级数敛散性判别方法的归纳-级数的敛散性
- 格式:doc
- 大小:461.00 KB
- 文档页数:8
级数敛散性判别方法的归纳级数是数列之和的概念在数学中的推广。
级数的敛散性是数学中的一个重要问题,判别级数的敛散性常用的有几个方法,包括比较判别法、比值判别法和积分判别法。
下面我们将对这几种方法进行详细的归纳阐述。
一、比较判别法(包括比较判别法和比较判别法的极限形式)比较判别法的基本思想是用一个已知的级数和未知的级数进行比较,从而判断未知级数的敛散性。
1.比较判别法对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有a_n≤cb_n成立,那么:(1)若∑b_n收敛,则∑a_n也收敛。
(2)若∑b_n发散,则∑a_n也发散。
2.比较判别法的极限形式对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有lim(a_n/b_n)=c成立,那么:(1)若0<c<∞,则∑b_n收敛或发散,则∑a_n也收敛或发散。
(2)若c=0,则∑b_n收敛,则∑a_n也收敛。
(3)若c=∞,则∑b_n发散,则∑a_n也发散。
比较判别法适用于一些特殊情况,如∑(1/n^p)的敛散性可以通过与调和级数∑(1/n)做比较来判断。
二、比值判别法比值判别法的基本思想是通过比较级数的相邻项之比的极限值,从而判断级数的敛散性。
对于正项级数∑a_n,计算lim(a_(n+1)/a_n),若这个极限存在:(1)若0≤lim(a_(n+1)/a_n)<1,级数收敛;(2)若lim(a_(n+1)/a_n)>1或lim(a_(n+1)/a_n)=∞,级数发散;(3)若lim(a_(n+1)/a_n)=1,比值判别法无效,需使用其他方法。
比值判别法适用于一些具有指数函数的级数,如幂级数∑(x^n)的敛散性可以通过计算lim(x^(n+1)/x^n),进而判断。
三、积分判别法积分判别法是通过将级数转化为函数积分的形式,从而判定级数的敛散性。
对于正项级数∑a_n,若存在函数f(x),使得f(x)满足以下条件:(1)f(x)在区间[1,+∞)上连续非负递减;(2)级数∑a_n与函数积分∫f(x)dx存在以下关系:a_n=f(n),则(a)若∫f(x)dx在区间[1,+∞)上收敛,则级数∑a_n也收敛;(b)若∫f(x)dx在区间[1,+∞)上发散,则级数∑a_n也发散。
华北水利水电大学课题: 数项级数敛散性判别方法(总结)专业班级:水利港航39 班成员组成: 丁哲祥1联系方式:数项级数敛散性判别法(总结)摘要:数项级数是逼近理论中的重要内容之一,也是高等数学的重analysis. We learn thissemester the severalseries gathered of the criterion has many scattered metho d, this paper folding a seriesoflogarithmscattered discriminant method is analyzed sum-up, get theproblem solvingmethod.Key words : Several series;Gathered scattered sex; I要组成部分。
本章我们先介绍数项级数的一些基本性质和收敛判别方 法然后讨论函数的幂级数展开和三角级数展开。
我们这学期学习过的 数项级数敛散性判别法有许多, 本文对数项级数敛散性的判别方法进 行了分析归纳总结,得到的解题方法。
以便我们更好的掌握它。
关键词 :数项级数 敛散性 判别方法 总结Abstractthe mathematicaldentifying method; analysis summaryof theSeveral seriesgatheredcriterion scattered method (summary)The sequenceseries is one of the main contents in数项级数的定义数项级数的定义设{a n}是一个数列,则称表达式a i+a2+a3+…a n+…为(常数项)无穷级数,简称数项级数或级数,记为a n或a n称a n为级数的通项或一般项。
n 1下面举几个例子:(1)1+2+3+4+5+6+…+n+…二n ;(2) 1-111 (1)n1+・・・=2 3 4 n (1)n1n常见的数项级数正项级数:级数中所有项均大于等于零。
