立体几何中的折叠问题(微专题)
- 格式:ppt
- 大小:1.07 MB
- 文档页数:15
立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角CABD的平面角的正切值为6,求二面角BADE的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角CABD的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B AD E 的平面角为锐角, 所以二面角B AD E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角BA1PD的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B A 1P D 是钝角, ∥二面角B A 1P D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。
立体几何折叠问题大题精选1.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ)当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(Ⅱ)设BE=x,问当x为何值时,三棱锥A CDF的体积有最大值?并求出这个最大值.2.如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.(1)当点E在棱AB上移动时,证明:D1E⊥A1D;(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.3.如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD≥DA≥AB≥BC≥l,AS∥BC,A⊥AD,且二面角S-CD-A的大小为120o.(Ⅰ)求证:平面ASD⊥平面ABCD;(Ⅱ)设侧棱SC和底面ABCD所成角为,求的正弦值.4.如图1所示,在边长为24的正方形中,点在边上,且,,作分别交于点,作分别交于点,将该正方形沿折叠,使得与重合,构成如图2所示的三棱柱.(1)求证:平面;(2)求多面体的体积.5.如图所示,在边长为的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图所示的三棱柱.(1)求证:平面;(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.6.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.7.已知中,角,,所对的边分别为,,,若,.(1)判断的形状;(2)在的边,上分别取,两点,使沿线段折叠三角形时,顶点正好落在边上的点处,设,当最小时,求的值.8.如图1,四边形中,,,将四边形沿着折叠,得到图2所示的三棱锥,其中.(1)证明:平面平面;(2)若为中点,求二面角的余弦值.9.如图,是等边三角形,,,将沿折叠到的位置,使得.(1)求证:;(2)若,分别是,的中点,求二面角的余弦值.10.一张半径为4的圆形纸片的圆心为,是圆内一个定点,且,是圆上一个动点,把纸片折叠使得与重合,然后抹平纸片,折痕为,设与半径的交点为,当在圆上运动时,则点的轨迹为曲线,以所在直线为轴,的中垂线为轴建立平面直角坐标系,如图.(1)求曲线的方程;(2)曲线与轴的交点为,(在左侧),与轴不重合的动直线过点且与交于、两点(其中在轴上方),设直线、交于点,求证:动点恒在定直线上,并求的方程.11.图甲是一个几何体的表面展开图,图乙是棱长为的正方体。
01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°,∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ; (3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°,∴Rt△DCE∽Rt△ADF,∴ECDF=DEAF,即EC25=810,∴EC=855,∴BE=BC-EC=1255.02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.证明:(1)在矩形ABCD中,AB=CD,∠A=∠C=90°,∵△BED是△BCD对折得到的,∴ED=CD,∠E=∠C,∴ED=AB,∠E=∠A,(2分)又∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS),∴AF=EF;(4分)(2)在Rt△BCD中,∵DC=DE=4,BD=8,∴sin∠CBD=DCBD=12,∴∠CBD=30°,(5分)∴∠EBD=∠CBD=30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG。
