高考数学二轮复习 专题八 概率与统计 第二讲 计数原理、随机变量及其分布课件 理
- 格式:ppt
- 大小:1.70 MB
- 文档页数:35
专题八 概率与统计 第二讲 概率,随机变量及分布列1.为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为( ) A.112B.16C.15D.132.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为( ) A.14B.13C.49D.3163.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110B.15C.310D.254.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.15.设两个相互独立事件A ,B 都不发生的概率为19,则A 与B 都发生的概率的取值范围是( )A.80,9⎡⎤⎢⎥⎣⎦B.15,99⎡⎤⎢⎥⎣⎦C.28,39⎡⎤⎢⎥⎣⎦D.40,9⎡⎤⎢⎥⎣⎦6.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.13C.49D.197.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A.25B.1225C.1625D.458.(多选)从甲袋中摸出1个红球的概率是13,从乙袋中摸出1个红球的概率是12.从甲袋、乙袋各摸出1个球,则下列结论正确的是( )A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为129. (多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A.两件都是一等品的概率是13B.两件中有1件是次品的概率是12C.两件都是正品的概率是13D.两件中至少有1件是一等品的概率是5610. (多选)在一次随机试验中,A,B,C,D是彼此互斥的事件,且A B C D+++是必然事件,则下列说法正确的是( )A.A B+与C是互斥事件,也是对立事件B.B+C与D是互斥事件,但不是对立事件C.A C+与B D+是互斥事件,但不是对立事件D.A与B C D++是互斥事件,也是对立事件11.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________.12.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.13.从甲、乙、丙、丁四人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为_____________.14.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求2n m<+的概率..假定甲、乙两位同学15.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案以及解析1.答案:D解析:6架飞机的降落顺序有66A 种,而1号与6号相邻降落的顺序有2525A A 种,所以所求事件的概率252566A A 1A 3P ==.故选D.2.答案:A解析:甲、乙各摸一次球,有可能的结果有4416⨯=(种),甲摸的数字在前,乙摸的数字在后,则甲获胜的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种. 其中甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数有4种,则所求概率41164P ==. 3.答案:D解析:先后有放回地抽取2张卡片的情况有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.其中满足条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10种情况.因此所求的概率102255P ==.故选D. 4.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为0.90.10.09⨯=,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A. 5.答案:D解析:设事件A ,B 发生的概率分别为()P A x =,()P B y =,则1()()()(1)(1)9P AB P A P B x y ==-⋅-=,即11199xy x y +=++≥+x y =时取“=”,211)9∴≥23≤43(舍去),409xy ∴≤≤.4()()()0,9P AB P A P B xy ⎡⎤∴==∈⎢⎥⎣⎦.6.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,()()P AB P AB =.设()P A x =,()P B y =,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得2,323x y ⎧=⎪⎪⎨⎪=⎪⎩或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是23.故选A.7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,42()()105P A P B ===,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:ACD解析:设“从甲袋中摸出1个红球”为事件1A ,“从乙袋中摸出1个红球为事件2A ,则()113P A =,()212P A =,且1A ,2A 独立.对于A 选项,2个球都是红球为12A A ,其概率为111326⨯=,故A 正确;对于B 选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为15166-=,故B 错误;对于C 选项,2个球中至少有1个红球的概率为()()1221211323P A P A -=-⨯=,故C 正确;对于D 选项,2个球中恰有1个红球的概率为1121132322⨯+⨯=,故D 正确.