立体几何中的折叠问题、最值问题和探索
- 格式:doc
- 大小:330.00 KB
- 文档页数:9
立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角CABD的平面角的正切值为6,求二面角BADE的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角CABD的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B AD E 的平面角为锐角, 所以二面角B AD E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角BA1PD的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B A 1P D 是钝角, ∥二面角B A 1P D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。
立体几何是高考数学的必考内容,且立体几何问题在高考试题中占有较大的比重.这类问题侧重于考查同学们的空间想象和运算能力.下面结合几道例题,来归纳总结一下三类立体几何问题的特点以及解题思路.一、立体几何中的存在性问题立体几何中的存在性问题一般较为复杂,通常要求判断某两条线段的比值、垂直关系、平行关系、点等是否存在.解答这类问题,需首先画出相应的立体几何图形;然后假设要判断的对象存在,并将其看作已知的条件,代入题设中进行推理运算.若得出与题意、相关结论、公式相矛盾的结论,则说明该假设不成立,否则,该假设成立.解题时,要确保推理合理,逻辑严密.例1.如图1,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.那么在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.解:假设在线段PC 上存在点M ,使得BM ⊥AC ,此时MCPM=3.如图1,过点M 作MN //PA ,交AC 于点N ,连接BN ,BM ,因为PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,MN ⊥AC .由MN //PA 可知:AN NC =PM MC =13,则AN =12.在ΔABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos∠BAC =34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ⋂MN =N 且BN ,MN ⊂面MBN ,故AC ⊥平面MBN ,因为BM ⊂面MBN ,所以AC ⊥BM .我们先假设在线段PC 上存在点M ,使得BM ⊥AC ,并据此得出相应的结论;然后根据题意和几何图形添加合适的辅助线,根据线面垂直的性质定理、相似三角形的性质、勾股定理证明AC ⊥BN ;再根据线面垂直的判定定理证明AC ⊥平面MBN ,得出AC ⊥BM ,即可说明该假设成立.需要注意的是,在假设要判断的对象存在后,需用相关的性质、定理验证该假设是否满足题意.二、立体几何图形折叠问题立体几何图形折叠问题对同学们的空间想象力有较高的要求.在解题时,需明确折叠前后几何图形中的点、线、面的位置及其关系,通过观察图形,根据折叠图形的性质找出其中不变的量,抓住这些不变的量的特征来建立关系式.也可以将折叠后的几何体投影到平面上,利用平面几何知识进行研究、分析.例2.如图2,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B ,C 分别是PA ,PD 上的点,且AD //BC ,M ,N 分别为BP ,CD 的中点.现将ΔBCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN ,如图3.(1)证明:MN //平面PAD(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.图2图3解:(1)证明过程略;(2)由题意可知BC ⊥AB ,BC ⊥PB ,∴BC ⊥平面PAB .又BC //AD ,∴AD ⊥平面PAB ,∴AD ⊥PA .∵AD ⊥AB ,AB ⊥PA ,以点A 为坐标原点,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立如图4所示的空间直角坐标系A -xyz .得A (0,0,0),B (3,0,0),C (3,5,0),P (0,0,4),D (0,8,0),所以 PB =(3,0,-4), PC =(3,5,-4),PD =(0,8,-4),图147设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则ìíî m ⋅ PC =0, m ⋅ PB =0,即ìíî3x 1-4z 1=0,3x 1+5y 1-4z 1=0,令x 1=4,则y 1=0,z 1=2,m =(4,0,3).设n=(x 2,y 2,z 2)为平面PCD 的一个法向量,则ìíîm ⋅PC =0, m ⋅PD =0,即ìíî8y 2-4z 2=0,3x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2).设二面角B -PC -D 的大小为α,由向量的夹角公式可得:cos α=-|cos< m ,n >|=-|m ⋅n || m |⋅|n |=所以二面角B -PC -D 的余弦值为解答本题,需先明确ΔPAD 的特点、性质,以及其中各点、线段的位置关系,知晓折叠前后ΔBCP 以及梯形ABCP 中的改变量与不变量;然后根据直线与平面垂直的性质定理和判定定理证明AB 、AP 、AD 三条直线两两互相垂直,据此建立空间直角坐标系,利用向量法求得二面角B -PC -D 的余弦值.解答立体几何图形折叠问题,要熟悉折叠图形的性质:折叠前后图形的形状、面积、边长、角度均不改变.三、立体几何中的作图问题立体几何中的作图问题比较常见.解答此类题目,往往要先通过观察,明确题意,确定图形中的点、直线、平面之间的位置关系,灵活运用简单几何体的性质寻找一些垂直、平行的关系,据此发现一些特殊的点、位置,以确定要求作的点、直线、平面的位置,进而作出完整的图形.例3.如图5,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为棱B 1C 1的中点,F ,G 分别是棱CC 1,BC上的动点(不与顶点重合),请作出平面A 1DG 与平面CBB 1C 1的交线,并说明理由.图5解:如图5,连接DG ,并延长交AB 的延长线于点P ,连接A 1P ,交BB 1于Q ,连接GQ ,则GQ 所在的直线即为作出的平面A 1DG 与平面CBB 1C 1的交线.理由如下:∵ABCD -A 1B 1C 1D 1为正方体,∴平面CBB 1C 1//平面ADD 1A 1,而平面CBB 1C 1⋂平面A 1DG =GQ ,平面ADD 1A 1⋂平面A 1DG =A 1D ,∴A 1D //GQ .要画出平面A 1DG 与平面CBB 1C 1的交线,需根据平面的延展性、正方体的性质,以及平行平面的性质:若两个平行平面被第三个平面所截,则其交线平行.在平面CBB 1C 1内寻找与A 1D平行的直线GQ 即可.例4.某几何体的正视图与侧视图均为边长为1的正方形,则下面四个图形中,可能是该几何体俯视图的个数为().A.1B.2C.3D.4解:俯视图从左到右依次记为:图6图7图8图9如果几何体为棱长为1的正方体,则俯视图如图6;如果几何体为圆柱,它的底面直径为1,高为1,则俯视图如图9;如果几何体为从棱长为1的正方体中挖去直径为2,高为1的圆柱的,则俯视图如图7;以图8为俯视图的几何体的正视图不是正方形.故选C.本题主要考查三视图的定义的应用以及画三视图的方法.画三视图要注意几个要点:(1)主视图和俯视图的长要相等;(2)主视图和左视图的高要相等;(3)左视图和俯视图的宽要相等;(4)看不到的线画虚线.虽然立体几何题目的命题形式较多,其解法也各不相同,但是同学们在解题时只要结合立体图形及其特征明确各个点、线、面的位置及其关系;然后将问题与相关的定理、性质、公式相关联,添加合适的辅助线,灵活利用相关的定理、性质、公式进行推理、运算,就能顺利求得问题的答案.(作者单位:江苏省启东市汇龙中学)图448。
立体几何中的折叠与最值问题-:折&申的垂直与距S?问题【例1】如图.△AC£>和ΔMBC都是直角三角形,ΛB=BC,ACAD30\把三角形八8C沿AC边折起,使AASC所在的平面与aACO所在的平面垂直.若A8=#⑴求证:平面八8。
_1.平面Ba);<2>求C点到平面A8。
的距离【拓1】设Af、N是直角梯形ABCD两腰的中点,DEJ.八8于E(如图).现将△八。
£沿DE折起,使二面角Λ-DE-B≠)45∖此时点Λ在平面8。
E内的射影恰为点B,求W、N的连线与八E所成角的值.【拓2】如图,在4A8C中.AD1BC.£0=24£,过£作FG//BC.且将AAfG沿FG折起,使ZA,ED=CM o,求证:4'£1平面A,BC a{拓3]如图.在平行四边形八8C。
中.八8=AC=I,ZΛCD9(Γ,将它沿对角线AC折起,使八8与CO成6(尸角,求8,。
之间的距离。
二:折叠中的角度问即【例2]:在长方形AA38中,Λβ=2∕M,=4.C.G 分别是A8,八四的中点(如图1).将此长方形沿CC 对折,使二面角A-CG-8为直二面角,。
.£分别是A4,CG的中点(如图2).⑴**求证:G 。
〃平面ABE ;(2:△求直线8G 与平面八声£所成角的正弦值【拓1】如图.巳知A8C/)是上.下底边长分别为2和6.轴"Q 折成直二面角⑴证明:ΛC±BO 1; (2)求二面角O-AC-Q 的正弦值【拓2】在正ZUSC 中,E 、F 、户分别是AB 、AG8C 边上的点.涧足A£:E8=CF:8=CT:P8=I:2.将AAEF 沿EF 折起到尸的位置,使二面角A-EF-H 成直二面角,连结八昆A 1P.(1)求证:A £,平面8£P;(2)求直线AE 与平面AB 尸所成向的大小;(3)求二面角B-AP-F 的余弦值大小,三:立体几何中的体积最值问题高为&的等禊梯形.将它沿对称 OO.C【例3】设四梭锥〃-A8C/)中,底面A8C/)是边长为1的正方形,且PAI面A8C?)⑴•♦求证PCkBD;⑵A过8。
高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。
立体几何折叠问题
嘿,朋友们!今天咱们就来讲讲立体几何折叠问题那些事儿。
什么是立体几何折叠问题呢?比如说,咱们有张纸,把它折起来变成个立体形状,这中间就有好多有趣的问题啦!
