物理化学教程课后习题答案
- 格式:doc
- 大小:267.00 KB
- 文档页数:16
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为13353.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
第六章相平衡一.基本要求1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数;2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别;3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因;4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理;5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线;了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用;6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质;二.把握学习要点的建议相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律;水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础;超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣;二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度在二组分相图上都是条件自由度,为以后看懂复杂的二组分相图打下基础;最高或最低恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别;杠杆规则可以在任何两相区使用,但也只能在两相区使用,在三相区和在三相平衡线上是不能使用杠杆规则的;从具有最高会溶温度的相图,要认清帽形区的特点,是两液相的平衡共存区,这对今后理解两个固溶体也会形成帽形区很有帮助;在学习用热分析法绘制二组分低共熔相图时,首先要理解在步冷曲线上为什么会出现转折点和水平线段,这一方面要从散热与释放出的凝固热进行补偿的角度理解,另一方面要从自由度的变化来理解;理解了步冷曲线上自由度的变化情况,对相图中的自由度就容易理解;要花较多的精力掌握简单的二组分低共熔相图,要进行相区、两相平衡线、三相平衡线和特殊点的自由度分析,这样今后就容易看懂和理解复杂相图,因为复杂相图一般是简单相图的组合;低共熔混合物到底有几个相这个问题初学时容易混淆,答案当然是两相,不过这是两种固体以微小的结晶均匀混合的物系,纵然在金相显微镜中看起来也很均匀,但小晶体都保留着原有固体的物理和化学性质,所以仍是两相;低共熔点的温度和组成都会随着外压的改变而改变,所以低共熔混合物也不是化合物;对于形成稳定化合物和不稳定化合物的相图,要抓住相图的特点,了解稳定化合物的熔点与不稳定化合物的转熔温度之间的差别,比较一般的三相线与不稳定化合物转熔时的三相线有何不同要注意表示液相组成点的位置有什么不同,这样在分析复杂相图时,很容易将稳定化合物和不稳定化合物区别开来;固溶体是固体溶液的简称,固溶体中的“溶”是溶液的“溶”,所以不要把“溶”字误写为“熔”字;既然固溶体是溶液的一种,实际是混合物的一种即固体混合物,所以固溶体是单相,它的组成线与液态溶液的组成线一样,组成会随着温度的改变而改变;在相图上,固溶体总是处在由两根曲线封闭的两相区的下面;在分析复杂相图,首先要能正确认出固溶体或帽形区的位置,则其他相区的分析就变得简单了;三.思考题参考答案1.硫氢化铵NH HS(s)的分解反应:①在真空容器中分解;②在充有一定4NH(g)的容器中分解,两种情况的独立组分数是否一样3答:两种独立组分数不一样;在①中,C =1;因为物种数S 为3,但有一个独立的化学平衡和一个浓度限制条件,所以组分数等于1;在②中,物种数S 仍为3,有一个独立的化学平衡,但是浓度限制条件被破坏了,两个生成物之间没有量的限制条件,所以独立组分数C =2;2.纯的碳酸钙固体在真空容器中分解,这时独立组分数为多少答: 碳酸钙固体的分解反应为 32CaCO (s)CaO(s)CO (g)+物种数为3,有一个平衡限制条件,但没有浓度限制条件;因为氧化钙与二氧化碳不处在同一个相,没有摩尔分数的加和等于1的限制条件,所以独立组分数为2;3.制水煤气时有三个平衡反应,求独立组分数C1 H 2Og+ Cs= H 2g+ COg2 CO 2g+ H 2g= H 2Og+ COg3 CO 2g+ Cs= 2COg答: 三个反应中共有5个物种,5S =;方程1可以用方程3减去2得到,因而只有2个独立的化学平衡,2R =;没有明确的浓度限制条件,所以独立组分数3C =;4.在抽空容器中,氯化铵的分解平衡,43NH Cl(s)NH (g)HCl(g)+;指出该系统的独立组分数、相数和自由度数答:反应中有三个物种,一个平衡限制条件,一个浓度限制条件,所以独立组分数为1,相数为2;根据相律,自由度为1;即分解温度和分解压力两者之中只有一个可以发生变化;5.在含有氨的容器中氯化铵固体分解达平衡,43NH Cl(s)NH (g)HCl(g)+;指出该系统的独立组分数、相数和自由度答: 反应中有三个物种,一个平衡限制条件,没有浓度限制条件;所以独立组分数为2,相数为2,自由度为2;6.碳和氧在一定条件下达成两种平衡,指出该系统的独立组分数、相数和自由度数;答:物种数为4,碳,氧,一氧化碳和二氧化碳,有两个化学平衡,无浓度限制条件,所以独立组分数为2,相数为2,自由度为2;7.