故选ACD. 9.答案:BD解析:由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种. 对于A ,两件都是一等品的基本情况有(,)a b ,共1种,故两件都是一等品的概率116P =,故A 错误; 对于B ,两件中有1件是次品的基本情况有(,)a d ,(,)b d ,(,)c d ,共3种,故两件中有1件是次品的概率23162P ==,故B 正确;对于C ,两件都是正品的基本情况有(,)a b ,(,)a c ,(,)b c ,共3种,故两件都是正品的概率33162P ==,故C 错误;对于D ,两件中至少有1件是一等品的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,共5种,故两件中至少有1件是一等品的概率456P =,故D 正确. 10.答案:BD解析:由于A ,B ,C ,D 彼此互斥,且A B C D +++是必然事件,故事件的关系如图所示.由图可知,任何一个事件与其余三个事件的和事件互为对立,任何两个事件的和事件与其余两个事件中任何一个是互斥事件,任何两个事件的和事件与其余两个事件的和事件互为对立,故B,D 中的说法正确.11.答案:35解析:设此队员每次罚球的命中率为p ,则216125p -=,所以35p =. 12.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=.13.答案:23解析:从甲、乙、丙、丁四人中随机选取两人,有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},共6种结果;其中甲、乙两人中有且只有一人被选取,有甲,丙},{甲,丁},{乙,丙},{乙,丁},共4种结果. 故甲、乙两人中有且只有一人被选取的概率为4263=. 14.答案:(1)13. (2)概率为1316. 解析:(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个, 因此所求事件的概率为2163P ==.(2)先从袋中随机取一个球,记下编号为,放回后,再从袋中随机取一个球,记下编号为m , 试验的样本空间{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),Ω=(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点.又满足条件2n m ≥+的样本点有:(1,3),(1,4),(2,4),共3个. 所以满足条件2n m ≥+的事件的概率为1316P =,故满足条件2n m <+的事件的概率为1313111616P -=-=. 15.答案:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C ,0,1,2,333kkk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以随机变量X的分布列为随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭,且{3,1}{2,0}M X Y X Y ===⋃==.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(1)知()P M =({3,1}{2,0})(3,1)(2,P X Y X Y P X Y P X ==⋃=====+=8240)(3)(1)(2)(0)2799Y P X P Y P X P Y ====+===⨯+⨯12027243=.。
—————————— 教育资源共享 步入知识海洋 ————————第2讲 计数原理、随机变量、数学归纳法[考情考向分析] 1.考查分类计数原理、分步计数原理与排列、组合的简单应用,B 级要求. 2.考查n 次独立重复试验的模型及二项分布、离散型随机变量的数学期望与方差,B 级要求.3.考查数学归纳法的简单应用,B 级要求.热点一 计数原理与二项式定理例1 (2018·苏州调研)已知f n (x )=⎝⎛⎭⎪⎫x 2+3a x 3n ,n ∈N *.(1)当a =1时,求f 5(x )展开式中的常数项;(2)若二项式f n (x )的展开式中含有x 7的项,当n 取最小值时,展开式中含x 的正整数次幂的项的系数之和为10,求实数a 的值.解 二项式⎝⎛⎭⎪⎫x 2+3a x 3n的展开式通项为T r +1=C r n ()x 2n -r ⎝ ⎛⎭⎪⎫3a x 3r =C r n (3a )r x2n -5r(r =0,1,2,…,n ), (1)当n =5,a =1时,f (x )的展开式的常数项为T 3=9C 25=90. (2)令2n -5r =7,则r =2n -75∈N ,所以n 的最小值为6,当n =6时,二项式⎝⎛⎭⎪⎫x 2+3a x 36的展开式通项为T r +1=C r 6(3a )r x12-5r(r =0,1,2,…,6), 则展开式中含x 的正整数次幂的项为T 1,T 2,T 3,它们的系数之和为 C 06+C 16(3a )+C 26(3a )2=135a 2+18a +1=10, 即15a 2+2a -1=0,解得a =-13或15.思维升华 涉及二项式定理的试题要注意以下几个方面:(1)某一项的二项式系数与这一项的系数是两个不同的概念,必须严格加以区别. (2)根据所给式子的结构特征,对二项式定理的逆用或变用,注意活用二项式定理是解决二项式问题应具备的基本素质.(3)关于x 的二项式(a +bx )n(a ,b 为常数)的展开式可以看成是关于x 的函数,且当x 给予某一个值时,可以得到一个与系数有关的等式,所以,当展开式涉及到与系数有关的问题时,可以利用函数思想来解决.跟踪演练1 (2018·江苏丹阳高级中学期中)设n ≥3,n ∈N *,在集合{}1,2,…,n 的所有元素个数为2的子集中,把每个子集的较大元素相加,和记为a ,较小元素之和记为b . (1)当n =3时,求a ,b 的值;(2)求证:对任意的n ≥3,n ∈N *,b a为定值.