最新ipv6路由协议的详细介绍讲课讲稿
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
通俗易懂 ipv6
IPv6,全称为“Internet Protocol version 6”,中文名为“互联网协议第6版”,它是互联网工程任务组(IETF)设计的用于替代IPv4的下一代IP协议。
IPv6的出现,主要是为了解决IPv4地址资源枯竭的问题。
IPv4是我们现在使用的互联网协议,由于早期的设计缺陷,IPv4地址数量有限,随着互联网的快速发展,地址资源已经接近枯竭。
而IPv6则采用了128位的地址长度,理论上的地址数量是2的128次方个,这个数字之大,几乎可以认为是无穷无尽的,因此完全不用担心地址资源枯竭的问题。
IPv6相比于IPv4,还有很多其他的优点。
首先,IPv6的设计更加简洁高效,可以减少网络中的路由表大小,提高路由器的转发效率。
其次,IPv6具有更好的安全性,支持IPSec (互联网协议安全),可以对通信内容进行加密,保证数据的安全性。
此外,IPv6还支持更多的多播功能,可以更好地支持流媒体、视频会议等需要大量数据传输的应用。
对于普通用户来说,IPv6的普及可能并不会直接带来什么变化,因为大部分的网络应用并不需要用户去关心使用的是IPv4还是IPv6。
但是,随着IPv4地址资源的枯竭,以及IPv6技术的不断成熟,未来IPv6的普及是必然的趋势。
因此,了解IPv6,对于我们理解互联网的发展,以及未来可能出现的变化,都是非常有帮助的。
IPv6技术路由协议随着互联网的发展,IP地址的分配问题逐渐凸显出来。
IPv4(Internet Protocol version 4)作为当前互联网主要采用的网络协议,其可用的IP地址数量已接近枯竭。
为了解决这一问题,IPv6(Internet Protocol version 6)被提出并逐渐被广泛应用。
IPv6技术引入了更大的地址空间以及一些新的路由协议,本文将详细介绍IPv6技术路由协议。
一、IPv6路由协议介绍1. 描述IPv6路由协议的作用和功能IPv6路由协议是IPv6网络中主要用于实现分组从源地址到目标地址的转发的协议。
它通过定义一组规则和算法来确定数据包从源节点到目标节点的路径,并将数据包沿着这条路径传输。
2. 常见的IPv6路由协议目前,常见的IPv6路由协议包括静态路由、RIPng、OSPFv3、IS-IS和BGP等。
每种协议都有其特点和适用场景,可以根据网络规模、复杂度和需求来选择合适的协议。
二、IPv6路由协议的特点和功能1. 静态路由静态路由是最简单直接的一种路由方式,通过手动配置路由表来实现数据包的转发。
它不需要协议运作,对资源和处理器要求较低,但在大规模复杂网络中管理和维护静态路由表会变得困难。
2. RIPng(Routing Information Protocol next generation)RIPng是IPv6版本的RIP协议,是一种距离向量路由协议。
它使用的是跳数作为评估标准,具有快速收敛和简单实现的优点,但不适合大规模网络。
3. OSPFv3(Open Shortest Path First version 3)OSPFv3是用于IPv6网络的链路状态路由协议,它在IPv4的OSPF协议的基础上进行了扩展和改进。
OSPFv3可以对网络进行分级组织,支持不同的区域和区域之间的路由信息交换,具有高度可扩展性和快速收敛特性。
4. IS-IS(Intermediate System to Intermediate System)IS-IS是一种自治系统(AS)内部使用的分布式链路状态路由协议,被广泛应用于大型ISP和企业网络。
ipv6协议书IPv6协议书1. 引言随着互联网的快速发展,IP地址的需求量日益增加。
IPv4协议只能提供有限的地址空间,已经渐渐无法满足互联网的需求。