水的三相点与冰点是否相同答:不相同;纯水的三相点是气-液-固三相共存,其温度和压力由水本身性质决定,这时的压力为 Pa,温度为 K ;热力学温标1 K就是取水的三相点温度的1/ K ;水的冰点是指在大气压力下,冰与水共存时的温度;由于冰点受外界压力影响,在 kPa压力下,冰点下降 K,由于水中溶解了空气,冰点又下降 K,所以在大气压力为 kPa 时,水的冰点为 K ;虽然两者之间只相差 K,但三相点与冰点的物理意义完全不同;8.沸点和恒沸点有何不同答:沸点是对纯液体而言的;在大气压力下,纯物质的液-气两相达到平衡,当液体的饱和蒸气压等于大气压力时,液体沸腾,这时的温度称为沸点;恒沸点是对二组分液相混合系统而言的,是指两个液相能完全互溶,但对Raoult定律发生偏差,当偏差很大,在p x-图上出现极大值或极小值时,则在T x-图上出现极小值或极大值,这时气相的组成与液相组成相同,这个温度称为最低或最高恒沸点,用简单蒸馏的方法不可能把二组分完全分开;这时,所对应的双液系统称为最低或最高恒沸混合物;在恒沸点时自由度为1,改变外压,恒沸点的数值也改变,恒沸混合物的组成也随之改变;当压力固定时,条件自由度为零,恒沸点的温度有定值;9.恒沸混合物是不是化合物答:不是;它是完全互溶的两个组分的混合物,是由两种不同的分子组成;在外压固定时,它有一定的沸点,这时气相的组成和液相组成完全相同;但是,当外部压力改变时,恒沸混合物的沸点和组成都会随之而改变;化合物的沸点虽然也会随着外压的改变而改变,但它的组成是不会改变的;10.在汞面上加了一层水能减少汞的蒸气压吗答:不能;因为水和汞是完全不互溶的两种液体,两者共存时,各组分的蒸气压与单独存在时的蒸气压一样,液面上的总压力等于纯水和纯汞的饱和蒸气压之和;如果要蒸馏汞的话,加了水可以使混合系统的沸点降低,这就是蒸气蒸馏的原理;所以,仅仅在汞面上加一层水,是不可能减少汞的蒸气压的,但是可以降低汞的蒸发速度;11.单组分系统的三相点与低共熔点有何异同点答:共同点:两者都是气-液-固三相共存;不同点:单组分系统的三相点是该组分纯的气、液、固三种相态平衡共存,这时的自由度等于零,它的压力、温度由系统自身的性质决定,不受外界因素的影响;而二组分系统在低共熔点如T-x图上的E点温度时,是纯的A固体、B固体和组成为E的熔液三相平衡共存,这时的自由度为1,在等压下的条件自由度等于零;E点的组成由A和B的性质决定,但E点的温度受压力影响,当外压改变时,E点的温度和组成也会随之而改变;12.低共熔混合物能不能看作是化合物答:不能;低共熔混合物不是化合物,它没有确定的熔点,当压力改变时,低共熔物的熔化温度和组成都会改变;虽然低共熔混合物在金相显微镜下看起来非常均匀,但它仍是两个固相微晶的混合物,由两个相组成;13.在实验中,常用冰与盐的混合物作为致冷剂;试解释,当把食盐放入0℃的冰-水平衡系统中时,为什么会自动降温降温的程度有否限制,为什么这种致冷系统最多有几相解: 当把食盐放入0℃的冰-水平衡系统中时,由于食盐与冰有一个低共熔点,使水的冰点降低,因此破坏了冰-水平衡,冰就要融化;融化过程中要吸热,系统的温度下降;降温有一定的限度,因为它是属于二组分系统的低共熔混合物,当温度降到低共熔点时,冰、食盐与溶液达到了平衡,系统的温度就不再下降;根据相律:2f C P =+-,组分数为2H O(l)和NaCl(s),2C =;当0f =时,最多相数4P =,即气相,溶液,冰和NaCls 四相共存;如果指定压力,则条件自由度等于零时,最多相数3P =,溶液,冰和NaCls 三相平衡共存;四.概念题参考答案1.4NH HS(s)与任意量的3NH (g)及2H S(g)达平衡时,有A C = 2,P = 2,f = 2BC = 1,P = 2,f = 1C C = 2,P = 3,f = 2D C = 3,P = 2,f = 3答:A;系统中有三个物种,一个平衡条件,由于已存在3NH (g)及2H S(g),就不存在浓度限制条件,所以组分数2C =;平衡共存时有固相和气相两个相,根据相律,自由度2f =;2.在大气压力下,3FeCl (s)与2H O(l)可以生成32FeCl 2H O(s),32FeCl 5H O(s),32FeCl 6H O(s)和32FeCl 7H O(s)四种固体水合物,则该平衡系统的组分数C 和能够平衡共存的最大相数P 为A 3, 3C P ==B 3, 4C P == C 2, 3C P ==D 3, 5C P == 答:C;这是二组分系统生成稳定化合物或稳定水合物的一个例子,3FeCl (s)与2H O(l)可以生成多种水合物,但它还是二组分系统,所以组分数必定等于2;不能把生成的稳定水合物也看作是组分;如果要写出生成水合物的多个平衡方程式,则多一个水合物物种,也多一个化学平衡方程,所以组分数是不会改变的;根据组分数等于2这一点,就可以决定选C;根据相律,当自由度等于零时,能得到平衡共存的最大相数;则20f C P =+-=,理论上最大相数似乎应等于4,但是题目已标明是在大气压力下,用*13f C P P =+-=-,所以能见到的平衡共存的最大相数只有3个;如果题目不标明是在大气压力下,由于凝聚相系统受压力影响极小,也应该看作是在等压条件下进行的,能见到的平衡共存的最大相数只能是3个;3.在 100 kPa 的压力下,2I (s)在2H O(l)和4CCl (l)两个完全不互溶的液相系统中达分配平衡;设平衡时2I (s)已不存在,则该系统的组分数和自由度数分别为A *2, 1C f ==B *2, 2C f == C *3, 2C f ==D *3, 3C f == 答:C;该系统中显然有2I (s),2H O(l)和4CCl (l)三个物种,3S =,但无化学平衡,0R =,也无浓度限制条件,'0R =不要把2I 在两相中的分配平衡看作是浓度关系式,因为在推导分配常数时已用到了2I 在两相中化学势相等的条件,所以组分数3C =;由于是两相平衡,又指定了压力,所以条件自由度*13122f C P =+-=+-=;4.4CuSO 与水可生成42CuSO H O ⋅,42CuSO 3H O ⋅和42CuSO 5H O ⋅三种水合物,则在一定温度下与水蒸气达平衡的含水盐最多为A 3种B 2种C 1种D 不可能有共存的含水盐答:B;系统的组分数为2,已指定温度,根据相律,条件自由度等于零时,可得最多可以共存的相数,*1210f C P P =+-=+-=,最多可以三相共存;现在已指定有水蒸气存在,所以,可以共存的含水盐只可能有2种;5.