(1)解 当n =3时,集合{}1,2,3的所有元素个数为2的子集为{}1,2, {}1,3,{}2,3,所以a =2+3+3=8,b =1+1+2=4.(2)证明 当n ≥3,n ∈N *时,依题意,b =1×C 1n -1+2×C 1n -2+3×C 1n -3+…+()n -2×1(2)C n n --+()n -1×1(1)C n n --, a =2×C 11+3×C 12+4×C 13+…+()n -1×C 1n -2+n ×C 1n -1=2×1+3×2+4×3+…+()n -1×()n -2+n ×()n -1.则a2=C 22+C 23+C 24+…+C 2n =C 33+C 23+C 24+…+C 2n =C 34+C 24+…+C 2n =…=C 3n +1, 所以a =2C 3n +1.又a +b =(n -1)(1+2+3+…+n )=n ()n +12×()n -1=3C 3n +1,所以b =C 3n +1.故b a =12.热点二 随机变量及其概率分布例2 (2018·南京师大附中考前模拟)如图,设P 1,P 2,…,P 6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S .(1)求S =32的概率; (2)求S 的概率分布及数学期望E (S ).解 (1)从六个点中任选三个不同点构成一个三角形共有C 36种不同选法, 其中S =32的为有一个角是30°的直角三角形,(如△P 1P 4P 5),共6×2=12种,所以P ⎝ ⎛⎭⎪⎫S =32=12C 36=35. (2)S 的所有可能取值为34,32,334. S =34的为顶角是120°的等腰三角形(如△P 1P 2P 3), 共6种,所以P ⎝ ⎛⎭⎪⎫S =34=6C 36=310. S =334的为等边三角形(如△P 1P 3P 5), 共2种,所以P ⎝⎛⎭⎪⎫S =334=2C 36=110.又由(1)知P ⎝ ⎛⎭⎪⎫S =32=12C 36=35,故S 的概率分布为所以E (S )=34×310+32×35+334×110=9320. 思维升华 求解一般的随机变量的数学期望的基本方法先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出概率分布,根据数学期望公式计算.跟踪演练2 (2018·南通、徐州、扬州等六市模拟)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3×3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元.(1)求概率P ()X =600;(2)求X 的概率分布及数学期望E (X ).解 (1)从3×3表格中随机不重复地点击3格,共有C 39种不同情形,则事件“X =600”包含两类情形:第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含C 34种情形,第二类包含C 11·C 14·C 14种情形. ∴P ()X =600=C 34+C 11·C 14·C 14C 39=521. (2)X 的所有可能值为300,400,500,600,700. 则P ()X =300=C 34C 39=484=121,P ()X =400=C 14·C 24C 39=2484=27,P ()X =500=C 11·C 24+C 14·C 24C 39=3084=514, P (X =600)=521,P ()X =700=C 11·C 24C 39=684=114.∴X 的概率分布为∴E ()X =300×121+400×27+500×514+600×521+700×114=500.热点三 数学归纳法例3 (2018·江苏姜堰、溧阳、前黄中学联考)已知数列{}a n 满足a n =C 0n +C 1n +12+C 2n +222+C 3n +323+…+C nn +n 2n ,n ∈N *. (1)求a 1, a 2, a 3的值;(2)猜想数列{}a n 的通项公式,并证明. 解 (1)a 1=2, a 2=4, a 3=8. (2)猜想: a n =2n (n ∈N *). 证明如下:①当n =1时,由(1)知结论成立; ②假设当n =k (k ∈N *,k ≥1)时结论成立, 则有a k =C 0k +C 1k +12+C 2k +222+C 3k +323+…+C kk +k 2k =2k.则当n =k +1时,a k +1=C 0k +1+C 1k +1+12+C 2k +1+222+C 3k +1+323+…+C k +1k +1+k +12k +1.由C k +1n +1=C k +1n +C kn 得a k +1=C 0k +C 1k +1+C 0k +12+C 2k +2+C 1k +222+C 3k +3+C 2k +323+…+C k k +k +C k -1k +k 2k+C k +1k +1+k +12k +1 =2k+C 0k +12+C 1k +222+C 2k +323+…+C k -1k +k 2k +C k +1k +1+k +12k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +k 2k -1+C k +1k +1+k +12k =2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k +C k +1k +1+k 2k . 又Ck +1k +1+k=()2k +1!k !()k +1!=()2k +1!()k +1()k +1k !()k +1!=12()2k +1!()2k +2()k +1!()k +1!=12C k +1k +1+k +1, a k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k 2k +C k +1k +1+k +12k +1,于是a k +1=2k+12a k +1.所以a k +1=2k +1,故n =k +1时结论也成立.由①②得,a n =2n,n ∈N *.