关于正项级数敛散性判定方法的总结比较1. 引言1.1 介绍正项级数是数学中一个非常重要的概念,它在数学分析、实变函数论等领域都有着广泛的应用。
正项级数的收敛性质对于理解数学问题、解决实际问题都有着重要的意义。
在研究正项级数的收敛散性判定方法时,我们可以利用一些常用的方法来对其进行分析和求解。
在数学中,我们经常会遇到各种各样的级数,如调和级数、几何级数等。
这些级数的收敛性质可能相差甚远,有些级数可能收敛,而有些级数可能发散。
我们需要通过一些方法来判断一个级数是否收敛。
对于正项级数而言,有一些常用的判定方法,如比较判别法、根值判别法、积分判别法、对数判别法等。
本文将重点介绍正项级数的收敛散性判定方法,通过比较这些方法的特点和适用范围,帮助读者更好地理解正项级数的收敛性质。
希望本文能够为相关领域的研究者提供一些帮助,并为未来的研究工作提供一定的参考。
1.2 研究意义正项级数是数学中重要的研究对象,对其收敛和发散性进行判定具有重要的理论和实际意义。
正项级数的收敛性判定可以帮助我们了解无穷级数的性质,进一步推导出一些重要的数学定理和结论。
正项级数在实际问题中的应用十分广泛,比如在概率论、统计学、物理学等领域都有着重要的应用价值。
通过对正项级数的收敛性进行准确判断,可以帮助我们更好地理解和解决实际问题。
研究正项级数的收敛性判定方法,可以拓展数学领域中的知识体系,丰富数学理论的内涵,推动数学学科的发展。
深入研究正项级数的收敛性判定方法具有重要的研究意义和实际应用价值。
1.3 研究现状正项级数是数学中重要的概念,其收敛性对于分析问题的解决具有重要的意义。
关于正项级数的收敛性判定方法,已经有许多经典的理论成果,这些方法在实际问题的解决中发挥着重要作用。
在研究现状方面,正项级数的收敛性已经得到了深入的研究和总结。
目前常用的级数收敛判定方法有比较判别法、根值判别法、积分判别法和对数判别法。
这些方法各有特点,能够适用于不同类型的正项级数,为研究者提供了多种选择。
级数收敛与发散的判定方法级数是数学中的重要概念,它由一列数相加得到。
在级数中,我们想要知道这个级数是收敛还是发散,这对于解决很多数学问题至关重要。
本文将介绍一些常用的判定方法,帮助我们判断级数的收敛性。
一、正项级数的判定方法正项级数是指级数中所有的项都是非负数的级数。
对于这样的级数,我们有以下几种常见的判定方法。
1. 比较判别法比较判别法是最常用的判定方法之一。
若存在一个收敛的正项级数和一个发散的正项级数,使得对于所有的n,都有a_n ≤ b_n,那么级数Σa_n也是收敛的,而级数Σb_n是发散的。
2. 极限判别法极限判别法是另一种常用的判定方法。
若存在一个正常数L,使得当n趋向无穷大时,a_n的极限为L(L>0),那么级数Σa_n收敛。
反之,如果当n趋向无穷大时,a_n的极限不存在或为无穷大,那么级数Σa_n发散。
3. 比值判别法比值判别法是判定正项级数收敛与发散的重要方法。
假设an为正项级数的一般项,若存在一个实数r,使得当n趋向无穷大时,|(a_n+1)/a_n|的极限为r(0≤r<1),那么级数Σa_n是收敛的。
反之,如果r≥1或者r不存在,那么级数Σa_n是发散的。
二、任意项级数的判定方法除了正项级数外,我们还会遇到一般的级数,这些级数中的项既有正数也有负数,这时我们无法直接使用前面的判定方法。
以下介绍两种常见的判定方法。
1. 列维判别法对于一般级数Σa_n,如果存在一个发散的正项级数和一个收敛的正项级数,使得当n趋向无穷大时,(a_n+1)/(a_n)的极限为p(0<p≤∞),那么级数Σa_n是收敛的。
如果p<1,则级数Σa_n是发散的。
2. 积分判别法对于一般级数Σa_n,如果存在一个函数f(x),在连续正数轴上单调递减,并且对于n=1,2,...,有a_n=f(n),那么级数Σa_n与函数f(x)的积分∫f(x)dx的收敛性或发散性相同。
综上所述,级数收敛与发散的判定方法有正项级数的比较判别法、极限判别法和比值判别法,以及任意项级数的列维判别法和积分判别法。
关于矩阵幂级数敛散性的几个简易判别法判定正项级数的敛散性:1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。
若不趋于零,则级数发散;如果趋于零,则考虑其它方法。
2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数。
3.用比值判别法或根值判别法进行判别。