那会有哪些问题呢?就像是纸折成了个三棱锥,那原来纸上的线折起来后长度变不变呀?这就好像你把一根橡皮筋拉长再缩短,它还是原来的长度吗?还有哦,折起来后角度会怎么变化呢?这就好比你搭积木,不同的角度搭起来样子可不一样呢!
再想想,折叠后这个立体图形的体积又会怎么变呢?哎呀呀,这就如同你吹气球,气吹进去多了体积就大了嘛。
而且啊,不同的折叠方法会得到不一样的立体图形,这多神奇呀!这不就跟变魔术一样,一张纸能变出好多花样来。
立体几何折叠问题真的很奇妙,大家可别小瞧它哟,自己也去好好琢磨琢磨吧!。
立体几何翻折问题解题技巧
立体几何翻折问题是指将一个平面图形通过折叠变成一个立体
图形的问题。
这种问题在数学竞赛和考试中经常出现,需要掌握一些解题技巧。
1. 观察图形
首先需要认真观察给定的图形,理解其形状和结构。
可以通过画出各个面的展开图或者模型来加深对图形的理解。
2. 寻找对称性
考虑到翻折后的立体图形具有一定的对称性,可以通过寻找对称轴来简化问题。
对称轴可以是图形的中心线、对角线或者其他线段。
3. 利用平行四边形法则
平行四边形法则指如果一个图形经过翻折后,两个相邻的侧面是平行四边形,则它们的对边相等。
这个定理对解决立体几何翻折问题非常有用。
4. 利用角度关系
如果一个图形经过翻折后,两个相邻的侧面是由同一直线切割而成,则它们的夹角相等。
这个关系可以用于计算角度,解决一些复杂的立体几何问题。
5. 练习和实践
最后,需要进行大量的练习和实践,提高解题能力和技巧。
可以尝试解决不同形状和难度级别的立体几何翻折问题,不断挑战自己。
总之,掌握立体几何翻折问题的解题技巧需要综合运用几何知识
和逻辑思维能力。
通过多练习和实践,可以提高解题水平,取得更好的成绩。
初中数学中常见的折叠问题题型有以下几种:
折纸问题:给定一张矩形纸,将其沿着某些折痕折叠,问最后得到的图形是什么。
这类问题涉及到几何图形的变形和对称性质,需要掌握基本的折叠技巧和对称关系。
线段折叠问题:给定一条线段,将其沿着某些点折叠成一些角度,然后问折叠后的图形是什么。
这类问题涉及到三角函数和几何图形的变形,需要掌握基本的三角函数知识和折叠技巧。
立体图形折叠问题:给定一个立体图形的展开图,将其折叠成一个实体立体图形,然后问最终得到的图形是什么。
这类问题涉及到几何图形的空间变形和对称性质,需要掌握立体几何的基本概念和折叠技巧。
以上是初中数学中常见的折叠问题题型,需要注意的是,这些问题不仅考察计算能力,还要求学生具备一定的几何直观和空间想象能力。
高考数学复习考点题型专题讲解专题16 立体几何中的折叠、探究问题高考定位 1.立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等;2.以空间向量为工具,探究空间几何体中线面关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上.1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的平面BCG与平面CGA夹角的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 设平面BCG 与平面CGA 夹角的大小为θ, 所以cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=32.因此平面BCG 与平面CGA 夹角的大小为30°.2.(2021·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?(1)证明因为E,F分别是AC和CC1的中点,且AB=BC=2,侧面AA1B1B为正方形,所以CF=1,BF= 5.如图,连接AF,由BF⊥A1B1,AB∥A1B1,得BF⊥AB,于是AF=BF2+AB2=3,所以AC =AF2-CF2=2 2.由AB2+BC2=AC2,得BA⊥BC.∵三棱柱ABC-A1B1C1为直三棱柱,∴BB1⊥AB且BB1⊥BC,则BA,BC,BB1两两互相垂直,故以B为坐标原点,以BA,BC,BB1所在直线分别为x,y,z轴建立空间直角坐标系B -xyz,则B(0,0,0),E(1,1,0),F(0,2,1),BF→=(0,2,1).设B1D=m(0≤m≤2),则D(m,0,2),于是DE→=(1-m,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0,又由(1)得DE →=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ), 所以cos 〈n 1,n 2〉=32⎝⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ, 则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272,故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.热点一 折叠问题解答折叠问题的关键是分清翻折前后图形的位置和数量关系的变与不变,一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.考向1 折叠后的位置关系及空间角例1(2022·青岛模拟)在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2CD =4,E ,F 分别为AD ,BC 的中点,沿EF 将四边形EFCD 折起,使得DE ⊥BF (如图2).(1)求证:平面ABFE ⊥平面EFCD ;(2)若直线AC 与平面ABFE 所成角的正切值为63,求平面CEB 与平面EBF 夹角的余弦值.(1)证明 由题设条件,得EF ∥AB ∥CD ,AB ⊥AD , 则DE ⊥EF ,又DE ⊥BF 且BF ∩EF =F ,BF ,EF ⊂平面ABFE , 则DE ⊥平面ABFE , 又DE ⊂平面EFCD , 故平面ABFE ⊥平面EFCD .(2)解 如图过点C 作CG ⊥EF ,交EF 于点G ,连接AG ,因为平面ABFE ⊥平面 EFCD ,且平面ABFE ∩平面EFCD =EF , 所以CG ⊥平面ABFE ,故直线AC 与平面ABFE 所成的角为∠CAG , 设DE =h ,则在Rt△CAG 中 ,CG =DE =h ,AG =EG 2+EA 2=h 2+4,所以tan∠CAG =CG AG =h h 2+4=63,解得h =22,如图,建立空间直角坐标系E -xyz ,则E (0,0,0),B (22,4,0),C (0,2,22), 所以EC →=(0,2,22),EB →=(22,4,0), 则平面EBF 的法向量为m =(0,0,1), 设平面CEB 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·EC →=2y +22z =0,n ·EB →=22x +4y =0,令y =-2,则n =(2,-2,1),则平面CEB 与平面EBF 夹角的余弦值为 |cos 〈m·n 〉|=|m·n ||m |·|n |=77.所以平面CEB 与平面EBF 夹角的余弦值为77. 易错提醒 注意图形翻折前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.考向2 展开后的数字特征例2 (1)(2022·青岛质检)如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是________.(2)如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________m.答案(1)5 2 (2)4 3解析(1)如图,以BC1为轴,把平面BCC1翻折到与平面A1BC1共面,则A1BCC1在同一个平面内,图中A1C就是所求最小值.通过计算可得∠A1C1B=90°,∠BC1C=45°,所以∠A1C1C=135°,由余弦定理可得A1C=5 2.(2)圆锥顶点记为O,把圆锥侧面沿母线OP展开成如图所示的扇形,由题意OP=4,PP′=43,则cos∠POP′=42+42-(43)22×4×4=-12,又∠POP′为△POP′一内角,所以∠POP′=2π3.设底面圆的半径为r,则2πr=2π3×4,所以r=4 3 .易错提醒几何体表面上的最短距离要注意棱柱的侧面展开图可能有多种,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.训练1 如图1,在直角梯形ABCD中,AB∥DC,∠D=90°,AB=2,DC=3,AD=3,CE=2ED.沿BE将△BCE折起,使点C到达点C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)求直线BC1与平面AC1D所成角的正弦值.(1)证明在图①中,连接AE,由已知得AE=2.图①∵CE∥AB,CE=AB=AE=2,∴四边形ABCE为菱形.连接AC交BE于点F,则CF⊥BE.在Rt△ACD中,AC=32+(3)2=23,所以AF=CF= 3.图②如图②中,由翻折,可知C1F=3,C1F⊥BE.∵AC1=6,AF=C1F=3,∴AF2+C1F2=AC21,∴C1F⊥AF,又BE∩AF=F,BE⊂平面ABED,AF⊂平面ABED,∴C1F⊥平面ABED.又C1F⊂平面BC1E,所以平面BC1E⊥平面ABED.