某一物质X,在三相点时的温度是20℃,压力是200 kPa;下列哪一种说法是不正确的A 在20℃以上,X 能以液体存在B 在20℃以下,X 能以固体存在C 在25℃和100 kPa 下,液体X 是稳定的D 在20℃时,液体X 和固体X 具有相同的蒸气压答:C;可以画一张单组分系统相图的草图,C 所描述的条件只能落在气相区,所以这种说法是不正确的;6.2N 的临界温度是124 K,如果想要液化2N (g),就必须A 在恒温下增加压力B 在恒温下降低压力C 在恒压下升高温度D 在恒压下降低温度答:D;临界温度是指在这个温度之上,不能用加压的方法使气体液化,所以只有在恒压下用降低温度的方法使之液化;7.当Clausius-Clapeyron 方程应用于凝聚相转变为蒸气时,则A p 必随T 之升高而降低B p 必不随T 而变C p必随T之升高而变大D p随T之升高可变大也可减少答:C; 因为凝聚相转变为蒸气时总是吸热的,根据Clausius-Clapeyron方程,等式右方为正值,等式左方也必定为正值,所以p随T之升高而变大;8.对于恒沸混合物的描述,下列各种叙述中不正确的是A 与化合物一样,具有确定的组成B 不具有确定的组成C 平衡时,气相和液相的组成相同D 恒沸点随外压的改变而改变答:A;恒沸混合物不是化合物,不具有确定的组成,其恒沸点和组成都会随着外压的改变而改变;9.对于二组分气—液平衡系统,哪一个可以用蒸馏或精馏的方法将两个组分分离成纯组分A接近于理想的液体混合物B对Raoult定律产生最大正偏差的双液系C对Raoult定律产生最大负偏差的双液系 D部分互溶的双液系答:A;完全互溶的理想双液系,或对Raoult定律发生较小正负偏差的都可以用蒸馏或精馏的方法将其分开,两者的沸点差别越大,分离越容易;而对Raoult定律产生最大正负偏差的双液系,气-液两相区分成两个分支,形成了最低或最高恒沸混合物,用蒸馏方法只能得到一个纯组分和一个恒沸混合物;部分互溶的双液系首先要将两个液层分离,然后视具体情况而决定分离两个互溶部分的液相,或采用萃取的方法,单用蒸馏方法是不行的;10.某一固体,在25℃和大气压力下升华,这意味着A 固体比液体密度大些B 三相点的压力大于大气压力C 固体比液体密度小些D 三相点的压力小于大气压力答:B;画一单组分系统相图的草图,当三相点的压力大于大气压力时,在25℃和大气压力下处于气相区,所以固体会升华;2CO 的相图就属于这一类型;11.在相图上,当系统处于下列哪一点时,只存在一个相A 恒沸点B 熔点C 临界点D 低共熔点答:C;在临界点时,气-液界面消失,只有一个相;其余三个点是两相或三相共存;12.在水的三相点附近,其摩尔气化焓和摩尔熔化焓分别为144.82 kJ mol -⋅和15.99 kJ mol -⋅;则在三相点附近,冰的摩尔升华焓为 A 138.83 kJ mol -⋅ B 150.81 kJ mol -⋅C 138.83 kJ mol --⋅D 150.81 kJ mol --⋅答:B;摩尔升华焓等于摩尔气化焓与摩尔熔化焓之和;13.某反应系统中共有的物种为Ni(s),NiO(s),2H O(l),2H (g),CO(g)和2CO (g),它们之间可以达成如下三个化学平衡1 ,12NiO(s)CO(g)Ni(s)CO (g)p K ++ 2 ,2222H O(l)CO(g)H (g)CO (g)p K ++ 3 ,322NiO(s)H (g)Ni(s)H O(l)p K ++该反应的组分数C 和平衡常数之间的关系为A ,1,2,33, p p p C K K K ==B ,3,1,24, /p p pC K K K == C ,3,1,23, /p p p C K K K ==D ,3,2,14, /p p p C K K K ==答:B;这个系统有6个物种,在三个化学平衡中只有2个是独立的,没有其他限制条件,所以组分数4C =;因为(1)(2)(3)-=,方程式的加减关系,反应的Gibbs 自由能也是加减关系,而平衡常数之间则是乘除关系,所以,3,1,2/p p p K K K =;14.将纯的2H O(l)放入抽空、密闭的石英容器中,不断加热容器,可以观察到哪种现象A 沸腾现象B 三相共存现象C 升华现象D 临界现象 答:D;在单组分系统的相图上,是该系统自身的压力和温度,就象该实验所示;实验不是在外压下进行的,系统中也没有空气,所以不可能有沸腾现象出现;在加热过程中,水的气、液两种相态一直处于平衡状态,即22H O(l)H O(g);随着温度的升高,2H O(l)的密度不断降低,而水的蒸气压不断升高,致使2H O(g)的密度变大,当2H O(l)和2H O(g)的两种相态的密度相等时,气-液界面消失,这就是临界状态;15.Na 2CO 3和水可形成三种水合盐:Na 2CO 3·H 2O 、Na 2CO 3·7H 2O 和NaCO 3·10H 2O;在常压下,将Na 2CO 3投入冰-水混合物中达三相平衡时,若一相是冰,一相是Na 2CO 3水溶液,则另一相是A Na 2CO 3B Na 2CO 3·H 2OC Na 2CO 3·7H 2OD Na 2CO 3·10H 2O答:D;画一张草图,NaCO 3·10H 2O 的含水量最多,一定最靠近表示纯水的坐标一边;五.习题解析1.