4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。
判定交错级数的敛散性:5.利用莱布尼茨判别法进行分析判定。
6.利用绝对级数与原级数之间的关系进行判定。
7.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散。
8.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定。
求幂级数的收敛半径、收敛区间和收敛域:9.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域。
10.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径。
求幂级数的和函数与数项级数的和:11.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和。
12.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值。
将函数展开为傅里叶级数:13.将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。
学士学位论文题目有关级数的敛散性学生指导教师年级 2008级专业数学与应用数学系别数学系学院数学科学学院2011年5月目录摘要 (1)关键词 (1)引言 (1)1 基本概念和相关理论 (1)1.1 有关级数的定义 (1)2 级数敛散性的判定方法 (3)2.1 级数的相关定理及证明 (3)3 级数敛散性的应用 (7)3.1 级数敛散性的相关结论 (7)3.2 级数敛散性判定的应用 (10)结束语 (14)参考文献 (14)外文摘要 (14)有关级数的敛散性(哈尔滨师范大学数学科学学院)摘 要: 级数是高等数学中的一个重要内容,而正项级数又是级数的重要组成部分,判别正项级数的敛散性方法很多,本文主要讨论了正项级数判别法的一些特性,及判别正项级数敛散性的一般步骤关 键 词 数项级数 收敛 发散 判别法引言数项级数敛散性判定研究是一个重要而有趣的课题,关于数项级数的敛散性判定尽管有不少经典性判别法,然而对数项级数判断收敛的方法的研究至今还在继续与深入,并且获得了一些新的知识和发现.本文打算对数项级数各项重要的敛散性判别方法作简单、系统的归纳,在已有判断收敛的一般程序基础上,进行进一步探讨,使解题更简便、更直接,从而找到判断收敛更完美的一般程序及最优方法选择.1基本概念和相关理论1.1有关级数的定义定义1.1.1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式12......n u u u ++++ (1)称为数项级数或无穷项级数(也简称为级数),其中n u 称为数项级数(1)的通项.数项级数(1)也常写作:∑∞=1k n u 或简称写作∑n u .数项级数(1)的前n 项之和,记为n nk k n u u u u S +++==∑=...211, (2)称为数项级数(1)的第n 个部分和,也简称为部分和.定义1.1.2 若数项级数(1)的部分和数列{}n S 收敛于S(即S S n n =∞→lim ),则称数项级数(1)收敛,称S 为数项级数(1)的和,记作12......n u u u ++++ 或∑=n u S .若{}n S 是发散数列,则称数项级数(1)发散.定义1.1.3 若正项级数各项的符号都相同,则称它为同号级数.各项都是由正项组成的级数称为正项级数定义1.1.4若级数的各项符号正负相间,即11234...(1)...(0,1,2,)n n n u u u u u u n +-+-++-+>= ,则上述级数为交错级数2 级数敛散性的判定方法2.1 级数的相关定理及证明定理 2.1.1 由于级数(1)的收敛或发散(简称敛散性),是由它的部分和数列{}n S 来确定的,因而可把级数(1)作为数列{}n S 的另一种表现形式.反之任给一个数列{}n a ,如果把它看作某一数项级数的部分和数列,则这个数项级数就是 +-++-+-+=-∞=∑)()()(1231211n n n n a a a a a a a u (3)这是数列{}n a 与级数(3)具有相同的敛散性,且当{}n a 收敛时,其极限值就是级数(3)的和.