(2)解如图②,建立空间直角坐标系,则D(0,0,0),A(3,0,0),B(3,2,0),C 1⎝⎛⎭⎪⎫32,32,3, 所以BC 1→=⎝ ⎛⎭⎪⎫-32,-12,3,DA →=(3,0,0),DC 1→=⎝ ⎛⎭⎪⎫32,32,3,设平面AC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DA →·n =0,DC 1→·n =0,即⎩⎨⎧3x =0,32x +32y +3z =0, 令z =3,则x =0,y =-2,所以n =(0,-2,3)为平面AC 1D 的一个法向量. 设直线BC 1与平面AC 1D 所成的角为θ,则sin θ=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→||n |=42×7=277.所以直线BC 1与平面AC 1D 所成角的正弦值为277. 热点二 探究问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或平面与平面的夹角满足特定要求时的存在性问题.解题思路:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断. 考向1 探究线面位置关系例3(2022·济南质检)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,E ,F 分别为棱AA 1,CC 1的中点,G 为棱DD 1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长;若不存在,说明理由.(1)证明如图,连接D1E,D1F,取BB1的中点为M,连接MC1,ME,因为E为AA1的中点,所以EM∥A1B1∥C1D1,且EM=A1B1=C1D1,所以四边形EMC1D1为平行四边形,所以D1E∥MC1,又F为CC1的中点,所以BM∥C1F,且BM=C1F,所以四边形BMC1F为平行四边形,所以BF∥MC1.所以BF∥D1E,所以B,E,D1,F四点共面.(2)解以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,假设存在满足题意的点G (0,0,t ), 由已知B (1,1,0),E (1,0,1),F (0,1,1),则EF →=(-1,1,0),EB →=(0,1,-1),EG →=(-1,0,t -1), 设平面BEF 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EB →=0,即⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取x 1=1,则y 1=1,z 1=1,n 1=(1,1,1).设平面GEF 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·EG →=0,即⎩⎨⎧-x 2+y 2=0,-x 2+(t -1)z 2=0, 取x 2=t -1,则y2=t-1,z2=1,n2=(t-1,t-1,1). 因为平面GEF⊥平面BEF,所以n1·n2=0所以t-1+t-1+1=0,所以t=1 2,所以存在满足题意的点G,使得平面GEF⊥平面BEF,且DG的长为1 2 .考向2 与空间角有关的探究性问题例4 如图,四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,BC=CD=1,AB=2.△PBC 是等边三角形,平面PBC⊥平面ABCD,点M在棱PC上.(1)当M为棱PC的中点时,求证:AP⊥BM;(2)是否存在点M,使得平面DMB与平面MBC夹角的余弦值为34?若存在,求CM的长;若不存在,请说明理由.(1)证明连接AC,由底面ABCD是等腰梯形且AB=2,BC=CD=1,得∠ABC=π3,在△ABC中,由余弦定理得AC=3,∴AC2+BC2=AB2,∴∠ACB=π2,∴AC⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AC⊂平面ABCD,∴AC ⊥平面PBC , ∵BM ⊂平面PBC ,∴AC ⊥BM ,又M 为棱PC 的中点,且△PBC 是等边三角形, ∴BM ⊥PC ,又∵PC ∩AC =C ,PC ⊂平面APC ,AC ⊂平面APC , ∴BM ⊥平面APC , ∵AP ⊂平面APC , ∴AP ⊥BM .(2)解 假设存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34.过点P 作PO ⊥BC 交BC 于点O ,∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,取AB 的中点E ,连接OE ,则OE ∥CA ,由(1)知OE ⊥平面PBC ,因此以O 为原点,以OC ,OE ,OP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O -xyz .∴O (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫12,0,0,B ⎝ ⎛⎭⎪⎫-12,0,0,D ⎝ ⎛⎭⎪⎫1,32,0,则DB →=⎝ ⎛⎭⎪⎫-32,-32,0,CP →=⎝ ⎛⎭⎪⎫-12,0,32.设CM →=tCP→(0<t ≤1),则M ⎝⎛⎭⎪⎫1-t 2,0,32t .则DM →=⎝ ⎛⎭⎪⎫-t -12,-32,32t ,设平面DMB 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·DM →=-1+t 2x -32y +32tz =0,a ·DB →=-32x -32y =0,令x =3,则y =-3,z =t -2t,∴a =⎝⎛⎭⎪⎫3,-3,t -2t 为平面DMB 的一个法向量, 易知平面MBC 的一个法向量为b =(0,1,0), 则|cos 〈a ,b 〉|=|a·b||a||b|=33+9+⎝⎛⎭⎪⎫t -2t 2=312+⎝⎛⎭⎪⎫t -2t 2=34, 则⎝ ⎛⎭⎪⎫t -2t 2=4,即t -2t =-2,解得t =23,故CM =|CM →|=23|CP →|=23.所以存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34,且CM 的长为23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立.(2)探索线段上是否存在满足条件的点时,一定注意三点共线的应用.训练2(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由,若存在, 求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D ,因为三棱柱ABC -A 1B 1C 1的所有棱长都为2, 所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt△B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6,所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设存在,以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3), 因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3), CB →=(-3,-1,0). 因为点P 在棱BB 1上, 设BP →=λBB 1→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1→=0,得⎩⎪⎨⎪⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1). 因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45, 化简得16λ2-8λ+1=0,解得λ=14,所以|BP →|=14|BB 1→|=12, 故BP 的长为12.一、基本技能练1.(2022·丽水质检)如图1,矩形ABCD 中,点E ,F 分别是线段AB ,CD 的中点,AB =4,AD =2,将矩形ABCD 沿EF 翻折.(1)若所成二面角的大小为π2(如图2),求证:直线CE ⊥平面DBF ; (2)若所成二面角的大小为π3(如图3),点M 在线段AD 上,当直线BE 与平面EMC 所成角为π4时,求平面DEM 和平面EMC 夹角的余弦值. (1)证明 由题设易知:四边形BEFC 是边长为2的正方形,BF ,EC 是其对角线, 所以BF ⊥EC ,又平面BEFC ⊥平面AEFD ,平面BEFC ∩平面AEFD =EF ,DF ⊥EF ,DF ⊂平面AEFD , 所以DF ⊥平面BEFC , 又EC ⊂平面BEFC ,则DF ⊥EC ,又DF ∩BF =F ,BF ,DF ⊂平面BDF ,则EC ⊥平面BDF .(2)解 过E 作Ez ⊥平面AEFD ,而AE ,EF ⊂平面AEFD ,则Ez ⊥AE ,Ez ⊥EF ,而AE ⊥EF , 可建立如图所示的空间直角坐标系,由题设知:∠BEA =∠CFD =π3,所以E (0,0,0),B (1,0,3),C (1,2,3),M (2,m ,0)且0≤m ≤2, 则EB →=(1,0,3),EC →=(1,2,3),EM →=(2,m ,0),若n =(x ,y ,z )是平面EMC 的法向量,则⎩⎪⎨⎪⎧EC →·n =x +2y +3z =0,EM →·n =2x +my =0,令x =m ,则n =(m ,-2,4-m3), |cos 〈EB →,n 〉|=|EB →·n ||EB →||n |=1m 2-2m +73=12,可得m=1,则n =(1,-2,3),又l =(0,0,1)是平面EMD 的一个法向量, 所以|cos 〈l ,n 〉|=|l ·n ||l ||n |=322=64,所以平面DEM 和平面EMC 夹角的余弦值为64.2.