将2N (g),2H (g)和3NH (g)三种气体,输入773 K,73.210 kPa ⨯的放有催化剂的合成塔中;指出下列三种情况系统的独立组分数设催化剂不属于组分数1 2N (g),2H (g)和3NH (g)三种气体在输入合成塔之前;2 三种气体在塔内反应达平衡时;3 开始只输入3NH (g),合成塔中无其它气体,待其反应达平衡后;解: 1 进入合成塔之前,三种气体没有发生反应,故组分数3C =;2在塔内反应达平衡时,系统的物种数3S =,但有一个化学平衡条件,故2C =; 3开始只输入3NH (g),3NH (g)分解达平衡,系统的物种数3S =,但有一个化学平衡条件和一个浓度限制条件,故1C =;2.指出下列平衡系统中的物种数,组分数,相数和自由度数;1 CaSO 4的饱和水溶液;2 将5g3NH (g)通入1 dm 3水中,在常温下与蒸气平衡共存;解:1物种数2S =,4CaSO (s)和2H O(l);组分数2C =,相数2P =;根据相律,22f C P =+-=;这两个自由度是指温度和压力,即在一定的温度和压力的范围内,能保持固、液两相平衡不发生变化;2 因为3NH (g)与水会发生相互作用,生成32NH H O ⋅,所以物种数3S =,3NH (g),2H O(l)和32NH H O ⋅;有一个形成一水合氨的平衡,故1R =,所以2C =;有气、液两相,2P =;根据相律,22f C P =+-=;这两个自由度是指温度和压力,即在一定的温度和压力的范围内,能维持固、气两相平衡的状态不发生变化;3.3CaCO (s)在高温下分解为CaO(s)和2CO (g),根据相律解释下述实验事实; 1 在一定压力的2CO (g)中,将3CaCO (s)加热,实验证明在加热过程中,在一定的温度范围内3CaCO (s)不会分解;2 在3CaCO (s)的分解过程中,若保持2CO (g)的压力恒定,实验证明达分解平衡时,温度有定值;解:1 该系统中有两个物种,2CO (g)和3CaCO (s),所以物种数2S =;在没有发生反应时,组分数2C =;现在是一个固相和一个气相两相共存,2P =;当2CO (g)的压力有定值时,根据相律,条件自由度*12121f C P =+-=+-=;这个自由度就是温度,即在一定的温度范围内,可维持两相平衡共存不变,所以3CaCO (s)不会分解; 2该系统有三个物种,2CO (g),3CaCO (s)和CaO(s),所以物种数3S =;有一个化学平衡,1R =;没有浓度限制条件,因为产物不在同一个相,故2C =;现在有三相共存两个固相和一个气相,3P =;若保持2CO (g)的压力恒定,条件自由度*12130f C P =+-=+-=;也就是说,在保持2CO (g)的压力恒定时,温度不能发生变化,即3CaCO (s)的分解温度有定值;4.已知固体苯的蒸气压在273 K 时为 k Pa,293 K 时为 k Pa ;液体苯的蒸气压在293 K 时为 k Pa,液体苯的摩尔气化焓为1vap m 34.17 kJ mol H -∆=⋅;试计算1 在303 K 时液体苯的蒸气压,设摩尔气化焓在这个温度区间内是常数;2 苯的摩尔升华焓;3 苯的摩尔熔化焓;解:1 用Clausius-Clapeyron 方程,求出液态苯在303 K 时的蒸气压 解得液体苯在303 K 时的蒸气压2用Clausius-Clapeyron 方程,求出固体苯的摩尔升华焓解得固体苯的摩尔升华焓3苯的摩尔熔化焓等于摩尔升华焓减去摩尔气化焓5.结霜后的早晨冷而干燥,在-5℃,当大气中的水蒸气分压降至 Pa 时,霜会升华变为水蒸气吗 若要使霜不升华,空气中水蒸气的分压要有多大已知水的三相点的温度和压力分别为 K 和611 Pa,水的摩尔气化焓1vap m 45.05 kJ mol H -∆=⋅,冰的摩尔融化焓1fus m 6.01 kJ mol H -∆=⋅;设相变时的摩尔焓变在这个温度区间内是常数;解:冰的摩尔升华焓等于摩尔熔化焓与摩尔气化焓的加和,用Clausius-Clapeyron 方程,计算 K-5℃时冰的饱和蒸气压解得 (268.15K)401.4 Pa p =而 K-5℃时,水蒸气的分压为 Pa,低于霜的水蒸气分压,所以这时霜要升华;当水蒸气分压等于或大于401.4 Pa 时,霜可以存在;6.在平均海拔为4 500 m 的高原上,大气压力只有 kPa;已知压力与温度的关系式为 5 216 K ln(/Pa)25.567p T=-;试计算在这高原上水的沸点; 解:沸点是指水的蒸气压等于外界压力时的温度;现根据压力与温度的关系式,代入压力的数据,计算蒸气压等于 kPa 时的温度,解得: 357 K T =即在海拔为4 500 m 的高原上,水的沸点只有357 K,即84 ℃,这时煮水做饭都要用压力锅才行;7.将3NH (g)加压,然后在冷凝器中用水冷却,即可得液氨,即3NH (l);已知某地区一年中最低水温为2℃,最高水温为37℃,问若要保证该地区的氮肥厂终年都能生产液氨,则所选氨气压缩机的最低压力是多少已知:氨的正常沸点为-33℃,蒸发焓为11 368 J g -⋅,设蒸发焓是与温度无关的常数;解: 氨在正常沸点-33℃240 K 时,它的蒸气压等于大气压力,为 kPa;水温为2℃275 K 时,氨的蒸气压较低,得到液氨没有问题;主要是计算在37℃310K 时氨的蒸气压,这就是压缩机所需的最低压力;已知氨的摩尔蒸发焓为:根据Clausius-Clapeyron 方程,计算310 K 时 氨的蒸气压,;解得: (310K) 1 408.3 kPa p =即在37℃时,压缩机的最低压力必须大于1 408.3 kPa ,才能终年都能生产液氨;8.CO 2的固态和液态的蒸气压与温度的关系式,分别由以下两个方程给出:试计算: 1 二氧化碳三相点的温度和压力;2 二氧化碳在三相点时的熔化焓和熔化熵;解: 1 在三相点时,固态和液态的蒸气压相等,s l p p =,即解得三相点的温度 215.3 K T =代入任意一个蒸气压与温度的方程式,计算三相点时的压力两个结果稍有不同 解得 ()466.7 kPa p =三相点2 根据Clausius-Clapeyron 方程的一般积分式式中'C 是积分常数;对照题中所给的方程,从固体的蒸气压与温度的关系式,可计算得到二氧化碳的摩尔升华焓,从液体的蒸气压与温度的关系式,可计算得到二氧化碳的摩尔蒸发焓,摩尔熔化焓等于摩尔升华焓减去摩尔蒸发焓,9.