中山市高中物理必修3物理 全册全单元精选试卷检测题
- 格式:doc
- 大小:1.30 MB
- 文档页数:39
高中物理必修3物理 全册全单元精选测试卷测试卷(解析版)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos303R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:W =电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A点时,对圆弧杆的弹力大小为(283mg -,方向向下.2.如图所示,两异种点电荷的电荷量均为Q ,绝缘竖直平面过两点电荷连线的中点O 且与连线垂直,平面上A 、O 、B 三点位于同一竖直线上,AO BO L ==,点电荷到O 点的距离也为L 。
高中物理必修3物理 全册全单元精选试卷测试卷 (word 版,含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)方向:由A 指向B(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为方向:由A 指向B2.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R = 由几何关系得,OC 间的距离为:cos30R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:22W mgR -=电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A 点时,对圆弧杆的弹力大小为()28333mg -,方向向下.3.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。
高中物理必修3物理 全册全单元精选测试卷试卷(word 版含答案)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos303R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:W =电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A点时,对圆弧杆的弹力大小为(283mg -,方向向下.2.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O点,下端系一质量21010m .-=⨯kg 、带电量82.010q -=⨯C 的小球(小球的大小可以忽略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.【答案】(1) 63.7510E =⨯N/C (2)21.2510F W J -=⨯ (3)0.31t s =【解析】 【详解】(1)带电小球静止,受到合力等于零,电场力与重力的关系是:tan Eq mg α=,即tan mgE qα=代入数值计算得电场场强大小:63.7510/E N C =⨯(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:sin (cos )0F W Eql mg l l αα-+-=所以sin tan (cos )F mgW q mg l l qααα=-- 代入数值解得电场场强大小:21.2510F W J -=⨯(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为5cos 4mg F mg α== 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
高中物理必修3物理 全册全单元精选试卷检测题(WORD 版含答案)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O点,下端系一质量21010m .-=⨯kg 、带电量82.010q -=⨯C 的小球(小球的大小可以忽略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.【答案】(1) 63.7510E =⨯N/C (2)21.2510F W J -=⨯ (3)0.31t s =【解析】 【详解】(1)带电小球静止,受到合力等于零,电场力与重力的关系是:tan Eq mg α=,即tan mgE qα=代入数值计算得电场场强大小:63.7510/E N C =⨯(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:sin (cos )0F W Eql mg l l αα-+-=所以sin tan (cos )F mgW q mg l l qααα=-- 代入数值解得电场场强大小:21.2510F W J -=⨯(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为5cos 4mg F mg α== 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
因为从C 到B 的角度θ很小,进一步可知回复力与相对平衡位置的位移大小成正比、方向相反,故小球的运动为简谐运动。