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面ACS 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a , 则B ⎝ ⎛⎭⎪⎫22a ,0,0,S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, 又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-22a ,0,0, 设平面PAC 与平面ACS 夹角的大小为θ.则cos θ=|cos 〈DS →,OD →〉|=|DS →·OD →||DS →||OD →|=12, 所以平面PAC 与平面ACS 夹角的大小为π3. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS→,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13. 故侧棱SC 上存在一点E ,使得BE ∥平面PAC ,此时SC ∶SE =3∶2.3.(2022·全国名校大联考)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,E 为AD 边上的点,且AD =2AE =2AB =2BC =2.将△ABE 沿BE 向上折起,使得异面直线AB 与ED 所成的角为60°,F 为线段AD 上一点,如图2.(1)若DE ⊥CF ,求AF FD的值; (2)求平面ABC 与平面AED 所成锐二面角的余弦值.解 (1)如图①中,连接CE .图①由题意可知,△ABE ,△CED ,△BCE 均为等腰直角三角形,因为BC ∥ED ,所以∠ABC 即为异面直线AB 与ED 所成的角,所以∠ABC =60°,所以AC =1.取BE 的中点O ,连接OC ,OA ,OD ,则OA ⊥BE ,OC ⊥BE ,且OA =OC =22,因为OA 2+OC 2=AC 2,所以OA ⊥OC ,因为BE ∩OC =O ,BE ,OC ⊂平面BCDE .所以OA ⊥平面BCDE .连接EF ,因为DE ⊥EC ,DE ⊥CF ,CE ∩CF =C ,CE ,CF ⊂平面ECF ,所以DE ⊥平面ECF , 又DE ⊂平面BCDE ,所以平面ECF ⊥平面BCDE ,故OA ∥平面ECF .连接OD 交CE 于点G ,连接FG ,因为平面AOD ∩平面ECF =FG ,所以OA ∥GF ,故AF FD =OG GD =OE CD =12.图②(2)如图②,以O 为坐标原点,OB ,OC ,OA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系O -xyz .则A ⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,B ⎝ ⎛⎭⎪⎫22,0,0, E ⎝ ⎛⎭⎪⎫-22,0,0,D ⎝ ⎛⎭⎪⎫-2,22,0. 所以AB →=⎝ ⎛⎭⎪⎫22,0,-22, BC →=⎝ ⎛⎭⎪⎫-22,22,0,AE →=⎝ ⎛⎭⎪⎫-22,0,-22,ED →=⎝ ⎛⎭⎪⎫-22,22,0. 设平面ABC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧22x 1-22z 1=0,-22x 1+22y 1=0, 令x 1=2,则y 1=2,z 1=2,所以平面ABC 的一个法向量为n 1=(2,2,2),设平面AED 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·ED →=0,即⎩⎪⎨⎪⎧-22x 2-22z 2=0,-22x 2+22y 2=0, 令x 2=2,则y 2=2,z 2=-2,所以平面AED 的一个法向量为n 2=(2,2,-2),所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|2×2+2×2-2×2|22+22+22·22+22+(-2)2=13, 故平面ABC 与平面AED 所成锐二面角的余弦值为13. 二、创新拓展练4.如图1,四边形ABCD 为梯形,AD ∥BC ,BM ⊥AD 于点M ,CN ⊥AD 于点N ,∠A =45°,AD =4BC =4,AB =2,现沿CN 将△CDN 折起,使△ADN 为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN ,DC 分别交于点E ,F ,如图2.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,若存在,请确定E点的位置;若不存在,说明理由.(1)证明因为BM⊥AD,CN⊥AD,所以BM∥CN.在四棱锥D-ABCN中,CN⊂平面CDN,BM⊄平面CDN,所以BM∥平面CDN.又平面BMEF∩平面CDN=EF,所以BM∥EF.因为平面ADN⊥平面ABCN且交于AN,BM⊥AN,所以BM⊥平面ADN,即EF⊥平面ADN.又DA⊂平面ADN,所以EF⊥DA.(2)解存在,E为棱DN上靠近N点的四等分点.因为∠A=45°,AD=4BC=4,AB=2,所以AM=MN=BM=CN=1,DN=2,因为DA=DN,连接DM ,所以DM ⊥AN .又平面ADN ⊥平面ABCN 且交于AN ,故DM ⊥平面ABCN .如图,以M 为坐标原点,分别以MA ,MB ,MD 所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,3),B (0,1,0),M (0,0,0),N (-1,0,0),DB →=(0,1,-3),BM →=(0,-1,0),ND →=(1,0,3). 设NE →=λND →(0<λ<1),则E (λ-1,0,3λ),ME →=(λ-1,0,3λ).设平面BMEF 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧BM →·n =0,ME →·n =0,即⎩⎨⎧-y =0,(λ-1)x +3λz =0,不妨令x =3λ,则z =1-λ,n =(3λ,0,1-λ).设直线DB与平面BMEF所成的角为α,则有sin α=|cos〈n,DB→〉|=|n·DB→||n||DB→|=|3(λ-1)|23λ2+(1-λ)2=34.解得λ=14或λ=-12(舍去),所以NE→=14ND→,即在棱DN上存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,此时E为棱DN上靠近N点的四等分点.。
立体几何中的折叠与展开问题魏文 张亮 徐婷 江涛 张忠强 马吉 戴尚超一、折叠与展开中的垂直问题例1. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上.求证:C B C A '⊥'分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了.证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA , ∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C =' .∴ C B '⊥平面AD C ',而A C '⊂平面AD C '∴ C B '⊥C A '例2.如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。
解: ∵FG ∥BC ,AD ⊥BC∴A 'E ⊥FG∴A 'E ⊥BC设A 'E=a ,则ED=2a由余弦定理得:A 'D 2=A 'E 2+ED 2-2•A 'E •EDcos60°=3a2 A B C D F E G A'∴ED 2=A 'D 2+A 'E2∴A 'D ⊥A 'E ∴A 'E ⊥平面A 'BC例3. 如图:D 、E 是是等腰直角三角形ABC 中斜边BC 的两个三等分点,沿AD 和AE 将△ABD 和△ACE 折起,使AB 和AC 重合,求证:平面ABD ⊥平面ABE.解析:过D 作DF ⊥AB 交AB 于F ,连结EF ,计算DF 、EF 的长,又DE 为已知,三边长满足勾股定理,∴∠DFE =090;二、折叠与展开中的空间角问题例4. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起,使点A 在平面BCD 上的射影A′落在BC 上,求二面角A —BC-—C 的大小。
立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。