思维升华 在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n =k 到n =k +1时,式子中项数的变化应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.跟踪演练3 (2018·常州期末)记()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1n (n ≥2且n ∈N *)的展开式中含x 项的系数为S n ,含x 2项的系数为T n . (1)求S n ;(2)若T nS n=an 2+bn +c 对n =2,3,4成立,求实数a ,b ,c 的值; (3)对(2)中的实数a ,b ,c 用数学归纳法证明:对任意n ≥2且n ∈N*, T nS n=an 2+bn +c 都成立. (1)解 S n =1+2+…+nn != n +12()n -1!.(2)解T 2S 2=23, T 3S 3=116, T 4S 4=72,则⎩⎪⎨⎪⎧23=4a +2b +c ,116=9a +3b +c ,72=16a +4b +c ,解得a =14, b =-112, c =-16,(3)证明 ①当n =2时,由(2)知等式成立; ②假设n =k (k ∈N *,且k ≥2)时,等式成立,即T k S k =14k 2-112k -16. 当n =k +1时,由f (x )=()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎣⎢⎡⎦⎥⎤()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎝ ⎛⎭⎪⎫1k !+S k x +T k x 2+…⎝ ⎛⎭⎪⎫x +1k +1,知T k +1=S k +1k +1T k =k +12()k -1!·⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16,所以T k +1S k +1= k +12()k -1!⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16k +1+12k !=k k +2⎝ ⎛⎭⎪⎫k +1+3k 2-k -212=k ()3k +512,又14()k +12-112()k +1-16 =k ()3k +512, 等式也成立;综上可得,对任意n ≥2且n ∈N *,都有T n S n =n 24-n 12-16成立.1.(2018·全国大联考江苏卷)(1)求4C 47-7C 36+k C k n n C k -1n -1(n ≥k ,且n ,k ∈N *)的值.(2)设f (n )=1·C 1n ·3+2·C 2n ·32+…+n C n n ·3n (n ∈N *),求方程f (n )=3 840的所有解. 解 (1)因为4C 47=4×35=140, 7C 36=7×20=140,k C k n =k ·n !k !(n -k )!= n ·(n -1)!(k -1)![(n -1)-(k -1)]!=n C k -1n -1(n ≥k ,且n ,k ∈N *). 所以4C 47-7C 36+k C knn C k -1n -1=1.(2)由(1)知k C k n =n C k -1n -1对1≤k ≤n ,且n ,k ∈N *成立. 所以f (n )=n (C 0n -13+C 1n -132+…+C n -1n -13n), 所以f (n )=3n (C 0n -1+C 1n -13+…+C n -1n -13n -1)=3n (1+3)n -1=3n ·4n -1(n ∈N *).又因为f (n +1)f (n )=3(n +1)·4n 3n ·4n -1 =4(n +1)n =4+4n>1,即f (n +1)>f (n )对n ∈N *成立, 所以f (n )是关于n (n ∈N *)的递增函数. 又因为f (n )=3 840=3×5×44=f (5),所以当且仅当n =5时才满足条件,即n =5是方程f (n )=3 840的唯一解.2.(2018·江苏)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).解 (1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3, 所以f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以f n (0)=1. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22,因此,当n ≥5时,f n (2)=n 2-n -22.3.已知实数数列{a n }满足:a 1=3,a n =n +23n·(a n -1+2),n ≥2. 证明:当n ≥2时,{a n }是单调减数列. 证明 当n ≥1时,有a n +1-a n =⎣⎢⎡⎦⎥⎤n +33(n +1)-1a n +2(n +3)3(n +1)=23(n +1)(n +3-na n).下面用数学归纳法证明:a n >1+3n(n ≥2,n ∈N *).(1)当n =2时,a 2=46(3+2)=103>1+32;(2)假设当n =k (k ∈N *,k ≥2)时,结论成立,即a k >1+3k.那么,a k +1=k +33(k +1)(a k +2)>k +33(k +1)⎝ ⎛⎭⎪⎫1+3k +2=1+3k >1+31+k.故由(1)(2)知,a n >1+3n(n ≥2,n ∈N *).因此,当n ≥2,n ∈N *时,a n +1-a n =23(n +1)(n +3-na n )<0,即当n ≥2时,{a n }是单调减数列.4.(2018·江苏盐城中学模拟)某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.(1)求该乐队至少演唱1首原创新曲的概率;(2)假定演唱一首原创新曲观众与乐队的互动指数为a (a 为常数),演唱一首经典歌曲观众与乐队的互动指数为2a .求观众与乐队的互动指数之和X 的概率分布及数学期望.解 (1)设“至少演唱1首原创新曲”为事件A ,则事件A 的对立事件A 为“没有1首原创新曲被演唱”.