高中物理必修3物理 全册全单元精选测试卷练习卷(Word 版 含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得2102mgL qEL mV +=-. 解得:24V =在B 点02(cos 45)V T mg mL-= 以上各式联立解得T =15N.2.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:(1)A 、B 之间匀强电场的场强多大?(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:F =qE =mg tan α解得:537tan 410100.75 1.010N/C 310mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:cos mgma θ= 解得:212.5m/s cos ga θ== 【点睛】本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此后小球的运动情况.3.如图所示,水平地面上方分布着水平向右的匀强电场,一“L ”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L 1=0.2m ,管的水平部分离水平地面的距离为h =5.0m ,竖直部分长为L 2=0.1m .一带正电的小球从管口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半.(g =10m/s 2)求:(1)小球运动到管口B时的速度v B大小;(2)小球着地点与管口B的水平距离s.【答案】(1)2.0m/s;(2)4.5m.【解析】【分析】【详解】(1)在小球从A运动到B的过程中,对小球由动能定理得:12mv B2-0=mgL2+F电L1①由于小球在电场中受到的静电力大小为重力的一半,即F电=12mg②代入数据得:v B=2.0m/s;③小球运动到管口B时的速度大小为2.0m/s;(2)小球离开B点后,设水平方向的加速度为a,位移为s,在空中运动的时间为t,水平方向有:a=g/2 ④s=v0t+12at2⑤竖直方向有:h=12gt2⑥由③~⑥式,并代入数据可得:s=4.5m4.如图所示,质量为m的小球A穿在绝缘细杆上,杆的倾角为α,小球A带正电,电量为q。
中山市高中物理必修3物理全册全单元精选试卷检测题一、必修第3册静电场及其应用解答题易错题培优(难)1.在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=5×104N/C、方向水平向右的匀强电场中.已知A、B的质量分别为m A=0.1 kg和m B=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求B所受静摩擦力的大小;(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A 从M到N的过程中,B的电势能增加了ΔE p=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.【答案】(1)f=0.4N (2)2.1336W【解析】试题分析:(1)根据题意,静止时,对两物体受力分析如图所示:由平衡条件所得:对A有:m A gsin θ=F T①对B有:qE+f0=F T②代入数据得f0=0.4 N ③(2)根据题意,A到N点时,对两物体受力分析如图所示:由牛顿第二定律得:对A有:F+m A gsin θ-F′T-F k sin θ=m A a ④对B有:F′T-qE-f=m B a ⑤其中f=μm B g ⑥F k =kx ⑦由电场力做功与电势能的关系得ΔE p =qEd ⑧ 由几何关系得x =-⑨A 由M 到N ,由v -v =2ax 得A 运动到N 的速度v =⑩拉力F 在N 点的瞬时功率P =Fv ⑪ 由以上各式,代入数据P =0.528 W ⑫考点:受力平衡 、牛顿第二定律、能量转化与守恒定律、功率【名师点睛】静止时,两物体受力平衡,列方程求解.A 从M 到N 的过程中做匀加速直线运动,根据牛顿第二定律,可列出力的关系方程.根据能量转化与守恒定律可列出电场力做功与电势能变化的关系方程.根据匀加速直线运动速度位移公式,求出运动到N 的速度,最后由功率公式求出功率.2.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216109C -⨯ ,为负电荷 【解析】 【分析】 【详解】(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 132322()Q Q Q Q kk x L x =- ∴1222()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 对C :132322(0.3)Q Q Q Q kk x x =- ∴ x =0.2m 对B :321222()Q Q Q Q k k L L x =- ∴ 12316109Q C -=⨯,为负电荷. 【点睛】此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.3.如图,ABD 为竖直平面内的绝缘轨道,其中AB 段是长为 1.25L m =的粗糙水平面,其动摩擦因数为0.1μ=,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,电场强度大小3510/E V m =⨯。
