-=-+-+-++++=⇒==例5、 已知数列{}n a 满足11211,2n n a a a n n+==++,求数列{}n a 的通项公式。
解:由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++……1111111()()()121122n n n n =-+-++-+---……312n=- 2、累乘法一般地对于形如“已知a 1,且)(1n f a a nn =+()(n f 为可求积的数列)”的形式可通过累乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅(2)n ≥; 例6、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
解:由(n+1)·1+n a =n ·n a 得11+=+n na a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a=n n n 11433221=-⋅⋅ 所以n a n 1=3、构造法当数列前一项和后一项即n a 和1-n a 的递推关系较为复杂时,我们往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。
具体有以下几种常见方法。
(1)待定系数法:形如0(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{n a}为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 例7、已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
解:121(2),n n a a n -=+≥ 112(1)n n a a -∴+=+ 又{}112,1n a a +=∴+是首项为2,公比为2的等比数列 12n n a ∴+=,即21nn a =-.练习、已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。
答案:1)21(1+=-n n a(2)倒数法一般地形如11n n n a a ka b--=+、n n n n a a a a -=⋅--11等形式的递推数列可以用倒数法将其变形为我们熟悉的形式来求通项公式。
例8、已知数列{}n a 满足:1111,31n n n a a a a --==+,求{}n a 的通项公式。
解:原式两边取倒数得:11113113n n n n a a a a ---+==+1,1na n n n-11设b =则b -b =3,且b ={}13n b ∴1是b =为首项,公差d=2的等差数列1(1)332bn n n ∴=+-⋅=-,即132n a n =-例9、在数列{n a }中,311=a ,并且对任意2,≥∈*n N n 都有n n n n a a a a -=⋅--11成立,令)(1*∈=N n a b nn ,求数列{n b }的通项公式 .解:当n=1时,3111==a b , 当2≥n 时,由n n n n a a a a -=⋅--11 ,等式两边取倒数得:,1111=--n n a a 所以11=--n n b b ,所以数列}{n b 是首项为3,公差为1的等差数列, 所以数列}{n b 的通项公式为2+=n b n(3)对数法当数列n a 和a n-1的递推关系涉及到高次时,形如:a n p = ma n-1q(其中m 、p 、q 为常数)等,我们一般采用对数法,等式两边分别取对数,进行降次,再重新构造数列进行求解。
例10、若数列{n a }中,1a =3且21n n a a =+(n 是正整数),则它的通项公式是n a =▁▁▁。
解:由题意知n a >0,将21n n a a =+两边取对数得n n a a lg 2lg 1=+,即2lg lg 1=+nn a a ,所以数列}{lg n a 是以1lg a =3lg 为首项,公比为2的等比数列,12113lg 2lg lg -=⋅=-n n n a a ,即123-=n n a 。
三 、阶差法(逐项相减法)1、递推公式中既有n S ,又有n a (当题中给出的是n S 和n a 的关系时,我们一般通过作差法结合1--=n n n S S a 这个通用公式对原等式进行变形,消掉n S 得到n a 和1+n a 的递推关系,或消掉n a 得到n S 和1+n S 的递推关系,然后重新构造数列求通项公式)。
分析:把已知关系通过11,1,2n n n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采用相应的方法求解。
例11、已知各项均为正数的数列{n a }的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++=,求{n a }的通项公式;解:由)2)(1(611111++==a a S a ,解得a 1=1或a 1=2,由假设a 1=S 1>1,因此a 1=2。
又由a n +1=S n +1- S n =)2)(1(61)2)(1(6111++=++++n n n n a a a a ,得a n +1- a n -3=0或a n +1=-a n因a n >0,故a n +1=-a n 不成立,舍去。
因此a n +1- a n -3=0。
从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项为a n =3n -2。
例12、设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+,设12n n n b a a +=-,证明数列{}n b 是等比数列解:由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a a b a a =+=∴=-= 由142n n S a +=+,...① 则当2n ≥时,有142n n S a -=+.....② ②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=- 又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.练习、已知数列}{n a 中, 0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式. 答案: 12-=n a n2、对无穷递推数列——逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n 换成n-1有dca a n n +=-1,两式相减,进而求得通项公式.例13、已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥ ,故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=。