所以P (A )=1-P (A )=1-C 45C 48=1314.所以该乐队至少演唱1首原创新曲的概率为1314.(2)设随机变量x 表示被演唱的原创新曲的首数,则x 的所有可能值为0,1,2,3. 依题意知,X =ax +2a (4-x ),故X 的所有可能值依次为8a,7a,6a,5a .则P (X =8a )=P (x =0)=C 45C 48=114,P (X =7a )=P (x =1)=C 13C 35C 48=37,P (X =6a )=P (x =2)=C 23C 25C 48=37,P (X =5a )=P (x =3)=C 33C 15C 48=114.从而X 的概率分布为所以X 的数学期望E (X )=8a ×114+7a ×37+6a ×37+5a ×114=132a .A 组 专题通关1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E (X ). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33×3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13, P (X =k )=C k5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5. 所以X 的概率分布为所以X 的数学期望E (X )=5×13=53.2.(2018·江苏省南京师大附中模拟)设集合A ,B 是非空集合M 的两个不同子集.(1)若M ={a 1,a 2},且A 是B 的子集,求所有有序集合对(A ,B )的个数;(2)若M ={a 1,a 2,a 3,…,a n },且A 的元素个数比B 的元素个数少,求所有有序集合对(A ,B )的个数.解 (1)若集合B 含有2个元素,即B ={a 1,a 2}, 则A =∅,{}a 1,{}a 2,则(A ,B )的个数为3;若集合B 含有1个元素,则B 有C 12种,不妨设B ={a 1},则A =∅,此时(A ,B )的个数为C 12×1=2.综上,(A ,B )的个数为5.(2)集合M 有2n个子集,又集合A ,B 是非空集合M 的两个不同子集, 则不同的有序集合对(A ,B )的个数为2n (2n-1).若A 的元素个数与B 的元素个数一样多,则不同的有序集合对(A ,B )的个数为 C 0n (C 0n -1)+C 1n (C 1n -1)+C 2n (C 2n -1)+…+C n n (C nn -1)= ()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2-(C 0n +C 1n +C 2n +…+C nn ),又(x +1)n(x +1)n的展开式中x n的系数为()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2,且(x +1)n (x +1)n =(x +1)2n 的展开式中x n 的系数为C n2n , 所以()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2=C n2n .因为C 0n +C 1n +C 2n +…+C n n =2n,所以当A 的元素个数与B 的元素个数一样多时, 有序集合对(A ,B )的个数为C n 2n -2n.所以,A 的元素个数比B 的元素个数少时,有序集合对(A ,B )的个数为 2n (2n -1)-(C n 2n -2n )2=22n -C n2n2.3.已知()1+x 2n +1=a 0+a 1x +a 2x 2+…+a 2n +1x2n +1,n ∈N *.记T n =∑nk =0()2k +1a n -k .(1)求T 2的值;(2)化简T n 的表达式,并证明:对任意的n ∈N *,T n 都能被4n +2整除. 解 由二项式定理,得a i =C i2n +1(i =0,1,2,…,2n +1). (1)T 2=a 2+3a 1+5a 0=C 25+3C 15+5C 05=30. (2)∵()n +1+k C n +1+k2n +1=()n +1+k ·()2n +1!()n +1+k !()n -k !=()2n +1·()2n !()n +k !()n -k !=()2n +1C n +k2n ,∴T n =∑nk =0()2k +1a n -k =∑nk =0()2k +1Cn -k 2n +1=∑nk =0()2k +1C n +1+k2n +1=∑nk =0[]2()n +1+k -()2n +1C n +1+k2n +1=2∑nk =0()n +1+k Cn +1+k 2n +1-()2n +1∑nk =0C n +1+k2n +1=2()2n +1∑nk =0Cn +k 2n-()2n +1∑nk =0C n +1+k 2n +1=2()2n +1·12·()22n +C n 2n -()2n +1·12·22n +1=()2n +1C n 2n .∴T n =()2n +1C n2n =()2n +1()C n -12n -1+C n2n -1=2()2n +1C n2n -1.∵C n 2n -1∈N *,∴T n 能被4n +2整除.4.是否存在正整数m 使得f (n )=(2n +7)·3n+9对任意正整数n 都能被m 整除?若存在,求出最大的m 的值,并证明你的结论;若不存在,说明理由.解 由f (n )=(2n +7)·3n+9,得f (1)=36,f (2)=3×36,f (3)=10×36,f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: ①当n =1时,结论显然成立;②假设当n =k (k ∈N *,k ≥1)时,结论成立,即f (k )能被36整除, 设f (k )=(2k +7)·3k +9=t ·36. 当n =k +1时,f (k +1)=[2(k +1)+7]·3k +1+9=(2k +7)·3k +1+2·3k +1+9=3[(2k +7)·3k+9]+18(3k -1-1)=3·36t +18·2s =36(3t +s ). 所以当n =k +1时结论成立.