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。
已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。
(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2=GM E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'E 引,如果它们满足'0.02E E E -≤引引引,则该空间就可以近似为匀强场,也就是我们常说的重力场。
请估算地球重力场可视为匀强场的高度h (取地球半径R =6400km );(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G Mrϕ引(以无穷远处引力势为0)。
请你设定物理情景,简要叙述推导该表达式的主要步骤。
【答案】(1)引力场强度定义式FE m=引,推导见解析;(2)h =64976m ;(3)推导见解析. 【解析】 【分析】 【详解】(1)引力场强度定义式F E m=引 2MmF Gr = 联立得2M E Gr =引 (2)根据题意2M E GR =引 '2M E G r=引 '0.02E E E -=引引引h r R R =-=解得h =64976m(3)定义式引力势=p E mϕ引,式中p E 为某位置的引力势能把某物体从无穷远移动到某点引力做的功=0-=-p p W E E 引即=-p E W 引则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得0MmW Gr =引> 所以=-p MmE Gr =-M Grϕ引2.“顿牟掇芥”是两千多年前我国古人对摩擦起电现象的观察记录,经摩擦后带电的琥珀能吸起小物体,现用下述模型分析研究。
高中物理必修3物理全册全单元精选试卷测试题(Word版含解析)一、必修第3册静电场及其应用解答题易错题培优(难)1.在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=5×104N/C、方向水平向右的匀强电场中.已知A、B的质量分别为m A=0.1 kg和m B=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求B所受静摩擦力的大小;(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A 从M到N的过程中,B的电势能增加了ΔE p=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.【答案】(1)f=0.4N (2)2.1336W【解析】试题分析:(1)根据题意,静止时,对两物体受力分析如图所示:由平衡条件所得:对A有:m A gsin θ=F T①对B有:qE+f0=F T②代入数据得f0=0.4 N ③(2)根据题意,A到N点时,对两物体受力分析如图所示:由牛顿第二定律得:对A有:F+m A gsin θ-F′T-F k sin θ=m A a ④对B有:F′T-qE-f=m B a ⑤其中f=μm B g ⑥F k =kx ⑦由电场力做功与电势能的关系得ΔE p =qEd ⑧ 由几何关系得x =-⑨A 由M 到N ,由v -v =2ax 得A 运动到N 的速度v =⑩拉力F 在N 点的瞬时功率P =Fv ⑪ 由以上各式,代入数据P =0.528 W ⑫考点:受力平衡 、牛顿第二定律、能量转化与守恒定律、功率【名师点睛】静止时,两物体受力平衡,列方程求解.A 从M 到N 的过程中做匀加速直线运动,根据牛顿第二定律,可列出力的关系方程.根据能量转化与守恒定律可列出电场力做功与电势能变化的关系方程.根据匀加速直线运动速度位移公式,求出运动到N 的速度,最后由功率公式求出功率.2.如图,ABD 为竖直平面内的绝缘轨道,其中AB 段是长为 1.25L m =的粗糙水平面,其动摩擦因数为0.1μ=,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,电场强度大小3510/E V m =⨯。
高中物理必修3物理 全册全单元精选试卷测试卷 (word 版,含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,一个内壁光滑的绝缘细直管竖直放置.在管子的底部固定一电荷量为Q (Q >0)的点电荷.在距离底部点电荷为h 2的管口A 处,有一电荷量为q (q >0)、质量为m 的点电荷由静止释放,在距离底部点电荷为h 1的B 处速度恰好为零.现让一个电荷量为q 、质量为3m 的点电荷仍在A 处由静止释放,已知静电力常量为k ,重力加速度为g ,则该点电荷运动过程中:(1)定性分析点电荷做何运动?