立体几何中折叠问题的求解策略折叠问题,是立体几何中的热点、同时也是难点问题.该类问题难的根源在于所研究的是“动态”空间图形,折叠后的图形中点、线、面的位置关系难以确定,需要联系折叠前后图形之间的关系,因此对空间想象、识图及分析能力都提出了较高要求.在考试中此类问题得分率普遍不高,分析其原因,首先是空间想象力不足,其次是对这类问题没有形成解题的模型和方法.解决折叠问题的关键在于抓住折叠前后图形的特征关系,弄清折叠前后哪些量发生了变化、哪些量没有发生变化,以及确定动点在底面上的投影位置,这是分析和解决问题的依据,也是求解此类问题的钥匙.首先要弄清楚空间中折叠的本质含义是什么?教材中并没有明确给出空间中折叠的定义,但是不难看出空间中的折叠是平面中的翻折的推广,所以不妨从平面翻折的定义来揣测空间中折叠的含义.翻折的定义:将一个图形沿着某一条直线翻折180︒,直线两旁的部分能够相互重合.其中这条直线就是它的对称轴,翻折前图形中的任意一点与翻折后的对应点关于对称轴对称.于是可以类似的给空间中折叠下一个定义:将一个平面图形沿着一条直线翻折某个角度θ(其中0180θ︒<<︒),直线两侧的部分能够相互重合.其中这条直线就是它的折线,过翻折前图形中的任意一点及翻折后的对应点分别向折线做垂线,所构成的图形就是翻折前后所成二面角的平面角,即为θ.由上述对空间中折叠的定义,可以得到以下几个结论.如图1,将ADE ∆沿AE 折起.结论1折起的面上任意一点在底面的投影在过该点折起前的对应点垂直于折线的射线上.例如,点'D 在底面ABCE 上的投影O 一定在射线DF 上;结论2折叠前后折线同侧的量不变.如'D A DA =,'D E DE =.对于折叠问题的求解难度在于确定折起后图形中动点的位置,该类问题在具体出题时并不会直接给出动点的位置,而往往是借助动点在底面的投影大概位置、线段长度、相应的角度等来刻画.这就需要通过给出的关系来确定动点在底面中投影的具体位置来确定动点的位置,然后再进一步求解.1已知动点在底面的投影在某线段上例1如图2,四边形ABCD 是矩形,沿对角线AC 将ACD ∆折起,使得点D 在平面ABC 内的投影恰好落在边AB 上.(1)求证:平面ACD ⊥平面BCD ;(2)当2AB AD =时,求二面角D AC B --的余弦值.ABCDEFH 图1ABCD'D H OF EABCDA BCD分析第一问由结论2,折线同侧的量不变,则AD DC ⊥,BC AB ⊥.又D 与它在底面的投影的连线垂直底面,则垂直BC ,从而BC ⊥平面ABD ,得BC AD ⊥,所以AD ⊥平面BCD ,于是得证.第二问关键是确定D 在底面的投影的位置,由结论1,可知D 在底面的投影为过D 垂直于折线AC 的垂线与AB 的交点,于是利用平面几何知识求解即可.解(1)略;(2)如图3,过点D 作AC 的垂线交AB 于H ,由结论1知H 即是折起后D 在底面的投影.设1AD =,由DAH CDA ∆∆ ,所以12AH =,折叠后32DH =.方法一:如图4,以B 为原点建立空间直角坐标系.那么(0,2,0)A ,(1,0,0)C,3(0,,22D,则1(0,,)22AD =- ,(1,2,0)AC =- .设平面ACD 的法向量为(,,)n x y z =,则00n AD n AC ⎧=⎪⎨=⎪⎩ ,即1302220y z x y ⎧-+=⎪⎨⎪-=⎩,令1z =,则y =,x =n =.易得平面ABC 的一个法向量为(0,0,1)m =.1cos ,4n m n m n m <>==,所以二面角D AC B --的余弦值为14.方法二:如图3,记DH 与AC 的交点为E ,有AHE CDE ∆∆ ,则14EH AH ED CD ==.由折叠的定义知,沿对角线AC 将ACD ∆折起之后,DEH ∠为二面角D AC B --的图2ABCD HE 图3ABC Dxy z图4平面角.在Rt DHE ∆中,1cos 4EH DEH ED ∠==,即二面角D AC B --的余弦值为14.评注已知动点在底面的投影在某条线段上,由结论1可得该动点在底面的投影就是折叠前过此点垂直于折线的射线与这条线段的交点,只需在平面图形中利用平面几何知识即可确定动点在底面投影的位置.例2如图5,设正方形ABCD 的边长为3,点E ,F 分别在AB ,CD 上,且满足2AE EB =,2CF FD =.将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,H 为EA 的中点.(1)证明:平面ABE ∥平面CDF ;(2)求二面角H BF C --的正弦值.图5ABCD E FA BC DEFGH分析由结论1,可知A 在底面的投影在过点A 垂直于折线EF 的垂线上.又由题意,点A 在平面BEFC 的投影G 恰好在BC 上,所以A 在底面的投影是过点A 垂直于折线EF 的垂线与BC 的交点,于是利用平面几何知识求解就可以确定G 在BC 上的位置,然后建系求解即可.解(1)略.(2)由题意将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,如图6,过A 作EF 的垂线,与BC 的交点即为G .作MF ∥BC ,且交AB 与M ,由平面几何知识易得ABG FME ∆≅∆,所以113BG AB ==,则AG ==.如图7,以G 为原点建立空间直角坐标系,则A ,(1,1,0)E -,则11(,,)222H -,(1,0,0)B -,(2,2,0)F ,所以(3,2,0)BF = ,112(,,)222BH = .设平面BFH 的法向量为(,,)n x y z =,A BCD E FGM 图6AB CD EFGH xyz 图7由由00n BF n BH ⎧=⎪⎨=⎪⎩,即320110222x y x y z +=⎧⎪⎨++=⎪⎩,令2x =,则3y =-,22z =,所以2(2,3,)2n =- ,易得平面BCF 的一个法向量为(0,0,1)m =,所以3cos ,9n m n m n m<>==,所以二面角H BF C --的余弦值39.例3如图8,在矩形ABCD 中,已知2AB =,4AD =,点E ,F 分别在AD ,BC上,且1AE =,3BF =,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求直线AF 与平面EFCD 所成角的正弦值.分析由结论1,可知B 在底面的投影在过点B 垂直于折线EF 的垂线上.又由题意,点B 在平面CDEF 的投影H 恰好在DE 上,所以B 在底面的投影是过点B 垂直于折线EF 的垂线与DE 的交点,于是利用平面几何知识求解就可以确定H 在DE 上的位置,然后建系求解即可.解(1)略.(2)如图9,作BC 的中点M ,AD 的中点'H ,则四边形'ABMH 为正方形,所以'BH AM ⊥.又AM ∥EF ,则'BH EF ⊥,由题意有BH EF ⊥,所以H 与'H 为同一点,故1EH =,则2BH ==.如图10,以H 为原点建立空间直角坐标系,则(0,1,0)E -,(2,1,0)F ,(0,0,2)B ,所以(2,1,2)BF =-,由13AE BF =,得252(,,)333A --,则872(,,)333AF =- .ABCDEFA BCDEFH图8A BCDE F M'H 图9A BCDEFHxyz图10易得平面EFCD 的一个法向量为(0,0,1)n =,设直线AF 与平面EFCD 所成的角为θ,则sin cos ,39AF n AF n AF nθ=<>==.2已知线段长度例4如图11,平面多边形PABCD 中,PA PD =,224AD DC BC ===,AD ∥BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将APD ∆沿AD 折起,使得PC =(1)证明:CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值.ABCDPEABCDEP分析此题是通过线段PC 的长度来刻画APD ∆沿AD 折起的程度的,也就是折起后折面的位置,该题求解的突破口是如何利用线段PC 的长度来确定P 在底面投影的位置.由结论1知P 在底面投影在过P 垂直于折线AD 的射线PB 上,于是有两个思路来确定投影的位置:一是利用已知条件和线段PC 的长度确定PBO ∆的边长,利用解三角形确定投影位置;二是注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么就是OB 与CD 中垂线的交点.解(1)略;(2)方法一:如图12,作AD 的中点O ,连接BO 、PO ,易知2BO PO ==,由结论1,P 在底面ABCD 的投影在射线OB 上.设该投影为H ,连接PH ,则PH ⊥平面ABCD ,从而PH BC ⊥,又BC BO ⊥,所以BC ⊥平面PBO ,则BC PB ⊥.所以,2PB ===,故PBO ∆是等边三角形,则H 为BO的中点.以H 为坐标原点建立空间直角坐标系.那么,(1,2,0)A --,(1,0,0)B,P ,图11ABCD EPx yz HO图12(1,2,0)D -,则13(,1,)22E -,13(,3,)22AE = ,(2,2,0)AB =,(1,AP = .设平面ABP 的法向量为(,,)n x y z = ,则0n AB n AP ⎧=⎪⎨=⎪⎩,即22020x y x y +=⎧⎪⎨++=⎪⎩,令1x =,则1y =-,33z =,则3(1,1,)3n =- .设AE 与平面ABP 所成角为θ,则210sin cos ,35n AE n AE n AEθ=<>==.方法二:注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么P 在底面投影就是OB 与CD 中垂线的交点,即为BO 的中点,下同方法一.评注通过线段长度刻画折起后折面的位置的题型,可以通过将该线段长度转化到要确定动点和动点在底面投影所在线段构成的三角形,利用解三角形工具确定投影的位置;也可以利用线段相等,通过中垂线与动点在底面投影所在射线的交点来确定投影的位置.3已知相应角度例4(2018全国1理)如图13,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.分析:此题是利用PF BF ⊥刻画折起面的位置,可以考虑利用PF BF ⊥找到过P 且垂直于底面ABFD 的平面,则点P 在底面的投影就在这两个平面的交线上,然后再借助结论1即可确定点P 在底面投影的位置.