定理2.1.2 (级数收敛的柯西准则) 级数(1)收敛的充要条件:任给正数ε,总存在正整数N ,使得当N m >以及对任意正整数p ,都有12m m m p u u u ε++++++< (5) 即有级数(1)发散的充要条件:存在某正整数0ε,对任何正整数N ,总存在整数)(0N m >和0p ,有12m m m p u u u ε++++++<定理2.1.3 若级数(1)收敛,则0lim =∞→n n u (6)定理2.1.4 若级数nu∑和n v ∑都收敛,则对任意常数c ,d ,级数()n n cu dv +∑亦收敛,且()nn n n cudv c u d v +=+∑∑∑定理2.1.5 去掉、增加或改变级数的有限个项不改变级数的敛散性.定理2.1.6 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.注意:从级数加括号的收敛,不能推断它在未加括号前也收敛.例如(11)(11)(11)000-+-++-+=+++收敛,但级数1111-+-+却是发散的.定理2.1.7 正项级数nu∑收敛的充要条件是:部分和数列{}n S 有界,即存在某正整数N ,对一切正整数n 都有n S M <.定理2.1.8(比较原则) 设nu∑和nv∑是两个正项级数,如果存在某正整数N ,对一切n N >都有n n u v ≤则(i )若级数n v ∑收敛,则级数n u ∑也收敛;(ii )若级数n u ∑发散,则级数n v ∑也发散. 推论 设12......n u u u ++++ (7) 12......n v v v ++++ (8)是两个正项级数,若lim nn nu l v →∞= 则(i ) 当0l <<+∞时,级数(7)、(8)同时收敛或同时发散;(ii ) 当0l =且级数(8)收敛时,级数(7)也收敛; (iii )当l =+∞且级数(8)发散时,级数(7)也发散.定理2.1.9(达朗贝尔判别法,或称比式判别法) 设nu∑为正项级数,且存在某个正整数0N 及常数q (01q <<).(i ) 若对一切0n N >,成立不等式nnu q v ≤ 则级数n u ∑收敛.(ii )若对一切0n N >,成立不等式1nnu v ≥ 则级数n u ∑发散.推论 (比式判别法的极限形式)若n u ∑为正项级数,且1limn n nu q u +→∞= (9)则(i ) 当1q <时,级数n u ∑收敛;(ii )当1q >或q =+∞时,级数n u ∑发散.注 若(9)中1q =,这是用比式判别法对级数的敛散性不能做出判断因而它可能是收敛的,也可能是发散的.例如级数21n ∑和1n∑,它们的比式极限都是11()n nu n u +→→∞ 但21n ∑是收敛的,而1n∑却是发散的. 若某极限(9)式的极限不存在,则可用上、下极限来判别. 推论 设n u ∑为正项级数. (i )若1lim1n n n u q u +→∞=<,则级数收敛;(ii )若1lim1n n nu q u +→∞=>,则级数发散.定理2.1.10 (柯西判别法,或称根式判别法) 设nu∑为正项级数,且存在某正数0N 及正常数l , (i )若对一切0n N >,成立不等式1l ≤<, (10) 则级数n u ∑收敛;(ii )若对一切0n N >,成立不等式1≥ (11)则级数n u ∑发散.定理2.1.11(根式判别法的极限形式) 设n u ∑为正项级数,且n l = (12)则(i )当1l <时,级数n u ∑收敛; (ii )当1l >时,级数n u ∑发散.注 若(12)式中1l =,则根式判别法仍无法对级数的敛散性作出判别. 例如,对21n ∑和1n ∑,都有1()n →→∞但21n ∑是收敛的,而1n∑却是发散的.若(12.定理2.1.12 设nu∑为正项级数,且l =则当(i ) 1l <时级数收敛;(ii )1l >时级数发散.定理2.1.13(莱布尼茨判别法)若交错级数11234...(1)...n n u u u u u +-+-++-+ (13)满足下述两个条件: (i ) 数列{}n u 单调递减; (ii )lim 0n n u →∞=则级数(13)收敛.定理2.1.14 若级数(13)满足莱布尼茨判别法的条件,则收敛级数的余项估计式为1n n R u +≤绝对收敛级数及其性质 若级数12......n u u u ++++ (7) 各项绝对值所组成的级数12......n u u u ++++ (15) 收敛,则称级数(7)为绝对收敛.定理2.1.15 绝对收敛的级数一定收敛.定理2.1.16 设级数12......n u u u ++++ (7)绝对收敛,且其和等于S ,则任意重排后所得到的级数12......n v v v ++++ (8)也绝对收敛亦有相同的和数.