(从速度与加速度分析) (2)速度最大处与底部点电荷的距离 (3)运动到B 处的速度大小【答案】(1)先做加速度减小的加速,后做加速度增大的减速运动; (2)3KQqr mg=(3)2123()3B v g h h =-【解析】 【详解】(1)由题意知,小球应先做加速运动,再做减速运动,即开始时重力应大于库仑力;而在下落中,库仑力增大,故下落时加速度先减小,后增大;即小球先做加速度减小的加速,后做加速度增大的减速运动;(2)当重力等于库仑力时,合力为零,此时速度最大,23kQqF mg r 库==解得:3kQqr mg=(3)点电荷在下落中受重力和电库仑力,由动能定理可得:mgh +W E =0;即W E =-mgh ;当小球质量变为3m 时,库仑力不变,故库仑力做功不变,由动能定理可得:3mgh-mgh =123mv 2; 解得:B v =点睛:本题综合考查动力学知识及库仑力公式的应用,解题的关键在于明确物体的运动过程;同时还应注意点电荷由静止开始运动,故开始时重力一定大于库仑力.2.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。
已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。
(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2=GM E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'E 引,如果它们满足'0.02E E E -≤引引引,则该空间就可以近似为匀强场,也就是我们常说的重力场。
高中物理必修3物理 全册全单元精选试卷检测(提高,Word 版 含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.【答案】(1) ①02GM a L = ②2T = (2) ①2k k II =2ke E E r =Ⅰ ②T T ⅠⅡ为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】(1)①根据万有引力定律和牛顿第二定律有:2002GM M a L=解得02GM a L =②由运动学公式可知,224π2La T =⋅解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿第二定律有222ke mv r r=解得:22k 122ke E mv r==Ⅰ模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r2.根据库仑定律和牛顿第二定律对电子有:2 21 21mv ker r=,解得22k11121=22keE mv rr=对于原子核有:22222=Mvker r,解得22k22221=22keE Mv rr=系统的总动能:E kⅡ=E k1+ E k2=()2212222ke ker rr r+=即在这两种模型中,系统的总动能相等.②模型Ⅰ中,根据库仑定律和牛顿第二定律有22224πkem rr T=Ⅰ,解得23224πmrTke=Ⅰ模型Ⅱ中,电子和原子核的周期相同,均为TⅡ根据库仑定律和牛顿第二定律对电子有221224πkem rr T=⋅Ⅱ,解得221224πke Trr m=Ⅱ对原子核有222224πkeM rr T=⋅Ⅱ,解得222224πke Trr M=Ⅱ因r1+r2=r,可解得:()23224πmMrTke M m=+Ⅱ所以有T M mT M+=ⅠⅡ因为M>>m,可得TⅠ≈TⅡ,所以采用模型Ⅰ更简单方便.2.有三根长度皆为l=0.3 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m=1.0×10﹣2kg的带电小球A和B,它们的电荷量分别为﹣q 和+q,q=1.0×10﹣6C.A、B之间用第三根线连接起来,空间中存在大小为E=2.0×105N/C的匀强电场,电场强度的方向水平向右.平衡时A、B球的位置如图所示.已知静电力常量k=9×109N•m2/C2重力加速度g=10m/s2.求:(1)A、B间的库仑力的大小(2)连接A、B的轻线的拉力大小.【答案】(1)F=0.1N(2)10.042T N=【解析】试题分析:(1)以B球为研究对象,B球受到重力mg,电场力Eq,静电力F,AB间绳子的拉力1T和OB绳子的拉力2T,共5个力的作用,处于平衡状态,A、B间的静电力22qF kl=,代入数据可得F=0.1N(2)在竖直方向上有:2sin60T mg︒=,在水平方向上有:12cos60qE F T T=++︒代入数据可得10.042T N=考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.3.“顿牟掇芥”是两千多年前我国古人对摩擦起电现象的观察记录,经摩擦后带电的琥珀能吸起小物体,现用下述模型分析研究。
中山市高中物理必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。