为此,IPv6协议应运而生。
本文将对IPv6协议进行详细介绍,包括其概述、特点、优势以及应用领域等方面。
2. IPv6概述IPv6(Internet Protocol Version 6)是互联网协议的第六个版本。
相比于IPv4,IPv6拥有更大的地址空间,允许更多设备连接到互联网。
IPv6采用128位的地址长度,相比IPv4的32位更加庞大,能够提供近乎无限的IP地址。
3. IPv6特点3.1 扩展地址空间IPv6采用128位的地址空间,使得每个人、每个设备都能够拥有独立的全球唯一的IP地址。
这不仅解决了IPv4地址不足的问题,还方便了网络管理和路由器的操作。
3.2 简化的地址配置IPv6引入了快速配置和动态主机配置协议,使得设备在网络中获得IP地址的过程更加简单和高效。
与IPv4相比,IPv6无需依赖于DHCP服务器,使得网络管理更加灵活。
3.3 支持更多的功能和扩展性IPv6支持更多的功能和协议扩展,如IPv6的报文验证和加密,以及对移动设备的支持等。
这些扩展使得IPv6能够满足日益增长的互联网需求,包括物联网、云计算和移动通信等领域。
4. IPv6的优势4.1 更好的网络性能由于IPv6地址空间庞大,网络的寻址和路由运行更加高效。
IPv6不仅提高了网络的吞吐量和响应速度,还减少了网络拥塞和延迟。
这对于支持高速数据传输和实时通信至关重要。
4.2 提升网络安全性IPv6引入了IPsec协议作为默认支持的安全性机制,可以保护数据的完整性、机密性和身份验证等。
这使得网络通信更加安全可靠,抵御了各类网络攻击和欺骗。
4.3 促进互联网的发展IPv6的大规模部署将推动互联网的进一步发展。
IPv6的独立地址空间和可扩展性使得互联网能够连接更多的设备和资源,为创新和发展提供更广阔的平台。
IPv6讲解IPv6是第六代互联网协议(Internet Protocol Version 6)的缩写,它是互联网工程任务组(IETF)设计的用于替代IPv4的下一代IP协议。
IPv6的使用,不仅能解决网络地址资源数量的问题,而且也解决了多种接入设备连入互联网的障碍。
IPv6使用更小的路由表,使得路由器转发数据包的速度更快。
IPv6增加了增强的组播支持以及对流的控制,对多媒体应用很有利,对服务质量(QoS)控制也很有利。
IPv6加入了对自动配置的支持,这是对DHCP协议的改进和扩展,使得网络(尤其是局域网)的管理更加方便和快捷。
第二代互联网IPv4技术,核心技术属于美国。
它的最大问题是网络地址资源有限,从理论上讲,编址1600万个网络、40亿台主机。
但采用A、B、C三类编址方式后,可用的网络地址和主机地址的数目大打折扣,以至目前的IP地址近乎枯竭。
其中北美占有3/4,约30亿个,而人口最多的亚洲只有不到4亿个,中国只有3千多万个,只相当于美国麻省理工学院的数量。
地址不足,严重地制约了我国及其他国家互联网的应用和发展。
一方面是地址资源数量的限制,另一方面是随着电子技术及网络技术的发展,计算机网络将进入人们的日常生活,可能身边的每一样东西都需要连入全球因特网。
在这样的环境下,IPv6应运而生。
单从数字上来说,IPv6所拥有的地址容量是IPv4的约8×10^28倍,达到2^128-1个。
这不但解决了网络地址资源数量的问题,同时也为除电脑外的设备连入互联网在数量限制上扫清了障碍。
但是与IPv4一样,IPv6一样会造成大量的IP地址浪费。
准确的说,使用IPv6的网络并没有2^128-1个能充分利用的地址。
首先,要实现IP地址的自动配置,局域网所使用的子网的前缀必须等于64,但是很少有一个局域网能容纳2^64个网络终端;其次,由于IPv6的地址分配必须遵循聚类的原则,地址的浪费在所难免。
但是,如果说IPv4实现的只是人机对话,而IPv6则扩展到任意事物之间的对话,它不仅可以为人类服务,还将服务于众多硬件设备,如家用电器、传感器、远程照相机、汽车等,它将是无时不在,无处不在的深入社会每个角落的真正的宽带网。