解(1)因为PF BF ⊥,又BF EF ⊥,且PF EF F = ,,PF EF ⊂平面PEF ,所以BF ⊥平面PEF ,又因为BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)由(1)知平面PEF ⊥平面ABFD ,且平面PEF 平面ABFD EF =,则点P 在底面ABFD 的投影在直线EF 上.如图14,过C 作折线DF 的垂线交EF 于点H ,由结论1知,点H 即为点P 在底面ABFD 的投影.由CFH DCF ∆∆ ,则ABC D E F P图13ABCD E F H图1412HF CF CF CD ==,设AB a =,则12HF a =.那么32PH a ==.因为PH ⊥底面ABFD ,如图15,连接DH ,则PDH ∠为DP 与平面ABFD 所成角,所以32sin 24a PH PDH PD a ∠===.评注已知相应角度刻画折起面的位置,需将这个角度条件进行适当转化,最好是能够找到过动点且与底面垂直的平面,然后结合结论1,即可确定P 在底面投影的位置.对刻画折起面位置的角度条件的转化是解题的突破口.总结立体几何折叠问题的难点突破关键在于利用好结论1和结论2,搞清楚在折叠过程中哪些量是不变的以及动点在底面的投影在那条射线上运动,再结合已知条件,更多的时候需要对已知条件进行适当的转化,便可以确定动点在底面中的投影的位置,顺藤摸瓜就能确定动点在空间中的位置,从而使得问题迎刃而解.参考文献【1】周建平.变化中的不变量——谈立体几何中的折叠问题【J 】.中学教研(数学),2018.7.ABC D EFPH图15。
ʏ胥子伍立体几何中常求一些固定不变的点㊁线㊁面的位置关系,若给静态的立体几何问题赋予 活力 ,渗透了 动态 的点㊁线㊁面元素,在点㊁线㊁面运动变化的几何图形中,探寻点㊁线㊁面的位置关系或进行有关角与距离的计算,立意会更新颖㊁更灵活,能很好地培养同学们的空间想象能力㊂一㊁折叠之轨迹问题例1 如图1,在正四棱锥S -A B C D 中,E 是B C 的中点,点P 在侧面әS C D 内及其边界上运动,并且总是保持P E ʊ平面S B D㊂图1则动点P 的轨迹与әS C D 组成的相关图形最有可能是( )㊂解:分别取C D ,S C 的中点M ,N ㊂因为E 是B C 的中点,所以E M ʊB D ,E N ʊS B ㊂因为E M ,E N ⊄平面S B D ,B D ,S B ⊂平面S B D ,所以E M ʊ平面S B D ,E N ʊ平面S B D ㊂又因为E M ɘE N =E ,E M ,E N ⊂平面E MN ,所以平面E MN ʊ平面S B D ,所以当P 在线段MN 上移动时,P E ⊂平面E MN ,此时能保持P E ʊ平面S B D ,则动点P 的轨迹与әS C D 组成的相关图形符合选项A ㊂应选A㊂变量的变化引发空间位置关系的变化,将一些变化的线与角合理转化,集中到一个平面内,则可将空间的 动态 问题转化为平面的 动态 问题,再利用平面几何知识加以解决㊂本题利用线面平行㊁面面平行,在动态问题中提炼一些不变的 静态 的量,建立 不变量 与 动点 之间的关系,从而确定动点的轨迹㊂二㊁折叠之范围问题例2 在如图2所示的长方形A B C D中,A B =2,B C =1,E 为D C 的中点,F 为线段E C (端点除外)上一动点㊂现将әA F D 沿A F 折起,使平面A F D ʅ平面ABC F ,得到如图3所示的四棱锥㊂在平面A BD 内过点D 作D K ʅA B ,垂足为K ㊂设A K =t ,则t 的取值范围是㊂图2 图3解:过点F 作F M ʅA B ,交A B 于点M ㊂设F C =x ,0<x <1,则M F =B C =1,M B =F C =x ㊂易知A K <A D =1㊂因为A B =2,所以点K 一定在点M 的左边,则MK =2-t -x ㊂在R t әA D K 中,D K 2=1-t 2,在R tәF MK 中,F K 2=1+(2-t -x )2㊂因为平面A B D ʅ平面A B C F ,平面A B D ɘ平面A B C F =A B ,D K ʅA B ,D K ⊂平面A B D ,所以D K ʅ平面A B C F ,所以D K ʅF K ㊂在R tәD F K 中,D F =2-x ,由D K 2+F K 2=D F 2,可得1-t 2+1+(2-t -x )2=(2-x )2,化简得1-2t +t x =0,即t =12-x ㊂因为函数t =12-x 在x ɪ(0,1)上单调递增,所以12<t <1㊂故所求t 的取值范围为12,1㊂ 动 与 静 是相对的,在运动变化过程中,要善于寻找或构造与之相关的一些不变因素,建立变量与不变量的有机统一体㊂本题是一个动态的33创新题追根溯源高一数学 2023年4月Copyright ©博看网. All Rights Reserved.翻折问题,需要同学们发现其中不变的垂直关系,从而得出相关变量间的关系,最终转化成函数的值域问题求解㊂三㊁折叠之最值问题例3 设矩形A B C D (A B >B C )的周长为定值2a ,把әA B C 沿A C 向әA D C 折叠,A B 折过去后交D C 于点P ,如图4,则下列说法正确的是( )㊂图4A .矩形ABCD 的面积有最大值B .әA P D 的周长为定值C .әA PD 的面积有最大值D .线段P C 有最大值解:设A B =x ,则B C =a -x ㊂因为A B >B C ,所以x ɪa2,a ㊂矩形A B C D 的面积S =A B ㊃B C =x (a -x )<x +a -x22=a 24,因为x ʂa2,所以S 无最大值,A 错误㊂根据图形折叠知әA P D 与әC P B 1全等,所以әA P D 周长为A P +P D +D A =A P +P B 1+D A =A B +D A =a ,B 正确㊂设D P =m ,则A P =P C =x -m ,由D P 2+D A 2=A P 2,可得m 2+(a -x )2=(x -m )2,即m =a -a 22x ,则S әA P D =12a -a 22x(a -x )=3a 24-12a x +a32xɤ3-224a 2,当且仅当x =22a 时,әA P D 的面积取最大值,C 正确㊂P C =x -m =x +a 22x-a ,因为函数y =x +a 22x -a 在x ɪ0,2a 2上单调递减,在x ɪ2a 2,+ɕ上单调递增,而x ɪa 2,a,所以当x =2a2时,函数有最小值,无最大值,即线段P C 有最小值,无最大值,D 错误㊂应选B C ㊂一般地,位于 折痕 同侧的点㊁线㊁面间的位置和数量关系不变,而位于 折痕 两侧的点㊁线㊁面间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决㊂已知菱形A B C D 的边长为1(如图5),øB A D =60ʎ,对角线A C 与B D 交于点O ㊂将菱形A B C D 沿对角线B D 折成平面角为θ的二面角(如图6),若θɪ60ʎ,120ʎ ,则折后点O 到直线A C 距离的最值是( )㊂ 图5 图6A .最小值为34,最大值为32B .最小值为34,最大值为34C .最小值为14,最大值为34D .最小值为34,最大值为32提示:因为A O ʅB D ,C O ʅB D ,所以øA O C =θ,θɪ60ʎ,120ʎ ㊂因为菱形A B C D 的边长为1,øB A D =60ʎ,所以A O =C O =32,点O 到A C 的距离d =32㊃c o s12øA O C ㊂当øA O C =θ=60ʎ时,d 取得最大值32ˑ32=34;当øA O C =θ=120ʎ,d取得最小值32ˑ12=34㊂应选B ㊂作者单位:华东师范大学盐城高级中学(责任编辑 郭正华)43 创新题追根溯源 高一数学 2023年4月Copyright ©博看网. All Rights Reserved.。
立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。
解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。
2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。
因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。
实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。