根据2CO 的相图,回答如下问题;1说出OA ,OB 和OC 三条曲线以及特殊点O 点与A 点的含义;2在常温、常压下,将2CO 高压钢瓶的阀门慢慢打开一点,喷出的2CO 呈什么相态为什么3在常温、常压下,将2CO 高压钢瓶的阀门迅速开大,喷出的2CO 呈什么相态为什么4为什么将2CO (s)称为“干冰”2CO (l)在怎样的温度和压力范围内能存在 解:1OA 线是2CO (l)的饱和蒸气压曲线;OB 线是2CO (s)的饱和蒸气压曲线,也就是升华曲线;OC 线是2CO (s)与2CO (l)的两相平衡曲线;O 点是2CO 的三相平衡共存的点,简称三相点,这时的自由度等于零,温度和压力由系统自定;A 点是2CO 的临界点,这时气-液界面消失,只有一个相;在A 点温度以上,不能用加压的方法将。
物理化学核心教程(第二版)参考答案第 一 章 气 体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K ,右球的温度为293 K 时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K ,中间汞滴向哪边移动? (2)若两球温度同时都升高10 K, 中间汞滴向哪边移动? 答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K ,汞滴仍向右边移动。
因为左边起始温度低,升高10 K 所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象?答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
四.概念题参考答案1.在等温、等压且不做非膨胀功的条件下,当反应的1r m 5 kJ mol G -∆=⋅时,该反应自发进行的方向为 ( )(A) 正向自发进行 (B) 逆向自发进行(C) 无法判断 (D) 反应不能进行答:(C)。
判断反应能否自发进行,要用等温、等压且不做非膨胀功的条件下r m G ∆的变化值,而不能用r m G ∆的值。
除非该反应是在标准压力下进行,则r m 0G ∆>,反应能逆向自发进行。
或者r m G ∆是一个绝对值很大的负值,改变压力商也不可能改变r m G ∆的符号,则r m G ∆也小于零,这时可以估计反应能自发正向进行。
2.理想气体混合物在化学反应达平衡时,应该使用下列哪个关系式 ( )(A )r m ln p G RT K ∆=- (B )r m ln p G RT K ∆=-(C )r m ln x G RT K ∆=- (D )r m ln c G RT K ∆=-答:(B )。
根据理想气体化学势的表示式,对数项中用B /p p 表示,在化学反应等温式中,对数项中是压力商p Q ,达平衡时,是平衡时的压力商,所以标准平衡常数是p K ,相应的Gibbs 自由能的变化值为r m G ∆。
3.理想气体反应23CO(g)2H (g)CH OH(g)+=的r m G ∆与温度T 的关系为:1r m /(J mol )21 66052.92/K G T -∆⋅=-+。
若要使反应的平衡常数大于1,则应控制的反应温度为 ( )(A) 必须低于℃ (B) 必须高于409.3 K(C) 必须低于409.3 K (D) 必须等于409.3 K答:(C)。
r m G ∆与标准平衡常数p K 的关系式为r m ln p G RT K ∆=-,要使1p K =,则r m 0G ∆=。
从已知的关系式,解得409.3 K T =。
要使反应在标准压力下能自发正向进行,r m G ∆必须小于零,所以,根据已知的关系式,反应温度必须低于409.3 K 。
第1章 物质的pVT 关系和热性质习 题 解 答1. 两只容积相等的烧瓶装有氮气,烧瓶之间有细管相通。
若两只烧瓶都浸在100℃的沸水中,瓶内气体的压力为0.06MPa 。
若一只烧瓶浸在0℃的冰水混合物中,另一只仍然浸在沸水中,试求瓶内气体的压力。
解: 21n n n +=2212112RT V p RT V p RT V p +=⋅2111121222112p T p T T p T T T T =+⎛⎝⎜⎞⎠⎟=+ ∴112222p T T T p ⋅+=MPa0.0507=MPa 06.02)15.273100()15.2730(15.2730⎥⎦⎤⎢⎣⎡××++++=2. 测定大气压力的气压计,其简单构造为:一根一端封闭的玻璃管插入水银槽内,玻璃管中未被水银充满的空间是真空,水银槽通大气,则水银柱的压力即等于大气压力。
有一气压计,因为空气漏入玻璃管内,所以不能正确读出大气压力:在实际压力为102.00kPa 时,读出的压力为100.66kPa ,此时气压计玻璃管中未被水银充满的部分的长度为25mm 。
如果气压计读数为99.32kPa ,则未被水银充满部分的长度为35mm ,试求此时实际压力是多少。
设两次测定时温度相同,且玻璃管截面积相同。
解:对玻璃管中的空气,p V p V 2211=kPa 0.96=kPa )66.10000.102(35251212−×==p V V p ∴ 大气压力 = kPa 28.100kPa )96.032.99(=+·28· 思考题和习题解答3. 让20℃、20 dm 3的空气在101325 Pa 下缓慢通过盛有30℃溴苯液体的饱和器,经测定从饱和器中带出0.950 g 溴苯,试计算30℃时溴苯的饱和蒸气压。
设空气通过溴苯之后即被溴苯蒸气所饱和;又设饱和器前后的压力差可以略去不计。
(溴苯Br H C 56的摩尔质量为1mol g 0.157−⋅)解:n pV RT 131013252010831452027315==×××+⎡⎣⎢⎤⎦⎥−().(.) mol =0.832 mol n m M 209501570==..mol =0.00605mol p py p n n n 22212101325732==+=×= Pa 0.006050.832+0.00605 Pa4. 试用范德华方程计算1000 g CH 4在0℃、40.5 MPa 时的体积(可用p 对V 作图求解)。