立体几何中的折叠问题1.概念:将平面图形沿某直线翻折成立体图形,再对折叠后的立体图形的线面位置关系和某几何量进行论证和计算,就是折叠问题.2.折叠问题分析求解原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。
(最值问题)1、把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为_______.(两点间距离,全品83页)2、把长宽分别为2的长方形ABCD 沿对角线AC 折成60o 的二面角,求顶点B 和D 的距离。
3、(全品70页)给出一边长为2的正三角形纸片,把它折成一个侧棱长与底面边长都相等的三棱锥,并使它的全面积与原三角形面积相等,设计一种折叠方法,并用虚线标在图中,并求该三棱锥的体积。
4、(2005江西文)矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( ) A .π12125B .π9125C .π6125D .π3125A BCEMN解决折叠问题的关键是弄清折叠前后哪些量没有变化,折叠后位置关系怎样变化,通过空间想象折叠成的几何体的形状来分析已知和待求,是培养空间想象能力的很好的题型。
高考题中的折叠问题1、在正方形SG 1G 2G 3中E 、F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE 、SF 及EF 把这个正方形折成一个四面体,使G 1、G2、G 3三点重合,重合后的点记为G.那么,在四面体S —EFG 中必有(A)SG ⊥△EFG 所在平面 (B)SD ⊥△EFG 所在平面 (C)GF ⊥△SEF 所在平面 (D)GD ⊥△SEF 所在平面 2、如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点, G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE , EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( ) A .90° B .60° C .45° D .0°3、(2005浙江理科)12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如下图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_____.4、(2006山东)如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的外接球的体积为(A)2734π (B)26π (C)86π (D)246π5、(2009浙江)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .6.(2010上海)在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去AOB V ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。
2023年高考数学----立体几何折叠问题规律方法与典型例题讲解【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例1.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)当2x =时①求证:BD EG ⊥;②求二面角D BF C −−的余弦值;(2)三棱锥D FBC −的体积是否可能等于几何体ABE FDC −体积的一半?并说明理由. 【解析】(1)证明:过D 点作EF 的垂线交EF 于H ,连接BH .如图.2AE AD == 且//AE DH ,//AD EF ,π2EAD ∠=. ∴四边形ADHE 是正方形.2EH =,∴四边形EHGB 是正方形.所以BH EG ⊥(正方形对角线互相垂直).因为平面AEFD ⊥平面EBCF ,平面AEFD ⋂平面EBCF EF =,,AE EF AE ⊥⊂平面AEFD , 所以⊥AE 平面EBCF , 所以DH ⊥平面EBCF , 又因为EG ⊂平面EBCF ,所以EG DH ⊥. 又,,BHDH H BH DH =⊂平面BDH ,所以EG ⊥平面BDH ,又BD ⊂平面BDH , 所以EG BD ⊥.