立体几何为背景的新奇问题以立体几何为背景的新奇问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等.对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的水平要求较高,有利于考查学生的探究水平以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一,般将平面几何问题类比推广到立体何的中, 不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的根底知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题〔三视图问题可看作是特殊的图形变换〕蕴涵了“二维一一三维一一二维〞的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同〞的思辩,考查空间想象水平和分析区分水平,是立儿解做题的重要题型.【例1】〔2021•全国二模〕我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著?九章算术?中.?九章算术•商功?:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖席.阳马居二,鳖膈居一,不易之率也.合两鳖㈱三而一,验之以恭,其形露矣.〞下列图解释了这段话中由一个长方体,得到“堑堵〞、“阳马〞、“鳖膈〞的过程.堑堵的内切球〔与各面均相切〕半径为1,那么鳌膈的体积最小值为〔〕解:可得,堑堵的内切球直径恰为堑堵的边长那么“=2.易知,截而的内切圆与堑堵内切球最大的圆全等,设内切圆半径为,,那么r=1.如图可知,根据三角形而枳公式可得:,仪, =!"〃+ <• +历丁〕,那么%+2・=a+ 2, 2 2c>0,,2b + 2c22j5==4辰,当且仅当〃=c时取等号.:.bc + 3版,即〔灰尸一4痴+220,解得:0<7^2 — 75■或信22 + O.又•••内切圆半径厂=1 v〃,r<c, :. y/bc > 1. /. y/hc^2 + 72 , KP bc^6 + 4>/2 ..•・鳌席的体积为V=L“L?c = l灰/2 +些.应选:C. 3 2 3 3【例2】〔2021・3月份模拟〕在高为褥的正三棱柱A8C-A8C中,A48C的边长为2,.为棱用的的中点,假设一只蚂蚁从点A沿外表爬向点Q,那么蚂蚊爬行的最短距离为〔〕A. 3B. 2GC. 3jlD. 2解:如图:当按图①走时,D£ = 2^ + V3 = —; AE = 2-,= 上: A D7A E2+DE? = J〔吗]+〔1〕2 = 3: 2 2 2 2 V 2 2 当按图②走时,DE=6 AE=2+I=3; AQ =J AE2+ DE2=旧+〔逐尸=2石.故蚂蚁爬行的最短距离为:3:应选:A.【例3】〔2021 •全国三模〕如图,直角梯形ABC.,AB//CD,NABC = 9O°, CD = 2, AB = BC = \ » E 是边8中点,A4Q七沿A£翻折成四棱锥Z7-A3CE,那么点.到平面4?.距离的最大值为〔〕A. -B. —C. —D.2 2 3解:直角梯形ABC.,AB//CD, ZABC = 90% 8 = 2, AB = BC = 1 ,E是边CD中点、,沿AE翻折成四棱锥ABCE,当.七_LCE时,点.到平面4?.距离取最大值,\ DELAE> CEp|A£ = E,.刀£,平面/48小,以上为原点,EC为x轴,胡为),轴,为z轴,建立空间直角坐标系,那么A(0, b 0), C(l, 0, 0) ,.(0, 0, 1) , B(l, 1, 0),A* = (l, 0, 0), AC = (1, -1, 0), AD f = (0, -1, 1),设平面4?.的法向量万= (x,y, z),… t [fUAB = x = 0那么〈__, ,取y = l,得万= (0, 1, 1),^•AD f = "y + z = 0••・点C到平而皿距离的最大值为:4 = 半3 =[==4.应选:B.Ini O 2【变式练习】(2021/月份模拟)如下图,三棱锥A-38的顶点A,B,C,.都在半径为四同一球而上,4记.与为直角三角形,是边长为2的等边三角形,点P,.分别为线段AO, BC t 的动点(不含端点),且AP = CQ,那么三棱锥体积的最大值为.解:设AP = x, xw(O.").由题意可知:4.的中点O为球心,当平而4?.,平而8C.时,"遮一')2 =—,当 3 3 2三棱锥P-QCO体积V = 1・PO.S so(v =-x(y/2-x72 xx・sin450 = 1%(V2-x)?-(6 6 2 12且仅当天=咛时取等号. 2二三棱锥尸-QCO体积的最大值为、•.故答案为:1 . 〔2021•吉林模拟〕我国古代的数学著作?九章算术•商功?中,将底而是直角三角形的直三棱柱称为“堑堵二 在如下图的“堑堵〞 A8C-A4G 中,A8 = AC = A4,=2, N 分别是3片和A©的中点,那么平而AMN 截“堑堵〞 ABC-/44G 所得截面图形的面积为〔D・孚解:延长4V ,与Cq 的延长线交于点夕,那么Pe 平面38£C, 连结PM,与8c 交于点E,连结NE, 得到的四边形AMEN 是平面AMN 截"堑堵〞ABC- A4Q 所得截面图形, /T7 由题意得 NE = ME = J, AM =AN = $、MN =娓、3J AMN 截"堑堵〞ABC-A AC ;所得截面图形而积为:2 .〔2021春•全国月考〕在?九章算术?中,将四个而都是直角三角形的四而体称为鳖膈.如图,在鳖腌A-38中,4?,平面88,且应〕,8, AB = BD = CD,那么直线AC 与平而所成角的正切值是〔〕D -T1 + — x 2解:・.•在鳖㈱A-3C£>中,平而3C.,且AB = BD = CD,. .CDLAB, CD 上 BD,♦・・4808.= 8,,.£>_1平而M£〕, J.CDLAD,,NC4O是直线AC与平面ABD所成角,设A8 = 3O = C0 = 1,那么直线AC与平面ABD所成角正切值是:tan ACAD = ? = -=L==噂.AO VFTF 2应选:B.3. 〔2021•石嘴山二模〕?算数书?竹筒与上世纪八十年代在湖北省江陵县张家山出上,这是我国现存最早的有系统的数学典籍.其中记载有求“国盖〞的术:“置如其周,令相承也.又以高乘之,三十六成一该术相当于给出了由圆锥的底而周长L与高人,计算器体积Ve’L力的近似公式.它实际上是将圆锥体积公式中36的圆周率近似取为3,那么近似公式相当于圆锥体枳公式中的圆周率近似取为〔〕A 22 n 157 「28 「3377 50 9 115解:设圆锥底而圆的半径为,高为/?,1 3依题意,L = 2m・,-7rr2h = —^2/rr〕2h , 3 112即乃=至.即乃的近似值为二L应选:c.3 112 9 94. 〔2021-3月份模拟〕一个由两个圆柱组合而成的的密闭容器内装有局部液体,小圆柱底而半径为小大圆柱底面半径为弓,如图1放置容器时,液面以上空余局部的高为/上如图2放置容器,液面以上空余部解:在图1中,液面以上空余局部的体积为:开4%, 在图2中,液而以上空余局部的体枳为:力「生,5. (2021•新课标口)学生到工厂劳动实践,利用3.打印技术制作模型.如图,该模型为长方体A3CO-A4G4挖去四棱锥O-EFG〞后所得的几何体,其中O为长方体的中央,E,F, G, 〃分别为所在棱的中点,AB = BC = 6cm,明=40〃.3.打印所用原料密度为0.〞/4・加・不考虑打印损耗,制作解:该模型为长方体A8CT)-AACQ,挖去四棱锥O-EFG〞后所得的几何体,其中.为长方体的中央,E, F , G , H ,分别为所在棱的中点,AB = BC = 6cm, A4, = 4cm ,. .该模型体积为:= 6x6x4--x(4x6-4x — x3x2)x3= 144-12 = 132(cw3), ••・3.打印所用原料密度为0.9g /c加,不考虑打印损耗, .•・制作该模型所需原料的质量为:132xO.9 = U8.8(g).6 .〔2021•新课标口〕中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多而体〞〔图1〕.半正多面体是由两种或两种以上的正多边形围成的多而体.半正多而体表达了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的外表上,且此正方体的棱长为1.那么该半正多而体共有个面,其棱长为 .解:该半正多面体共有8 + 8 + 8 + 2 = 26个而,设其棱长为.T,那么x + 岑工=1,解得工=①-1.2 2故答案为:26, 0-1.7 .〔2021•钟祥市一模〕如图,在直角梯形A3CD中,ABLBC. AD//BC, A3 = 8C =』AO = 1,点七是 2线段C.上异于点C,.的动点,于点F,将ADE/沿石尸折起到的位置,并使依_LA/,那么五棱锥P- ABCEF的体枳的取值范围为.解:\PFLAF, PFLEF,A/「|七尸=尸,二C平面.设殷=x,那么Ovxvl,且 EF = DF=x.二五边形ABCEF的而积为S = 1;^7, - S^. = 1x(l + 2)xl-lx2=i(3-x2)./.五棱锥P- ABCEF的体积V = lxl(3-x2)x = -(3x-x3),设f(x) = 1 (3A-X3),那么f(x) = 2 (3 - 3/) = ! (1 - /), o 6 2.•・当0<xvl 时,f(x) > 0 ,.J(x)在(0,1)上单调递增,又f(0) = 0, / (1)=-.3• ・五棱锥尸-ABCEF的体积的范围是(0」).38.(2021•全国模拟)如图:边长为2"的菱形ABC.,NZMB = 6O0,将少血)沿4.折起到图中AP8Q的位置,使得二面角.的大小为60.,那么三棱锥的外接球外表积等于解:由题意,如图:取中点那么NZMB = 60.为二面角尸—即―C的平面角,APMC是边长为3的正三角形,E, F分别为PM, CM靠近"的三等分点,作EO,而PBD,而88,那么O为外接球球心.•;MF = l, PMC = 60.,连接OC, OM ,可得NQWC = 30°,:.OF = ^-MO OF = —2 3••,FC = 2 R2 = OF2 + FC2=—三棱锥P — BCD的外接球外表积S = 4T* =—故答案为:—3 3 39.(2021•新课标口)如图,圆形纸片的圆心为O,半径为5加,该纸片上的等边三角形ABC的中央为O.D、£、“为圆.上的点,ADBC , AEC4, AE4B分别是以3C, C4 , 为底边的等腰三角形.沿虚线剪开后,分别以5C, C4, AB为折痕折起AD3C, AECA , AE4B ,使得.、E、b重合,得到三棱锥.