由①②可知,对一切正整数n ,存在正整数m ,使得f (n )=(2n +7)·3n +9都能被m 整除,m 的最大值为36.B 组 能力提高5.(2018·常州模拟)已知正四棱锥P -ABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求P ()ξ=0的值;(2)求随机变量ξ的概率分布及数学期望E ()ξ.解 根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到△PAC ,△PBD 为等腰直角三角形, ξ的可能取值为: 0, π3, π2,共C 28=28种情况,其中,当ξ=0时,有2种;当ξ=π3时,有3×4+2×4=20(种);当ξ=π2时,有2+4=6(种).(1)P ()ξ=0=228=114. (2)P ⎝ ⎛⎭⎪⎫ξ=π3=2028=57, P ⎝ ⎛⎭⎪⎫ξ=π2=628=314, 根据(1)的结论,随机变量的概率分布如下表:根据上表, E ()ξ=0×114+π3×57+π2×314=2984π. 6.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.(1)解 当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k=1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C nn +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明 P (n ,m )=∑k =0n(-1)k C knmm +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)mm +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1mm +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ). 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !(n +m )!=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.7.已知数列{a n }是等差数列,且a 1,a 2,a 3是⎝ ⎛⎭⎪⎫1+12x m展开式的前三项的系数.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)当n ≥2时,试比较1a n +1a n +1+1a n +2+…+1a n 2与13的大小.解 (1)⎝ ⎛⎭⎪⎫1+12x m =1+C 1m ⎝ ⎛⎭⎪⎫12x +C 2m ⎝ ⎛⎭⎪⎫12x 2+…+C m m ⎝ ⎛⎭⎪⎫12x m,依题意a 1=1,a 2=12m ,a 3=m (m -1)8,由2a 2=a 1+a 3,可得m =1(舍去)或m =8.所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)由(1)知,a n =3n -2,当n =2时,1a n +1a n +1+1a n +2+…+1a n 2=1a 2+1a 3+1a 4=14+17+110=69140>13;当n =3时,1a n +1a n +1+1a n +2+…+1a n 2=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝ ⎛⎭⎪⎫110+113+116+⎝ ⎛⎭⎪⎫119+122+125 >18+⎝ ⎛⎭⎪⎫116+116+116+⎝ ⎛⎭⎪⎫132+132+132 =18+316+332>18+316+116>13. 猜测:当n ≥2时,1a n +1a n +1+1a n +2+…+1a n 2>13.以下用数学归纳法加以证明: ①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,1a k +1a k +1+1a k +2+…+1a k 2>13,则当n =k +1时,1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2=⎣⎢⎡⎦⎥⎤1a k +1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a k 2+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +1a (k +1)2-1a k=13+2k +13(k +1)2-2-13k -2=13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2) =13+3k 2-7k -3[3(k +1)2-2](3k -2). 由k ≥3可知,3k 2-7k -3>0, 即1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2>13. 综合①②,可得当n ≥2时, 1a n +1a n +1+1a n +2+…+1a n 2>13. 8.设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2·tan nθ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)12n -tan nθ.(2)求证:对任意正整数n ,S 2n =12sin 2θ·[1+(-1)n +1·tan 2nθ].证明 (1)因为a n =sinn π2tan nθ.当n 为偶数时,设n =2k (k ∈N *),a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2kθ=0,a n =0.当n 为奇数时,设n =2k -1(k ∈N *),a n =a 2k -1 =sin (2k -1)π2tan 2k -1θ=sin ⎝ ⎛⎭⎪⎫k π-π2·tan 2k -1θ.