IPv6路由协议的详细介绍
IPv6是对IPv4的革新,尽管大多数IPv6的路由协议都需要重新设计或者开发,但IPv6路由协议相对IPv4只有很小的变化。
目前各种常用的单播路由协议(IGP、EGP)和组播协议都已经支持IPv6。
1IPv6单播路由协议
IPv6单播路由协议实现和IPv4中类似,有些是在原有协议上做了简单扩展(如,ISISv6、BGP4+),有些则完全是新的版本(如,RIPng、OSPFv3)。
1.1RIPng
下一代RIP协议(简称RIPng)是对原来的IPv4网络中RIP-2协议的扩展。
大多数RIP的概念都可以用于RIPng。
为了在IPv6网络中应用,RIPng对原有的RIP协议进行了修改:
UDP端口号:使用UDP的521端口发送和接收路由信息
组播地址:使用FF02::9作为链路本地范围内的RIPng路由器组播地址
路由前缀:使用128比特的IPv6地址作为路由前缀
下一跳地址:使用128比特的IPv6地址
1.2OSPFv3
OSPFv3是OSPF版本3的简称,主要提供对IPv6的支持,遵循的标准为
RFC2740(OSPFforIPv6)。
与OSPFv2相比,OSPFv3除了提供对IPv6的支持外,还充分考虑了协议的网络无关性以及可扩展性,进一步理顺了拓扑与路由的关系,使得OSPF的协议逻辑更加简单清晰,大大提高了OSPF的可扩展性。
OSPFv3和OSPFv2的不同主要有:
修改了LSA的种类和格式,使其支持发布IPv6路由信息
修改部分协议流程,使其独立于网络协议,大大提高了可扩展性
主要的修改包括用Router-ID来标识邻居,使用链路本地(Link-local)地址来发现邻居等,使得拓扑本身独立于网络协议,与便于未来扩展。
进一步理顺了拓扑与路由的关系
OSPFv3在LSA中将拓扑与路由信息相分离,一、二类LSA中不再携带路由信息,而只是单纯的描述拓扑信息,另外用新增的八、九类LSA结合原有的三、五、七类LSA来发布路由前缀信息。
提高了协议适应性
通过引入LSA扩散范围的概念,进一步明确了对未知LSA的处理,使得协议可以在不识别LSA的情况下根据需要做出恰当处理,大大提高了协议对未来扩展的适应性。
1.3IS-ISv6
IS-IS是由国际标准化组织ISO为其无连接网络协议CLNP发布的动态路由协议。
同BGP 一样,IS-IS可以同时承载IPv4和IPv6的路由信息。
为了使IS-IS支持IPv4,IETF在RFC1195中对IS-IS协议进行了扩展,命名为集成化IS-IS(IntegratedIS-IS)或双IS-IS(DualIS-IS)。
这个新的IS-IS协议可同时应用在TCP/IP 和OSI环境中。
在此基础上,为了有效的支持IPv6,IETF在draft-ietf-isis-ipv6-05.txt 中对IS-IS进一步进行了扩展,主要是新添加了支持IPv6路由信息的两个
TLV(Type-Length-Values)和一个新的NLPID(Network Layer Protocol Identifier)。
TLV是在LSP(LinkStatePDUs)中的一个可变长结构,新增的两个TLV分别是:IPv6Reachability(TLVtype236):
类型值为236(0xEC),通过定义路由信息前缀、度量值等信息来说明网络的可达性。
IPv6InterfaceAddress(TLVtype 232):
类型值为232(0xE8),它相当于IPv4中的“IPInterfaceAddress”TLV,只不过把原来的32比特的IPv4地址改为128比特的IPv6地址。
NLPID是标识IS-IS支持何种网络层协议的一个8比特字段,IPv6对应的NLPID值为142(0x8E)。
如果IS-IS路由器支持IPv6,那么它必须在Hello报文中携带该值向邻居通告它支持IPv6。