当AA8C的边长变化时,所得三棱锥体积(单位:a力的最大值为【分析】法一:由题,连接..,交8c 于点G ,由题意得8_L8C, OG = ^BC,设OG = x ,那么8c = 2志工, 6DG = 5-x ,三棱锥的高 h = J25 - lUx ,求出 S'K = 3 JI? , V = g S“BC xh =/)25的二 10?,令f (A )= 25x 4-10x\ xe(0,W), r (x) = 100?-50x\(2) =80,由此能求出体积最大值. 2法二:设正三角形的边长为x ,那么OG =>x 显工=吏工,FG = SG = 5-3 ,3 266【解答】解法一:由题意,连接..,交3C 于点G,由题意得8_L3C, OG = 0BC, 6即OG 的长度与BC 的长度成正比, 设OG = x,那么 8c = 2后, DG = 5 — x, 三棱锥的高力=yIDG 2- OG 2= V25- 10A + x 2 -x 2 =小25-加,S/=;x¥x(2A)2=3 底2,贝IJ V = ls AABC x h =也 x ^25-10A -=也5./ TOx,,4- f(x) = 25x 4-10x\ xe(O.W),尸⑴=100/- 50x 4,2令r(x»0,即/一2/WO,解得W2, 那么/CW ⑵=80,..WW/x 阿=4万“,J,二体积最大值为4厉c 〃r.故答案为:4V15C /H 5.由此能示出三棱锥的体积的最大值.解法二如图,设正三角形的边长为X,那么.G4争=枭令"(x) = 0,那么4/一 j = 0,解得工=4",v k … = * X 48 X 75^4 = 4 底(o 〃3).10. 〔2021春•全国月考〕如图,长方体A8CO-A4GA ,中,AB = BC ,= ,点厂为AA 的中点,O 为直线DB.与平面EFC 的交点,那么—= .1 OB 、 -----AG 6易证"///CE,设F 〃n8Q=N, CEp\BD = M .连接MN,贝IJM, N,.三点共线〔,.•平而EPCC 平而BBQ1 =A/N〕:.FG = SG = 5- -6••・三棱锥的体枳丫玄/人令h(x) = 5/-且丁,那么勿(X )= 20/ --X 4 , 3 3故答案为:4V15C /H 5 .BM _1 . DM _3 DM =3, BD =4易证D{N1=,NBI• 17BR8BR8所以DO _DM 3 7 =--="-:6 OB X NB、 4 87故答案为:11.〔2021春•柳东新区校级月考〕三棱锥P-ABC中,是面积为46的等边三角形,ZACB = -, 4那么当点.到平面府的距离最大时,三棱锥尸-ABC外接球的表而积为一.解:面C4B_L面P4B时,C到平而RS的距离最大,设.,石分别为附3,&4CB的外心,并过.,£做两个三角形所在的平面的垂线,两条垂线交于O,那么O为三棱锥的外接球的球心,AO即为球的半径,:由于APAB是面积为4召的等边三角形,所以4? = 4,在A45C, ZACB = -9 4那么ZA£B = 90°AD由正弦定理可得:=2AE,sin ZACB板AE = EB = EC = 2立,设A4的中点b,那么OE 二O/二故.4 = >/0炉+41 =卓,所以外接球的外表积S = 4〕C 上PF =SL AB=^,3 3 23次?=U三,故答案为:—3 312.〔2021•芮城县模拟〕如图,三棱锥A-3Cr>中,AC = AD = BC = BD = \O9 A3 = 8,8 = 12,点夕在侧而AC.上,且到直线4?的距离为同,那么心的最大值是—.解:取8中点K,连接以,BK,・・,AC = AD = BC = BD,K 是 8 的中点,:.AK±CD, BKLCD,又AKppK = K, AKu平面ABK, 8Ku平面ABK, AKp|8K = K, 平面ABK ,又COu平面AC.,二平而ABK_L平而AC£〕./. B在平面ACO内的投影在直线AK上,由对称性可知当.在AC 〔或AD〕上时,心取得最大值.过户作于M,过.作CN_LA3于N,・・・AC = 3C = 10,AB = 8, .・.CN = 2旧,.•/是HC的中点,M是4V的中点,. BM =6, BP^BM^+PM,=固.故答案为:扃.13,〔2021•全国二模〕?九章算术?是我国现存的一部最古老的数学书籍.通过“牟合方盖〞解“夬了球体体积计算的难题,其中一段记载:“今有方锥,下方八尺,高八尺.同:积几何?术日:下方自乘,以高乘之, 三而一,假设以立圆外接,问积几何?〞意思是:“假设有一个正四棱锥〔底面是正方形,并且顶点在底而的射影是正方形中央的四棱锥〕,下底边长是8尺,高8尺,那么它的体积是多少?方法是:下底边长自乘,以高乘之,再除以3.假设这个正四棱锥的所有顶点都在球O的球面上,那么球O的体积为一立方尺.解:如图,四棱锥尸-A3CQ为正四棱锥,底面ABC.是边长为8的正方形,高PG = 8,设其外接球的球心为O,那么O在PG上,连接.4,设.4 = QP = R,那么〃=〔8-/?〕2+〔4隹〕2,解得火=6.4・•.球O的体积为V = _〃x63 = 288/r.故答案为:288〃.。
普通高等学校招生全国统一考试新课程标准数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.纵观近几年全国及各省高考试题,对立体几何中的折叠问题、最值问题和探索性问题的考查逐年加重,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.
1 立体几何中的折叠问题
折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的
集中体现。
处理这类题型的关键是抓住两图的特征关系。
折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材。
解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。
这些未变化的已知条件都是我们分析问题和解决问题的依据。
而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试。
例1 【广东省广州市海珠区2014届高三上学期综合测试二】如图5,已知矩形ABCD 中,10AB =,6BC =,
将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.
(1)求证:1BC A D ⊥;
(2)求证:平面1A BC ⊥平面1A BD ; (3)求二面角1A BD C --的余弦值
点评:折叠问题是考查学生空间想象能力的较好载体。
如本题,不仅要求学生象解常规立几综合题一样懂
2 立体几何中的最值问题
结合近年来全国各省市的高考中,考查与空间图形有关的线段、角、距离、面积、体积等最值问题常常在高考试题中出现.在解决此类问题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径
例2 正ABC ∆的边长为a ,沿BC 的平行线PQ 折叠,使平面⊥'PQ A 平面BCQP ,求四棱锥的棱B A '取得最小值时,四棱锥BCQP A -'的体积.
即当a x 43=
时,a B A 4
10min ='
3 立体几何中的探索性问题
探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.
3.1对命题条件的探索
探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法: 1、先猜后证,即先观察与尝试给出条件再给出证明;
2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;
3、把几何问题转化为代数问题,探索出命题成立的条件.
例3 【湖北省八校联考】如图,在直三棱柱111ABC A B C -中,底面△ABC 为等腰直角三角形,90ABC ∠= ,D 为棱1BB 上一点,且平面1DA C ⊥平面11AA C C .
(Ⅰ)求证:D 为棱1BB 的中点;
(Ⅱ)
AB
AA 1
为何值时,二面角1A A D C --的平面角为60 .
3.2对命题结论的探索
探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.
例4 【江西省2014届新课程高三第三次适应性测试】
(如图1)在平面四边形ACPE 中,D 为AC 中点,2AD DC PD ===,1AE =,且
,AE AC PD AC ⊥⊥,现沿PD 折起使090ADC ∠=,得到立体图形(如图2),又B 为平面ADC 内一点,并且ABCD 为正方形,设F ,G ,H 分别为PB ,EB ,PC 的中点 (1)求三棱锥P GHF -的体积;
60?若存在,求出线段的长;若不存(2)在线段PC上是否存在一点M,使直线FM与直线PA所成角为0
在,请说明理由.
如图,建立空间直角坐标系,因为22AD PD EA ===,
综合以上三类问题,折叠与展开问题、最大值和最小值问题和探究性问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.折叠与展开问题是立体几何的一对问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,处理这类题型的关键是抓住两图的特征关系;求最值的途径很多,其中运用公理与定义法、利用代数知识建立函数法、由常用不等式解不等式法等都是常用的一些求最值的方法;对于立体几何的探索性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.另外对于立体几何中的上述三种问题有时运用空间向量。