②以E 为原点,EB 为x 轴,EF 为y 轴,EA 为z 轴,建立空间直角坐标系,(2B ,0,0),(0F ,3,0),(0D ,2,2),(2C ,4,0),(2BF =−,3,0),(2BD =−,2,2),设平面BDF 的法向量(n x =,y ,)z ,则·2220·230n BD x y z n BF x y ⎧=−++=⎪⎨=−+=⎪⎩,取3x =,得(3n =,2,1),又平面BCF 的法向量(0m =,0,1),1cos ,||||14m n m n m n <>==∴钝二面角D BF C −−的余弦值为.(2)AE EF ⊥Q ,平面AEFD ⊥平面EBCF , 平面AEFD ⋂平面EBCF EF =,AE ⊂平面AEFD . AE ∴⊥平面EBCF .结合DH ⊥平面EBCF ,得//AE DH ,∴四边形AEHD 是矩形,得DH AE =,故以F 、B 、C 、D 为顶点的三棱锥D BCF −的高DH AE x ==, 又114(4)8222BCFSBC BE x x ==⨯⨯−=−. ∴三棱锥D BCF −的体积为()2=11822(82)433333BFCV SDH x x x x x x ==−=−−,ABE FDC ABE DGH D HGCF V V V −−−=+13ABEHGCF SAD S DH =+111111(4)2(2)(4)=(4)1+(2)232262x x x x x x x x ⎡⎤=−⨯+⨯+−−+⎢⎥⎣⎦, 令()112(4)1+(2)=24623x x x x x ⎡⎤−+⨯−⎢⎥⎣⎦,解得0x =或4x =,不合题意;∴棱锥D FBC −的体积不可能等于几何体ABE FDC −体积的一半.例2.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值. 【解析】(1)如图取CE 的中点F ,连接PF ,DF ,由题易知△PCE ,△DCE 都是等边三角形, ⸫DF ⊥CE ,PF ⊥CE , ⸫DFPF F =,DF ⊂平面DPF ,PF ⊂平面DPF⸫CE ⊥平面DPF . ⸫DP ⊂平面DPF ⸫DP ⊥CE . (2)解法一:由题易知四边形AECD 是平行四边形, 所以AD ∥CE ,又AD ⊂平面P AD ,所以CE ⊂平面P AD , 所以点E 与点F 到平面P AD 的距离相等. 由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 又AD ⊂平面P AD , 所以平面P AD ⊥平面DPF .过F 作FH ⊥PD 交PD 于H ,则FH ⊥平面P AD .DF PF ==2DP =,故点F 到平面P AD 的距离FH =设直线DE 与平面P AD 所成的角为θ,则sin FH DE θ==, 所以直线DE 与平面P AD 所成角的正弦值为4. 解法二:由题易知四边形AECD 是平行四边形,所以AD ∥CE ,由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 如图,以D 为坐标原点,DA ,DF 所在直线分别为x ,y 轴,过D 且垂直于平面AECD 的直线为z 轴建立空间直角坐标系, 则()0,0,0D ,()4,0,0A ,()E , 设()0,,P a b ,0a >,0b >. 易知DF PF ==2DP =,故(2222124a b a b ⎧−+=⎪⎨⎪+=⎩,P ⎛ ⎝⎭, 所以()4,0,0DA =,DP ⎛= ⎝⎭,()DE =,设平面P AD 的法向量为(),,n x y z =, 则00n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩,得00x y =⎧⎪⎨+=⎪⎩,令y =1z =−,所以()0,11,1n =−.设直线DE 与平面P AD 所成的角为θ,则11sin |cos ,|4DE nDE n DE nθ⋅=〈〉==, 故直线DE 与平面P AD 例3.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面PAD 夹角的余弦值. 【解析】(1)设O 是AD 的中点,连接,OP OC , 三角形PAD 是等边三角形,所以OP AD ⊥,OP =四边形ABCD 是直角梯形,//,OA BC OA BC =,所以四边形ABCO 是平行四边形,也即是矩形,所以OC AD ⊥,2==OC AB .折叠后,PC =222OP OC PC +=,所以OP OC ⊥, 由于,,AD OC O AD OC ⋂=⊂平面ABCD , 所以OP ⊥平面ABCD ,则,,OC OD OP 两两相互垂直,由此建立如图所示的空间直角坐标系, ()2,0,0,AB OC ==()1,1,0F −,设)()0,1,01E t t t −<<,()2,0,0C,所以)11,,22t t M ⎛⎫− ⎪ ⎪⎝⎭,则)120,,22t t FM ⎛⎫−+= ⎪ ⎪⎝⎭,所以0AB FM ⋅=, 所以AB FM ⊥.