当k =2m (m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-π2·tan 4m -1θ=sin ⎝ ⎛⎭⎪⎫-π2·tan 4m -1θ=-tan 4m -1θ,此时n -12=2m -1,a n =a 2k -1=-tan 4m -1θ=(-1)2m -1tan 4m -1θ=(-1)12n -tan nθ.当k =2m -1(m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-3π2·tan 4m -3θ =sin ⎝ ⎛⎭⎪⎫-3π2·tan 4m -3θ=tan 4m -3θ,此时n -12=2m -2,a n =a 2k -1=tan4m -3θ=(-1)2m -2tan4m -3θ=(-1)12n -tan nθ.综上,当n 为偶数时,a n =0; 当n 为奇数时,a n =(-1)12n -tan nθ.(2)当n =1时,由(1)得S 2=a 1+a 2=tan θ, 12sin 2θ[1+(-1)n +1tan 2n θ]=12sin 2θ(1+tan 2θ) =sin θ·cos θ·1cos 2θ=tan θ. 故当n =1时,命题成立.假设当n =k (k ∈N *,k ≥1)时命题成立, 即S 2k =12sin 2θ·[1+(-1)k +1tan 2kθ].当n =k +1时,由(1)得S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[1+(-1)k +1tan 2k θ]+(-1)k tan 2k +1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+1tan2kθ+(-1)k·2sin 2θtan2k+1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-1tan2θ+2sin 2θtan θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-cos2θsin2θ+1sin2θ=12sin 2θ·[1+(-1)k+2·tan2k+2θ].即当n=k+1时命题成立.综上所述,对正整数n,命题成立.。
第九章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法.那么完成这件事共有N=m+n种不同方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[试一试]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:选C∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.1.应用两种原理解题 (1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; (3)有无特殊条件的限制; (4)检验是否有重漏.2.混合问题一般是先分类再分步,分类时标准要明确,做到不重复不遗漏. [练一练]1.(2013·郑州模拟)在2012年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120(种).∴安排这8人的方式有24×120=2 880(种). 答案:2 8802.(2014·湖南长郡中学、衡阳八中等十二校一联)用红、黄、蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:把区域分为三部分,第一部分1、5、9,有3种涂法.第二部分4、7、8,当5、7同色时,4、8各有2种涂法,共4种涂法;当5、7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:108分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数共有A .50个B .45个C.36个D.35个解析:选C利用分类加法计数原理:8+7+6+5+4+3+2+1=36(个).2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有()A.30种B.31种C.35种D.40种解析:选B分类:第一类,两人拿对:2×C2 5=20种;第二类,三人拿对:C3 5=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.(2013·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A 监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).[类题通法]利用分类加法计数原理解题时应注意(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复.分步乘法计数原理[典例](2014·本溪模拟)如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.[解析]先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C1×C12×C113×C12=3×2×1×2=12种不同的涂法.[答案]12[类题通法]利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.[针对训练]在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有() A.24种B.48种C.96种D.144种解析:选C第一步安排A有2种方法;第二步在剩余的5个位置选取相邻的两个排B,C,有4种排法,而B,C位置互换有2种方法;第三步安排剩余的3个程序,有A33种排法,共有2×4×2×A33=96种.两个原理的综合应用[典例](2014·黄冈质检)设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有() A.50种B.49种C.48种D.47种[解析]从5个元素中选出2个元素,小的给集合A,大的给集合B,有C2=10种选择5方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.