【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.2.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .①求该双星系统中每个星体的线速度大小v ;②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为12p m m E Gr=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12p q q E kr=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.【答案】(1)①v =②202M G L -(2)①2-2ke r②模型Ⅰ的简化是合理的【解析】(1)① 22002/2M M v G L L =,解得v =②双星系统的动能2200k 0012222GM GM E M v M L L =⨯==,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =202M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=22ke r又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2-2ke r对于模型Ⅱ:对电子有:22121mv ke r r =, 解得 22112mv r r ke =对于原子核有:22222Mvker r=,解得22222Mv rrke=因为r1+r2=r,所以有22221222+mv r Mv rr ke ke=解得E kⅡ=2 221211222ke mv Mvr+=又因电势能2peE kr=-Ⅱ,所以EⅡ= E kⅡ+E pⅡ=2-2ker即模型Ⅰ、Ⅱ中系统的能量相等,均为2 -2 ker②解法一:模型Ⅰ中:对于电子绕原子核的运动有22II2=mvkem vr rω=,解得2I2=kevm rω模型Ⅱ中:对电子有:22II1II21=mvkem vr rω=,解得2II21=kevm rω对于原子核有:22222=ke MvM vr rω=,因ω1=ω2,所以mvⅡ=Mv又因原子核的质量M远大于电子的质量m,所以vⅡ>>v,所以可视为M静止不动,因此ω1=ω2=ω,即可视为vⅠ=vⅡ.故从线速度的角度分析模型Ⅰ的简化是合理的.②解法二:模型Ⅰ中:对于电子绕原子核的运动有22I2mvker r=,解得Iv模型Ⅱ中:库仑力提供向心力:222122=kemr Mrrωω== (1)解得12=r Mr m;又因为r1+r2=r所以1=Mrm M+2=mrm M+带入(1)式:ω=所以:1v rω=Ⅱ2v rω=又因原子核的质量M远大于电子的质量m,所以vⅡ>>v,所以可视为M静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.3.如图所示,在绝缘水平面上,相距L 的A 、B 两点处分别固定着两个带电荷量相等的正点电荷,a 、b 是AB 连线上的两点,其中4LAa Bb ==,O 为AB 连线的中点,一质量为m 、带电荷量为+q 的小滑块(可以看作质点)以初动能E 从a 点出发,沿直线AB 向b 点运动,其中小滑块第一次经过O 点时的动能为初动能的n 倍(1)n >,到达b 点时动能恰好为零,小滑块最终停在O 点重力加速度为g ,求: (1)小滑块与水平面间的动摩擦因数; (2)O 、b 两点间的电势差; (3)小滑块运动的总路程.【答案】(1)k02E mgL μ= (2)k0(21)2Ob n E U q -=- (3)214n s L +=【解析】 【详解】 (1)由4LAa Bb ==,0为AB 连线的中点知a 、b 关于O 点对称,则a 、b 两点间的电势差0ab U =;设小滑块与水平面间的摩擦力大小为f ,在滑块从a 点运动到b 点的过程中,由动能定理得k002ab LqU f E -⋅=- 又摩擦力f mg μ=解得2k E mgL μ=. (2)在滑块从O 点运动到b 点的过程中,由动能定理得004ob k LqU f nE -⋅=- 解得ko(21)2ob n E U q-=-. (3)对于小滑块从a 开始运动到最终在O 点停下的整个过程,由动能定理得000a x k qU f E -=-又(21)2kOaO Ob n E U U q-=-=解得214n s L +=.4.如图所示,空间存在方向水平向右的匀强电场,两个可视为点电荷的带电小球P 和Q 用绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,已知匀强电场强度为E ,两小球之间的距离为L ,PQ 连线与竖直方向之间的夹角为θ,静电常数为k (1)画出小球P 、Q 的受力示意图; (2)求出P 、Q 两小球分别所带的电量。
【答案】(1)P 带负电,Q 带正电;(2)2sin EL k θ【解析】 【详解】(1)依题意得,小球P 、Q 受力示意图如图根据平衡条件,P 带负电,Q 带正电 ① (2)设P 带电量为-q 1,Q 带电量为q 2 根据库仑定律:122C q q F kL = ② 根据牛顿第三定律:F C =F C / ③对于P 球:根据平衡条件:1sin C q E F θ= ④解得:21sin EL q k θ=⑤ 对于Q 球: 根据平衡条件:'2sin c q E F θ= ⑥解得:22sin EL q k θ=⑦5.如右图所示,在方向竖直向下的匀强电场中,一个质量为m 、带负电的小球从斜直轨道上的A 点由静止滑下,小球通过半径为R 的圆轨道顶端的B 点时恰好不落下来.若轨道是光滑绝缘的,小球的重力是它所受的电场力2倍,试求:⑴A 点在斜轨道上的高度h ;⑵小球运动到最低点C 时,圆轨道对小球的支持力. 【答案】(1)52R (2) 3mg 【解析】试题分析:由题意得:mg=2Eq设小球到B 点的最小速度为V B ,则由牛顿第二定律可得:mg-Eq=m 2Bv R;对AB 过程由动能定理可得: mg (h-2R )-Eq (h-2R )=12mV B 2; 联立解得:h=52R ; (2)对AC 过程由动能定理可得:mgh-Eqh=12mv c 2; 由牛顿第二定律可得:F+Eq-mg=m 2Cv R联立解得:F=3mg ;由牛顿第三定律可得小球对轨道最低点的压力为3mg . 考点:牛顿定律及动能定理.6.如图所示,一光滑斜面的直角点A 处固定一带电量为+q ,质量为m 的绝缘小球。