物理化学简明教程第四版课后习题答案物理化学简明教程第四版课后习题答案物理化学是一门研究物质的性质、结构和变化规律的学科。
它是化学和物理学的交叉领域,涉及到了许多基本概念和理论。
为了帮助学生更好地理解和掌握物理化学的知识,教材通常会提供一些课后习题。
下面是物理化学简明教程第四版课后习题的答案。
1. 习题一:化学平衡答案:化学平衡是指化学反应在一定条件下达到动态平衡的状态。
在平衡状态下,反应物和生成物的浓度保持不变,但是反应仍在进行。
平衡常数K是描述平衡状态的一个重要参数,它的大小决定了反应的方向和强度。
平衡常数的计算方法是根据反应物和生成物的浓度之比来确定。
2. 习题二:热力学答案:热力学是研究能量转化和能量传递的学科。
热力学第一定律是能量守恒定律,它表明能量可以从一种形式转化为另一种形式,但总能量守恒。
热力学第二定律是热力学不可逆性原理,它表明自然界中存在着一种趋势,即熵增加的趋势。
熵是描述系统无序程度的物理量,熵增加意味着系统的无序程度增加。
3. 习题三:电化学答案:电化学是研究电与化学反应之间相互作用的学科。
电化学反应可以分为两类:电解反应和电池反应。
电解反应是指在外加电势的作用下,将化学物质分解成离子的反应。
电池反应是指利用化学反应产生电能的反应。
电化学反应的关键是电子的转移,它通过氧化还原反应来实现。
4. 习题四:量子力学答案:量子力学是研究微观世界的物理学理论。
它描述了微观粒子的运动和相互作用。
量子力学的基本假设是波粒二象性,即微观粒子既可以表现出波动性,又可以表现出粒子性。
量子力学的基本方程是薛定谔方程,它描述了微观粒子的波函数演化规律。
波函数可以用来计算微观粒子的位置、动量和能量等物理量。
5. 习题五:分子动力学答案:分子动力学是研究分子运动的理论和方法。
它基于牛顿力学和统计力学的原理,通过求解分子运动方程来描述分子的运动轨迹。
分子动力学可以用来研究分子的结构、动力学性质和相互作用。
第五章 化学平衡一.基本要求1.掌握化学反应等温式的各种形式,并会用来判断反应的方向和限度。
2.了解标准平衡常数的定义,掌握标准平衡常数的各种表示形式和计算方法。
3.掌握标准平衡常数K 与r m G ∆在数值上的联系,熟练用热力学方法计算r m G ∆,从而获得标准平衡常数的数值。
4.了解标准摩尔生成Gibbs 自由能f m G ∆的定义和它的应用。
5.掌握温度对化学平衡的影响,记住van ’t Hoff 公式及其应用。
6.了解压力和惰性气体对化学平衡的影响。
二.把握学习要点的建议把本章放在多组分系统之后的目的,就是要利用多组分系统中介绍的化学势的概念和各种表示方式,来导出化学反应等温式,从而用来判断化学反应的方向与限度。
本章又用到了反应进度的概念,不过其值处在0 1 mol -的区间之内。
因为在利用化学势的表示式来计算反应的Gibbs 自由能的变化值时,是将化学势看作为一个定值,也就是在有限的反应系统中,化学进度为d ξ,如果在一个很大的系统中, 1 mol ξ=。
严格讲,标准平衡常数应该用绝对活度来定义,由于本教材没有介绍绝对活度的概念,所以利用标准态化学势来对标准平衡常数下定义,其含义是一样的。
从标准平衡常数的定义式可知,标准平衡常数与标准化学势一样,都仅是温度的函数,因为压力已指定为标准压力。
对于液相反应系统,标准平衡常数有其相应的形式。
对于复相化学反应,因为纯的凝聚态物质本身就作为标准态,它的化学势就是标准态化学势,已经归入r m G ∆中,所以在计算标准平衡常数时,只与气体物质的压力有关。
学习化学平衡的主要目的是如何判断反应的方向和限度,知道如何计算平衡常数,了解温度、压力和惰性气体对平衡的影响,能找到一个经济合理的反应条件,为科研和工业生产服务。
而不要过多地去考虑各种浓度表示式和各种平衡常数表示式之间的换算,否则会把自己搞糊涂了,反而没抓住主要内容。
由于标准平衡常数与r m G ∆在数值上有联系,r m ln p G RT K ∆=-,所以有了r m G ∆的值,就可以计算p K 的值。
第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学第四版课后习题答案物理化学第四版课后习题答案物理化学是一门综合性的学科,涵盖了物理学和化学的知识。
学习物理化学需要理解和掌握一定的理论知识,并通过解决问题来加深对这些知识的理解。
课后习题是一个很好的学习工具,通过解答习题可以巩固和应用所学的知识。
本文将为大家提供物理化学第四版课后习题的答案。
第一章:量子力学基础1. 量子力学是描述微观世界的物理理论,它通过波函数描述微观粒子的运动状态。
波函数的平方表示了找到粒子在某个位置的概率。
2. 波函数的归一化条件是∫|Ψ(x)|^2dx = 1,其中Ψ(x)是波函数。
3. 薛定谔方程描述了波函数的演化,它是一个时间无关的定态方程,形式为HΨ = EΨ,其中H是哈密顿算符,Ψ是波函数,E是能量。
4. 电子在原子中的运动状态由量子数来描述。
主量子数n描述了电子的能级大小,角量子数l描述了电子的轨道形状,磁量子数ml描述了电子在轨道上的方向。
5. 电子自旋是电子的一个内禀属性,它有两个可能的取值:向上自旋和向下自旋。
第二章:分子结构与光谱学1. 分子的几何构型对其性质有重要影响。
分子的几何构型可以通过VSEPR理论来确定,根据原子间的排斥力确定分子的空间结构。
2. 共振现象是指分子中电子的位置可以在不同原子间跳跃,从而使分子的结构发生变化。
3. 光谱学是研究物质与光的相互作用的学科。
分子的光谱可以提供关于分子结构和化学键的信息。
4. 红外光谱可以用来确定分子中的化学键类型和它们的存在形式。