[答案] B本例中条件若变为“A={1,2,3,4},B={5,6,7},C={8,9}现从中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合”,则可以组成多少个集合?解:(1)选集合A,B,有C14C13=12;(2)选集合A,C,有C14C12=8;(3)选集合B,C,有C13C12=6;故可以组成12+8+6=26个集合.[类题通法]在解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.[针对训练]上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.解析:若3人中有一人来自甲企业,则共有C12C24种情况,若3人中没有甲企业的,则共有C34种情况,由分类加法计数原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).答案:16第二节排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A m n时易错算为n(n-1)(n-2)…(n-m).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[试一试]1.电视台在直播2012伦敦奥运会时要连续插播5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的是奥运宣传广告,且2个奥运宣传广告不能连播.则不同的播放方式有()A.120B.48C.36 D.18解析:选C有C12C13A33=36(种).2.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种.(用数字作答) 解析:将2件必须相邻的书法作品看作一个整体,同1件建筑设计展品全排列,再将2件不能相邻的绘画作品插空,故共有A22A22A23=24(种)不同的展出方案.答案:241.排列问题与组合问题的识别方法: 2.组合数的性质中(2)的应用主要是两个方面,一个简化运算,当m >n2时,通常将计算C m n 转化为计算C n-mn.二是列等式,由C x n =C yn 可得x =y 或x +y =n .性质(3)主要用于恒等变形简化运算.[练一练]1.(2013·河北教学质量监测)有A ,B ,C ,D ,E 五位学生参加网页设计比赛,决出了第一到第五的名次.A ,B 两位学生去问成绩,老师对A 说:你的名次不知道,但肯定没得第一名;又对B 说:你是第三名.请你分析一下,这五位学生的名次排列的种数为( )A .6B .18C .20D .24解析:选B 由题意知,名次排列的种数为C 13A 33=18.2.5个人站成一排,其中甲、乙两人不相邻的排法有________种.(用数字作答) 解析:先排甲、乙之外的3人,有A 33种排法,然后将甲、乙两人插入形成的4个空中,有A 24种排法,故共有A 33·A 24=72(种)排法.答案:72排列问题1.数列{a n },其余两项各不相同,则满足上述条件的数列{a n }共有( )A .30个B .31个C .60个D .61个解析:选A 在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A 26=30个不同的数列.2.(2013·东北三校联考)在数字1,2,3与符号“+”,“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有()A.6种B.12种C.18种D.24种解析:选B本题主要考查某些元素不相邻的问题,先排符号“+”,“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12种.3.(2013·西安检测)8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为1,2,3,4,5,6,7,8的8条泳道,若指定的3名运动员所在的泳道编号必须是3个连续数字(如:5,6,7),则参加游泳的这8名运动员被安排泳道的方式共有()A.360种B.4 320种C.720种D.2 160种解析:选B法一:先从8个数字中取出3个连续的数字共有6种方法,将指定的3名运动员安排在这3个编号的泳道上,剩下的5名运动员安排在其他编号的5条泳道上,共有6A33A55=4 320种安排方式.法二:先将所在的泳道编号是3个连续数字的3名运动员全排列,有A33种排法,然后把他们捆绑在一起当作一名运动员,再与剩余5名运动员全排列,有A66种排法,故共有A33A66=4 320种安排方式.[类题通法]求解排列应用题的主要方法组合问题[典例](2013·重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[解析]直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C33·C14·C15+C34·C13·C15+C35·C13·C14+C24·C25·C13+C23·C25·C14+C23·C24·C15=590.[答案]590[类题通法]组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[针对训练](2013·四平质检)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种解析:选A法一(间接法):当选择的3名医生都是男医生或都是女医生时,共有C35+C34=14种组队方案.当从9名医生中选择3名医生时,共有C39=84种组队方案,所以男、女医生都有的组队方案共有84-14=70种.法二(直接法):当小分队中有1名女医生时,有C14C25=40种组队方案;当小分队中有2名女医生时,有C24C15=30种组队方案,故共有70种不同的组队方案.分组分配问题分组分配问题是排列、组合问题的综合应用,解决这类问题的一个基本指导思想就是先分组后分配。