另一同样小球置于斜面顶点B 处,已知斜面长为L ,现把上部小球从B 点从静止自由释放,球能沿斜面从B 点运动到斜面底端C 处(静电力常量为k ,重力加速度为g )求:(1)小球从B 处开始运动到斜面中点D 处时的速度? (2)小球运动到斜面底端C 处时,球对斜面的压力是多大? 【答案】(1) 2D glv =2232'3N N kq F F L ==-【解析】(1)由题意知:小球运动到D 点时,由于AD=AB ,所以有D B ϕϕ= 即0DB D B U ϕϕ=-=① 则由动能定理得:21sin30022DB L mg qu mv ︒+=-② 联立①②解得2D gl v =(2)当小球运动到C 点时,对球受力分析如图所示则由平衡条件得:sin30cos30N F F mg +︒=︒库④由库仑定律得:()22cos30kq F l =︒库⑤联立④⑤得:223223N kq F mg L=- 由牛顿第三定律即2232'3N N kq F F L==-.二、必修第3册 静电场中的能量解答题易错题培优(难)7.电容器是一种重要的电学元件,基本工作方式就是充电和放电.由这种充放电的工作方式延伸出来的许多电学现象,使得电容器有着广泛的应用.如图1所示,电源与电容器、电阻、开关组成闭合电路.已知电源电动势为E,内阻不计,电阻阻值为R,平行板电容器电容为C,两极板间为真空,两极板间距离为d,不考虑极板边缘效应.(1)闭合开关S,电源向电容器充电.经过时间t,电容器基本充满.a.求时间t内通过R的平均电流I;b.请在图2中画出充电过程中电容器的带电荷量q随电容器两极板电压u变化的图象;并求出稳定后电容器储存的能量E0;(2)稳定后断开开关S.将电容器一极板固定,用恒力F将另一极板沿垂直极板方向缓慢拉开一段距离x,在移动过程中电容器电荷量保持不变,力F做功为W;与此同时,电容器储存的能量增加了ΔE.请推导证明:W=ΔE.要求最后的表达式用已知量表示.【答案】(1)a.CEIt= b.212E CE=(2)见解析【解析】试题分析:(1)a.设充电完毕电容器所带电量为Q,即时间t内通过电阻R的电量,此时电容器两端电压等于电源的电动势根据电容的定义(2分)根据电流强度的定义(2分)解得平均电流(2分)b.根据q = Cu,画出q-u图像如图1所示(2分)由图像可知,图线与横轴所围面积即为电容器储存的能量,如图2中斜线部分所示由图像求出电容器储存的电能(2分)解得(2分)(2)设两极板间场强为,两极板正对面积为S根据,,得,可知极板在移动过程中板间场强不变,两极板间的相互作用力为恒力.两板间的相互作用可以看作负极板电荷处于正极板电荷产生的电场中,可知两板间的相互作用力.(2分)缓慢移动时有根据功的定义有代入已知量得出(2分)电容器增加的能量(或)(2分)代入已知量得出(2分)所以考点:电容,电动势,能量守恒.8.如图所示,倾角为α=30°的绝缘斜面AB长度为3l,BC长度为32l,斜面上方BC间有沿斜面向上的匀强电场.一质量为m、电荷量为+q的小物块自A端左上方某处以初速度03v gl=水平抛出,恰好在A点与斜面相切滑上斜面,沿斜面向下运动,经过C点但未能到达B点,在电场力作用下返回,最终恰好静止在A点,已知物块与斜面间的动摩擦因数为3μ=,不考虑运动过程中物块电荷量的变化,重力加速度为g,求:(1)物块平抛过程中的位移大小;(2)物块在电场中的最大电势能【答案】(113(2)2mgl【解析】【详解】(1)物块落到斜面上A点时,速度方向与水平方向夹角为α,设此时速度为v则cos v vα=,竖直速度sin y v v α=, 平抛过程中水平位移0y v x v g=,竖直位移22yBv y =,平抛的位移22s x y =+,解得13s l =. (2)设物块沿斜面向下运动的最大位移为x ´,自物块从A 点开始向下运动到再次返回A 点根据动能定理有212cos 02mg x mv μα'-⋅=-, 解得2x l '=.物块位于最低点时,电势能最大,物块自A 点到最低点过程中,设电场力做功为W ,根据动能定理有21sin cos 02mg x mg x W mv αμα''⋅-⋅-=-, 解得2W mgl =,即物块电势能大值为2mgl .9.两平行金属板A 、B 间距离为d ,两板间的电压U AB 随时间变化规律如图所示,变化周期为T =6秒,在t =0时,一带正电的粒子仅受电场力作用,由A 板从静止起向B 板运动,并于t =2T 时刻恰好到达B 板,求:(1)若该粒子在t =T /6时刻才从A 板开始运动,那么,再经过2T 时间,它将运动到离A 板多远的地方?