5. 核磁共振光谱可以提供关于分子中原子核的信息,包括原子核的类型、数量和化学环境。
第三章:热力学1. 热力学是研究能量转化和能量传递的学科。
它描述了物质和能量之间的关系。
2. 热力学第一定律是能量守恒定律,它表明能量可以从一种形式转化为另一种形式,但总能量保持不变。
3. 热力学第二定律描述了能量转化的方向性,它表明自然界中能量转化总是朝着熵增的方向进行。
4. 熵是描述系统无序程度的物理量,它可以用来判断一个过程的可逆性。
物理化学教程课后习题答案第一章 化学热力学基础姓名:刘绍成 学号 :120103208026 金材10-1-16-34P 82(1-1) 10 mol 理想气体由25℃,1.00MPa 。
设过程为:(i )向真空膨胀;(ii )对抗恒外压0.100MPa 膨胀。
分别计算以上各过程的体积功。
解:(i) 外(ii)(ii )P 1V 1=nRT V 1=24.777m 3;因为是恒温过程,故 V 2=21P P V 1=66101.0101777.24⨯⨯⨯=247.77m 3W=-⎰21v v Pdv =-P(V 2-V 1)=-22.2995J小结:此题考查真空膨胀的特点及恒外压做功的求法,所用公式有:PV=nRT;TPV=常数;W=-⎰21v v Pdv 等公式。
P 82(1-3) 473k, 0.2MPa ,1dm 3的双原子分子理想气体,连续经过下列变化:(I )定温膨胀到3 dm 3;(II )定容升温使压力升到0.2MPa ;(III )保持0.2MPa 降温到初始温度473K 。
(i )在p-v 图上表示出该循环全过程;(ii )计算各步及整个循环过程的Wv 、Q ,ΔU ,及ΔH 。
已知双原子分子理想气体C p,m =27R 。
解:(ii) p (i) 向真T=273kP 1=1.0T=273kP 2=0.dT=0 dV=0 dP=0P 1V 1=nRT 1 n=111RT V P =4733145.8101102.036⨯⨯⨯⨯-mol=0.0509mol,P 1V 1=P 2V 2 ∴P 2=21V VP 1=31×0.2×106=0.067MPa,T 2=21P P T 1=6316102.0102.0⨯⨯⨯×473K=1419K.(i) 恒温膨胀A B△U i =0,△H i =0. W i =-⎰21v v Pdv =-nRTln12v v =-0.0509×8.3145×473×ln3=-219.92J.∴Q i =-W=219.92J.(ii) 等体过程 B C 因为是等体积过程所以W ii =0,Q ii =△U ii =nC V,m △T=n(C p,m -R)(T 2-T 1)=0.0509×(27-1)×8.3145×(1419-473)=1000.89J;T 1=473k P=0.T 1=473k P =T 2=P 1=0.2MPaT 1=473k P =0.△ H ii =nC p,m △T=0.0509×3.5×8.3145×(1419-473)=1401.2J. (iii) 等压过程 C AW iii =-P △V=-P(V 1-V 2)=-0.2×106×(1-3)×10-3=400J;△ H iii =nC p,m △T=0.0509×3.5×8.3145×(473-1419)=-1401.2J △ U iii =nC V,m△T=0.0509×2.5×8.3145×(473-1419)=-1000.89J Q=△U-W=-1000.89-400=-1400.89J在整个过程中由于温度不变所以△U=0, △H=0; Q=-W=-180.08J.小结:此题考查了恒温过程、等体过程以及等压过程的公式应用,内能和焓只是过于温度的函数。
所用公式有:C p,m -C V,m =R; △U=nC V,m △T;△H=nC p,m △T; W=-P △VP 82(1-4) 10mol 理想气体从2×106 Pa 、10-3m 3定容降温,使压力降到2×105 Pa ,再定压膨胀到2×10-2㎥,求整个过程的Wv ,Q ,ΔU 和ΔH 。
解: P I A (P 1,V 1,T 1) n=10mol,P 1=2×106 Pa,V 1=10-3m 3,II B (P 2,V ,T 3) P 2=2×105 Pa V 2=2×10-2m 3V 1 V 2 VP 1V 1=nRT 1 T 1=nRV P 11=23.77KT 2=12P P T 1=0.1×23.77K=2.377K; T 3=12v v T 2=23.77K;W I =0 W II =-⎰21v v Pdv =-P 2(T 2-T 1)Q I =△U I =nC v,m △T= nC v,m (T 2-T 1) △U 2= nC v,m (T 3-T 2)△H I =△U I +△PV=△U+nR(T 2-T 1) Q II =△H II =△U II +△PV=△U II +nR(T 3-T 2)W V = W I + W II =-P 2(T 2-T 1)=-2×105×(10-2-10-3)=-1800J 因为T 1=T 2所以△U=0,△H=0; Q=-W=1800J.小结:此题考查U=f(T);H=f(T);以及热力学第一定律的公式U=W+Q.P 821-5 10mol 理想气体由25℃,106Pa 膨胀到25℃,105Pa ,设过程为:(i )自由膨胀;(ii )对抗恒外压105Pa 膨胀;(iii )定温可逆膨胀。
分别计算以上各过程的W 、Q 、ΔU 和ΔH 。
解:(i )自由膨胀 P 外=0,由W=-P ΔV 得 W=0;又因是等温过程,所以△H=0,△U=0,故 Q=0.(ii )因是等温过程,所以△H=0,△U=0; W v =-P(V 2-V 1)=-105(2P nRT -1P nRT ) =-105×(510298314.810⨯⨯-610298314.810⨯⨯)=22.3JQ=△U-W=22.3J(iii )因是等温过程,所以△H=0,△U=0; W v =-⎰21v v Pdv =-nRTln 12v v =-10×8.314×298×ln10=-57.05KJ;Q=-W v =57.05KJ小结:此题考查U=f(T);H=f(T); W v =-⎰21v v Pdv 等公式P 82 (1-6) 氢气从1.43 dm 3,3.04×105Pa ,298.15K 可逆膨胀到2.86 dm 3。