(2)由于OP ⊥平面ABCD ,AB ⊂平面ABCD ,所以OP AB ⊥, 由于,,,AB AD AD OP O AD OP ⊥⋂=⊂平面PAD ,所以AB ⊥平面PAD ,由于AE ⊂平面PAD ,所以AB AE ⊥, 所以FEA ∠是直线EF 与平面PAD 所成角, 在直角三角形AEF 中,tan AFFEA AE∠=, 由于1AF =,所以当AE 最小时,tan FEA ∠最大,也即FEA ∠最大,由于三角形PAD 是等边三角形,所以当E 为PD 的中点时,AE PD ⊥,AE 取得最小值.由于(P ,()0,1,0D,故此时10,2E ⎛ ⎝⎭,平面PAD 的法向量为()1,0,0m =,()()()30,1,0,2,0,0,2,1,0,0,2A C AC AE ⎛−== ⎝⎭,设平面ACE 的法向量为(),,n x y z =,则20302n ACx y n AE y ⎧⋅=+=⎪⎨⋅==⎪⎩,故可设(1,n =−, 设平面ACE 与平面PAD 的夹角为θ, 则1cos 17m n m nθ⋅===⋅例4.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C −−的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由.(2)求直线PC 与平面PBE 所成角的正弦值.【解析】(1)满足条件的点H 存在,且为PC 上靠近P 的三等分点.在PC 上取靠近P 的三等分点H ,连接AP ,FH ,如图,则AP 是平面P AB 与平面P AC 的交线,依题意,12PH AF HC FC ==,则有//FH AP ,又AP ⊂平面PBE ,FH ⊄平面PBE ,因此直线//FH平面PBE ,所以在PC 上是存在点H ,为PC 上靠近P 的三等分点,使得直线//FH 平面PBE . (2)取BC 中点G ,连接AG ,交EF 于点D ,连接PD ,因//EF BC ,依题意,EF DG ⊥,EF PD ⊥,则PDG ∠为二面角P EF C −−的平面角,即120PDG ∠=︒,且EF ⊥平面PAD , 而EF ⊂平面BCFE ,则平面PAD ⊥平面BCFE ,在平面PAD 内过P 作PO AD ⊥于O , 又平面PAD ⋂平面BCFE AD =,因此PO ⊥平面BCFE ,在平面BCFE 内过O 作Ox AD ⊥, 显然Ox ,AD ,OP 两两垂直,分别以向量Ox ,OD ,OP 的方向为x ,y ,z 轴正方向,建立空间直角坐标系O xyz −,如图,则B ⎛⎫ ⎪ ⎪⎝⎭,C ⎛⎫− ⎪ ⎪⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,所以,32PC ⎛⎫=−− ⎪ ⎪⎝⎭,()EB =,31,2EP ⎛⎫=− ⎪ ⎪⎝⎭, 设平面PBE 的一个法向量为(),,n x y z =r,由20302n EB x n EP x y z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令y =()3,3,1n =−,设直线PC 与平面PBE 所成角为α,则||18sin |cos ,|||||30PC n PC n PC n α⋅=〈〉===⋅所以直线PC 与平面PBE .。
空间几何中的折叠问题例题和知识点总结在空间几何的学习中,折叠问题是一个较为复杂但又十分有趣的部分。
通过折叠,可以将平面图形转化为立体图形,从而考察我们对空间想象力、几何定理的运用以及逻辑推理能力。
接下来,让我们通过一些具体的例题来深入了解空间几何中的折叠问题,并对相关知识点进行总结。
一、例题展示例 1:有一个矩形 ABCD,其中 AB = 4,AD = 3。
现将矩形沿着对角线 AC 折叠,使得点 B 与点 B'重合,求折叠后形成的三棱锥 B' ACD 的体积。
思路分析:首先,我们需要求出对角线AC 的长度。
根据勾股定理,AC =√(AB²+ AD²) = 5。
然后,由于折叠前后,三角形 ABC 的面积不变,所以三角形 ABC 的面积为 1/2 × AB × AD = 6。
接着,我们需要求出点 B' 到平面 ACD 的距离。
因为 B' 在平面 ACD 上的射影为三角形 ACD 的重心 G,且 AG : GD = 2 : 1,所以 B'G = 2/3 × B'E (E 为 AC 的中点)。
又因为 B'E = 12/5,所以 B'G = 8/5。
最后,根据三棱锥的体积公式 V = 1/3 × S × h(S 为底面积,h 为高),可得三棱锥 B' ACD 的体积为 1/3 × 1/2 × AD × CD × B'G = 8/5。
例 2:已知正方形 ABCD 的边长为 2,E、F 分别为 BC、CD 的中点。
现将正方形沿着 AE、AF 折叠,使 B、D 两点重合于点 P,求三棱锥 P AEF 的外接球表面积。
思路分析:折叠后,三棱锥 P AEF 的三条侧棱 PA、PE、PF 两两垂直。
所以三棱锥 P AEF 的外接球就是以 PA、PE、PF 为棱的长方体的外接球。