注 由条件收敛级数重排列后所得到的新级数,即使收敛,也不一定收敛于原来的和数.而且条件收敛级数适当重排后,可得到发散级数,或收敛于事先指定的数.例如级数11111(1)231n n +-+++-++ 是条件收敛的,设其和为A ,即1111111111(1)12345678n n A n ∞+=-=-+-+-+-+=∑ 乘以常数12后,有 1111111(1)224682n A n +-=-+-+=∑ 将上述两个级数相加,就得到1111131325742A +-++-+= 定理2.1.17 (柯西定理) 若级数12......n u u u ++++ (7) 12......n v v v ++++ (8) 都绝对收敛,则对所有乘积i j u v 按任意顺序排列所得的级数n w ∑也绝对收敛,且其和等于AB .引理 (分部求和公式,也称阿贝尔变换) 设,(123)i i v i n ε= ,,,,为两组实数,若令12(12)k k v v v k n σ=+++= ,,,则有如下分部求和公式成立:121232111()()()ni in n n n n i vεεεσεεσεεσεσ--==-+-++-+∑ (16)推论(阿贝尔引理) 若(i ) 12n εεε ,,,是单调数组;(ii )对任意正整数(1)k k n ≤≤有k A σ≤(这里1k k v v σ=++ ),则记max{}k kεε=时,有13nk ki vk εε=≤∑ (17)定理2.1.18(阿贝尔判别法) 若{}n a 为单调有界数列,且级数nb∑收敛,则级数1122n n n n a b a b a b a b =++++∑ (18) 收敛.定理2.1.19(狄利克雷判别法) 若数列{}n a 单调递减,且lim 0n n a →∞=,又级数n b ∑的部分和数列有界,则级数(18)收敛. 积分判别法定理 2.1.20(积分判别法) 设f 为[1,)+∞上非负减函数,那么正项级数()f n ∑与反常积分1()f x dx +∞⎰同时收敛或同时发散.3 有关级数的敛散性的应用 3.1级数敛散性的相关结论3.1.1判断正项级数一般顺序是先检验通项的极限是否为0,若为0则收敛,若不为0则判断级数的部分和是否有界,有界则收敛,否则发散. 3.1.2若级数的一般项可以进行适当放缩则使用比较判别法,或可以找到其等价式用等价判别法.3.1.3当通项具有一定特点时,则根据其特点选择适用的方法,如比值判别法、跟式判别法。
正项级数敛散性的判别刘 兵 军无穷级数是数学分析的重要内容,是表示函数、研究函数的性质以及进行数值计算的一种工具。
级数在无穷级数中占据了较大的比重,其题型丰富且灵活。
本文给出了正项级数敛散性的各种判别方法,通过典型例题的讲解,使学员能以尽快掌握正项级数敛散性的判断问题。
一. 常数项级数的概念所谓无穷级数就是把无穷多个数按照一定的顺序加起来,所得的和式。
对于数列 ,,,,21n u u u ,由此数列构成的表达式+++++n u u u u 321叫做无穷级数,简称级数,记为∑∞=1n n u ,即+++++=∑∞=n n nu u u u u 3211, (1)其中第n 项n u 叫做级数(1)的一般项。
级数(1)的前n 项的和构成的数列n n u u u s +++= 21, ,3,2,1=n(2)称为级数(1)的部分和数列。
根据部分和数列可得级数敛散性及和的定义。
定义 如果级数(1)的部分和数列n s 有极限,即存在常数s ,使得=∞→n n s lim s ,则称级 数(1)收敛,极限s 称为级数(1)的和;否则称级数(1)发散。
级数收敛的必要条件 如果级数(1)收敛,则其一般项n u 趋于零。
二. 正项级数敛散性的判别由正数和零构成的级数称为正项级数。
比较审敛法是判别正项级数敛散性的一种常用且非常有效的方法。
比较审敛法 如果正项级数∑∞=1n n v 收敛,且满足),3,2,1( =≤n v u n n ,则∑∞=1n n u 收敛;如果正项级数∑∞=1n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞=1n n u 发散;比较审敛法只适用于正项级数敛散性的判别,而寻求合适的级数∑∞=1n n v 是解题的关键。
几何级数∑∞=-11n n aq和p-级数∑∞=11n p n 常用来充当比较审敛法中的级数∑∞=1n n v 。
例1 证明级数∑∞=+1221n n 是收敛的。