氢气的C p,m =28.8 J ·K -1·mol -1,按理想气体处理。
(i )求终态的温度和压力;(ii )求该过程的Q 、Wv 、ΔU 和ΔH 。
解:C v,m =28.8-8.3145=20.4855 J ·K -1·mol -1 r=mv mp C C ,,=7/5(i )由理想气体绝热可逆过程方程得:T 1V r-1= T 2V 2r-1T 2=(21v v )r-1T 1=0.50.4×298.15=225.9K;P 1V 1=常数 P 2=(21v v )r P 1=0.51.4×3.04×105=1.15×105Pa; (iii)有题知 Q=0,PV= nRT n=RTPV=15.2983145.81043.11004.335⨯⨯⨯⨯-=0.175molW v =△U= nC V,m (T 2- T 1)=0.175×20.4855×(225.9-298.15)=-259.1J△ H=△U+△PV=△U+nR △T=-259.1+0.175×8.3145×(225.9-298.15)=-364.3J.小结:此题考查理想气体绝热可逆过程的方程应用,有T 1V r-1= T 2V 2r-1; P 1V 1=常数;△H=△U+△PV=△U+nR △TP 82(1-7) 2mol 的单原子理想气体,由600k,1000MPa 对抗恒外压100KPa 绝热膨胀到100KPa 。
计算该过程的Q 、Wv 、ΔU 和ΔH 。
解:因为Q=0 所以△U= W W v =-P su △V=-P su nR(22P T -11P T )△U=nC v,m (T 2-T 1) 所以nC v,m (T 2-T 1)= -P su nR(22P T -11P T )则 T 2=2,1,P su P Rmv C P suP Rmv C ++×T 1=[3/2+1/10]/[3/2+1/1]×600=384kW v =△U= nC v,m (T 2-T 1)=2×3/2×8.3145×(384-600)=-5.388kJ △ H= nC p,m (T 2-T 1)=2×5/2×8.3145×(384-600)=-8.980kJ 小结:对于理想气体要谨记单原子的C v,m =3/2×R ,双原子分子C v,m =5/2×R 且C p,m -C v,m =R;此题还有一个陷阱,那就是容易让人使用绝热可逆过程的方程。
此题之说了绝热而没说绝热可逆所以要审清题P 821-8 在298.15K ,6×101.3kPa 压力下,1mol 单原子理想气体进行绝热过程,最终压力为101.3kPa,若为:(i )可逆过程;(ii )对抗恒外压101.3kPa 膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所做的体积功;气的热力学能变化及焓变。
已知Cp,m=5R/2。
2mol 600k2mol T 2解: i 绝热可逆ii P =101.3kPa (i) 绝热可逆膨胀设最终温度为 T2 ,由式 T γ1 P 11-γ= T γ2P 21-γ ,对单原子理想气体 γ=C p,m /Cv,m=1.67 所以T 2=()γγ-121P P T 1=60.4×298.15=145 .6 KW v =ΔU=nC v,m ( T2 - T1 )=-1×1.5×8.3145×152.55=-1902.6J ΔH = nCp,m ( T 2 – T 1 ) =-1×8 .3145 (145 .6 - 298 .15)= -3170.8J(ii) 对抗恒外压 101 .3 kPa 迅速膨胀W v =-P 外(V 2-V 1) △U=n C v,m ( T 2 – T 1 ) 因为是绝热过程 Q = 0所以 W v = ΔU 即:-P 2()1122P nRT PnRT -=nCv,m( T 2 – T 1 )把C v,m =23R 代入上式消去 R 值,得- T 2+61T 1=23T 2-23T 1 解得 T = 198 .8 KW v =ΔU = nC v,m ( T 2 – T 1 )=1.5×8.3145×(198.8-298.15)=-1239ΔH = nCp,m ( T2 - T1 )=1×2.5×8 .3145 × (198 .8 -298 .15) =- 2065 J小结:此题主要考查绝热可逆过程一系列方程的应用,有PV γ=C ;T γ1 P 11-γ= T γ2P 21-γ;V γ-1T=C ;同时也考查了热力学能变化及焓变的求解公式ΔU = nC v,m ( T 2 – T 1 );ΔH = nCp,m ( T2 - T1 ),此题有一误区那就是容易使用此公式W v =-⎰21v v Pdv =-nRTln 12v v ,要注意的是此公式298.15K 1mol 6×101.3kPa 101.3kPa T 2只用于温度恒定的情况下,而此题是绝热,所以不能用!P82(1-10) 已知反应(i)CO(g)+H2O(g)→CO2(g)+H2(g),(298.15K)=-41.2kJ •mol-1,(ii)CH4(g)+2H2O(g)→CO2(g)+4H2(g), (298.15K)=165.0 kJ•mol-1计算下列反应的(298.15K)(iii)CH4(g)+H2O(g)→CO(g)+3H2(g)解:(iii)=(ii)-(i)所以(298.15K)=165.0KJ.mol-1-(-41.2 KJ.mol-1)=206.2 KJ.mol-1小结:一个化学反应不管是一步完成还是经过多步完成,反应总的标准摩尔焓变是相同的,这就是盖斯定律,而此题正是其应用。