1.4BGP4+
传统的BGP-4只能管理IPv4的路由信息,对于使用其它网络层协议(如IPv6等)的应用,在跨自治系统传播时就受到一定限制。
为了提供对多种网络层协议的支持,IETF对BGP-4进行了扩展,形成BGP4+,目前的BGP4+标准是RFC2858(MultiprotocolExtensionsforBGP-4,BGP-4多协议扩展)。
为了实现对IPv6协议的支持,BGP-4+需要将IPv6网络层协议的信息反映到
NLRI(NetworkLayerReachableInformation)及Next_Hop属性中。
BGP4+中引入的两个NLRI属性分别是:
MP_REACH_NLRI:MultiprotocolReachableNLRI,多协议可达NLRI。
用于发布可达路由及下一跳信息。
MP_UNREACH_NLRI:MultiprotocolUnreachableNLRI,多协议不可达NLRI。
用于撤销不可达路由。
BGP4+中的Next_Hop属性用IPv6地址来表示,可以是IPv6全球单播地址或者下一跳的链路本地地址。
BGP4+利用BGP的多协议扩展属性来达到在IPv6网络中应用的目的,BGP协议原有的消息机制和路由机制并没有改变。
2IPv6组播路由协议
IPv6提供了丰富的组播协议支持,包括MLDv1、MLDv1Snooping、PIM-SM、PIM-DM、PIM-SSM。
2.1MLDv1
MulticastListenerDiscoveryfor IPv6(简称MLD)为IPv6组播监听发现协议。
MLD是一个非对称的协议,IPv6组播成员(主机或路由器)和IPv6组播路由器的协议行为是不同的。
它的目的是使IPv6路由器采用MLD来发现与其直连的IPv6组播监听者的出现,并进行组成员关系的收集和维护,将收集的信息提供给IPv6路由器,使组播包传送到存在IPv6监听者的所有链路上。
MLDv1与IPv4的IGMPv2基本相同。
区别有两点:一、MLDv1的协议报文地址使用IPv6地址;二、离开报文的名称不同。
MLDv1的离开报文是MulticastListenerDone,IGMP的离开报文是IGMPLeave。
2.2MLDv1Snooping
MLDv1Snooping与IPv4的IGMPv2Snooping基本相同,唯一的区别在于协议报文地址使用IPv6地址。
2.3PIM-SM
PIM-SM称为基于稀疏模式的协议无关组播路由协议,它运用潜在的单播路由为组播树的建立提供反向路径信息,并不依赖与特定的单播路由协议。
IPv6的PIM-SM与IPv4的基本相同,唯一的区别在于协议报文地址及组播数据报文地址均使用IPv6地址。
2.4PIM-DM
PIM-DM为密集模式的协议无关组播模式。
IPv6的PIM-DM与IPv4的基本相同,唯一的区别在于协议报文地址及组播数据报文地址
均使用IPv6地址。
2.5PIM-SSM
PIM-SSM采用PIM-SM中的一部分技术用来实现SSM模型。
由于接收者已经通过其他渠道知道了组播源S的具体位置,因此SSM模型中无需RP节点,无需构建RPT树,无需源注册过程,同时也无需MSDP来发现其他PIM域内的组播源。
IP66防护等级
2008-11-14 10:00
IP防护等级体系
IP 表示Ingress Protection(进入防护)。
等级的第一标记数字如IP6_ 表示防尘保护等级 (6表示无灰尘进入,参见下表)
第二标记数字如IP_5 表示防水保护等级 (5 表示防护水的喷射,参见下表)
防水测试(IP_5)的测试方法和主要的测试条件定义如下:
测试方法–喷嘴的喷水口内径为6.3mm,放于距离测试样品2.5-3m之处。
水流速率– 12.5 l/min ±5%
测试持续时间– 1 min/m2 但是至少持续3分钟。
测试条件–从每个可行的角度对测试样品喷射。