(2)若该粒子在t =T /6时刻才从A 板开始运动,那么需再经过多长时间才能到达B 板, 【答案】(1)13d (2)32.6s 【解析】 【分析】 【详解】(1)粒子在t =0时开始运动,它先加速再减速,再加速、减速,向同一方向运动,其v -t 图如图中粗实线所示,设每次加速(或减速)运动的位移为s ,则4s =d ,4d s =, 若粒子在t =T /6时刻才从A 板开始运动,其运动图线如图中细实线所示,设每次加速(或减速)运动的位移为s 1,设每次反向加速(或减速)运动的位移为s 2, 则1499d s s == 21936d s s == 所以一个周期内的总位移为122()6ds s s =+=' 所以2T 内粒子运动的总位移为3d (2)粒子在t =T / 6时刻才从A 板开始运动,6个周期内的总位移刚好是d ,但由于粒子有一段反向运动,所以在6个周期末之前已到达B 板,即在5个周期末,粒子和B 板的距离为6d s '=粒子通过此距离所需时间为22(36T -则粒子到达B 板所需时间为221725((32.6s 3636t T T T =+-=-≈' 【点睛】由于粒子不是在电场中一直处于加速或减速,所以导致分析运动较复杂;也可以假设b 板向下移动到最后一个周期末速度为零的位置,这算出整段时间,再去移动距离的时间.10.如图所示,光滑水平面上方以CD 为界,右边有水平向右的匀强电场,电场强度大小E =104N/C,水平面上有质量为M =0.1kg 的绝缘板,板的右端A 恰好在边界CD 处,板上距A 端l =1.8m 放置一质量m 1=0.1kg 、带电量为q =-8×10-5 C 的小滑块P .质量为m 2=0.5kg 的小滑块Q 以初速度v 0=5.5m/s 从B 端滑入绝缘板,在与小滑块P 相遇前,小滑块P 已进入电场.已知小滑块P 、Q 与板之间的动摩擦因数分别为μ1=0.5、μ2=0.1,最大静摩擦力近似等于滑动摩擦力.g =10m/s 2.求:(1)小滑块Q 刚滑上板时,滑块P 的加速度大小a 1; (2)小滑块P 进入电场后的加速度大小和方向;(3)若小滑块P 、Q 恰好在CD 边界相向相遇,AB 板的长度L . 【答案】(1)2.5m/s 2(2)3m/s 2;方向向右(3)12.52m 【解析】(1)设:小滑块P 与绝缘板一起向右加速运动.由牛顿第二定律:2211()m g m M a μ=+,解得:21 2.5m/s a =;对小滑块P ,由牛顿第二定律:1110.25N f m a ==,1max 1110.5N>f m g f μ==假设正确; (2)小滑块P 进入电场后,设:小滑块P 相对绝缘板运动,对绝缘板,由牛顿第二定律得:2211)m g m g M a μμ-=,解得:a =0,做匀速直线运动;对小滑块P ,由牛顿第二定律1111qE m g m a μ'-=,解得213m/s a '=,方向向左,假设正确;(3)设刚进入电场时小滑块P 的速度为v 1由运动学公式:1123m/s v a l ==, 滑块P 进入电场前运动的时间为1111.2s v t a ==, 设滑块P 回到CD 边界时间为t 2,由运动学公式:21212102v t a t '-=,解得22s t =; 对小滑块Q ,加速度大小为a 2,由牛顿第二定律得:2222m g m a μ=,2221m/s a g μ==;设:经过t 3时间,小滑块Q 与绝缘板共速,即:1023v v a t =-;解得:0131222.5s<3.2sv vt t ta-==+=,设:此后小滑块Q与绝缘板共同做匀减速运动,其加速度大小为2a',由牛顿第二定律得:1122()m g m M aμ'=+,解得:211225m/s6m gaM mμ'==+,Q相对于绝缘板的总位移:22103231113111()[()] 4.925m22x v t a t a t v t t=--+-=,小滑块P相对于板的总位移:22131112321231()()() 5.796m2x v t t v t t t a t t t'=-++--+-≈,板的总长度为1212.52mL x x l=++≈.11.一匀强电场足够大,场强方向是水平的.一个质量为m的带正电的小球,从O点出发,初速度的大小为v0,在电场力与重力的作用下,恰能沿与场强的反方向成θ角的直线运动.求:(1)小球运动的加速度的大小是多少?(2)小球从O点出发到其运动到最高点时发生的位移大小?(3)小球运动到最高点时其电势能与在O点的电势能之差?【答案】(1)singθ(2)2sin2vgθ(3) 221cos2mvθ【解析】【详解】(1)小球做直线运动,所受的合力与速度方向在同一条直线上,根据平行四边形定则得:sinθ=mgma解得小球的加速度:singaθ=.(2)小球从开始到最高点的位移为:220022v v sinxa gθ==.(3)因为Eq=mg/tanθ,则小球运动到最高点时其电势能与在O点的电势能之差等于电场力做功,即222001cos .cos cos tan 22P v sin mg E W Eqx mv g θθθθθ∆===⋅= 【点睛】本题有两点需要注意,一是由运动情景应能找出受力关系;二是知道小球做匀减速直线运动,结合牛顿第二定律和运动学公式求解位移.知道电势能的变化量的等于电场力的功.12.如图甲所示,A 、B 为两块相距很近的平行金属板,A 、B 间电压为0AB U U =-,紧贴A 板有一电子源随时间均匀地飘出质量为m ,带电量为e 的电子(可视为初速度为零)。