当前位置:文档之家› 二次函数知识点及典型例题

二次函数知识点及典型例题

二次函数知识点及典型例题
二次函数知识点及典型例题

二次函数知识点及典型例题-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

二次函数

一、二次函数的几何变换

二、二次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质

(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质

(Ⅲ) a、b、c的符号对抛物线形状位置的影响

三、待定系数法求二次函数的解析式

1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。

2、顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式。 3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。

4、顶点在原点,可设解析式为y=ax 2

5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2

+c 。 6、顶点在x 轴上,可设解析式为()2

h x a y -=。

7、抛物线过原点,可设解析式为y=ax2+bx 。

四、抛物线的对称性

1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=

2x x 2

1+。 2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2n

m +。

3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(a

b

-, c)。

五、二次函数与一元二次方程的关系

对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。要分三种情况:

1、 判别式△=b 2

-4ac >0?抛物线与x 轴有两个不同的交点(a

b 24ac

b -2+,

0)(a b 24ac b --2,0)。有韦达定理可知x 1+x 2=a b - ,x 1·x 2=

a

c 。

2、 判别式△=b 2

-4ac=0?抛物线与x 轴有一个交点(a

b 2-,0)。 3、 判别式△=b 2

-4ac=0?抛物线与x 轴无交点。

六、二次函数与一元二次不等式的关系

1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。

(2)02

<c bx ax

++的解集为:x 1<x <x 2(x 1<x 2)。

2、a <0:(1)02>c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。

(2)02

<c bx ax

++的解集为:x <x 1或x >x 2(x 1<x 2)。

七、二次函数的应用 1、面积最值问题。

2、长度、高度最值问题。

3、利润最大化问题。

4、利用二次函数求近似解。

例1、抛物线c bx ax y ++=2与直线c ax y +=在同一平面直角坐标系中的图像大致是

( )

例2、已知二次函数y=-x 2+bx-8的最大值为8,则b 的值为 ( )

A 、 8

B 、 -8

C 、 16

D 、 8或-8

例3、已知一抛物线与x 轴的交点是A (-2,0)B (1,0)且经过点C (2,8)

(1)求该抛物线的解析式; (2)求该抛物线的顶点坐标

二次函数知识点大全

二次函数知识点归纳及提高训练 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数知识点详解和巧记口诀

黄冈中学“没有学不好滴数学”系列之十二 二次函数知识点详解(最新原创助记口诀) 内含 <全文看完后 再决定下不下载> 十二个知识点 最新原创助记口诀 用心背后就知好 二次函数疑难问题一扫光 简洁实用 直指中考高分 知识点一、平面直角坐标系 1,平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数

点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x + 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数知识点及典型例题

二次函数一、二次函数的几何变换 二、二次函数的图象和性质 (Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质

(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质

(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响 三、待定系数法求二次函数的解析式 1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。 2、顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴,通常选择顶点式。 3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。 4、顶点在原点,可设解析式为y=ax 2 。 5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2 +c 。 6、顶点在x 轴上,可设解析式为()2 h x a y -=。 7、抛物线过原点,可设解析式为y=ax2+bx 。 四、抛物线的对称性 1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x= 2x x 2 1+。 2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2 n m +。 3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(a b -, c)。

五、二次函数与一元二次方程的关系 对于抛物线c bx ax y ++=2 (a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。要分三种情况: 1、 判别式△=b 2 -4ac >0?抛物线与x 轴有两个不同的交点(a b 24ac b -2+,0) (a b 24ac b --2,0)。有韦达定理可知x 1+x 2=a b - ,x 1·x 2= a c 。 2、 判别式△=b 2 -4ac=0?抛物线与x 轴有一个交点(a b 2-,0)。 3、 判别式△=b 2 -4ac=0?抛物线与x 轴无交点。 六、二次函数与一元二次不等式的关系 1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。 (2)02 <c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。 2、a <0:(1)02>c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。 (2)02 <c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。 七、二次函数的应用 1、面积最值问题。 2、长度、高度最值问题。 3、利润最大化问题。 4、利用二次函数求近似解。

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数知识点汇总

二次函数知识点汇总 一、二次函数概念: 1 .二次函数的概念 : 一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要 强调 :和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数. 2. 二次函数 的结构特征: ⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是 2 . ⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式: 的性质: a 的绝对值越大,抛物线的开口越小。 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

2. 的性质: (上加下减) 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 3. 的性质: (左加右减) 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 4. 的性质: 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 三、二次函数图象的平移 1. 平移步骤:

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

二次函数知识点总结及典型例题

浙教版九年级上册二次函数知识点总结及典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】、已知函数y=x 2 -2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应的一元二次方程02 =++c bx ax 有实根1x 和 2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式 ))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数知识点汇总及详细剖析

二次函数知识点汇总及详细剖析 函数中,有一种多项式函数形如y= ax2+bx+c(a,b,c是常数,a≠0),最高次数是2,这种函数,我们称之为二次函数。二次函数知识点颇多,初高中都会出现,在初中,刚刚出现在一次函数数形结合学习之后,因此,二次函知识点离不开数形结合思想。二次函数主要知识点: 一、定义与定义表达式: 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 二、二次函数的三种表达式 一般式:y=ax2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h) 2;+k[抛物线的顶点P(h,k)] 交点式:y=a(x- x1)(x- x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac- b2)/4a x1,x2=(-b±√b2-4ac)/2a 三、二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像, 可以看出,二次函数的图像是一条抛物线。 四、抛物线的性质 1.抛物线是轴对称图形。 对称轴为直线:x=-b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b2;)/4a]。 当-b/2a=0时,P在y轴上; 当Δ=b2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c)。 6.抛物线与x轴交点个数 Δ=b2-4ac>0时,抛物线与x轴有2个交点。 Δ=b2-4ac=0时,抛物线与x轴有1个交点。 Δ=b2-4ac<0时,抛物线与x轴没有交点。

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数知识点总结题型分类总结

二次函数知识点总结——题型分类总结 一、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①142 +-=x x y ; ②2 2x y =; ③x x y 422 +=; ④x y 3-=; ⑤12--=x y ; ⑥p nx mx y ++=2 ; ⑦()x y ,4=; ⑧x y 5-=。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为t t s 252 +=,则t =4秒时,该物体所经过的路程为 _________ 。 3、若函数( ) 54722 2 ++-+=x x m m y 是关于x 的二次函数,则m 的取值范围为 。 4、若函数()1522 ++-=-x x m y m 是关于x 的二次函数,则m 的值为 。 6、已知函数()35112 -+-=+x x m y m 是二次函数,求m 的值。 二、二次函数的对称轴、顶点、最值 记忆:如果解析式为顶点式:()k h x a y +-=2 ,则对称轴为: _ , 最值 为: ; 如果解析式为一般式:c bx ax y ++=2 ,则对称轴为: __ ,最值为: ; 如果解析式为交点式:()()21x x x x a y --=, 则对称轴为: ,最值为: 。 1.抛物线m m x x y -++=2 2 42经过坐标原点,则m 的值为 。 2.抛物线c bx x y ++=2的顶点坐标为(1,3),则b = ,c = . 3.抛物线x x y 32+=的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线x ax y 62-=经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线b ax y +=不经过二、四象限,则抛物线c bx ax y ++=2 ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线()4 1 12- -+=x m x y 的顶点的横坐标是2,则m 的值是 . 7.抛物线322 -+=x x y 的对称轴是 。 8.若二次函数332 -+=mx x y 的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数()()x n m x n m y n -++=的图象是抛物线,

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

相关主题
文本预览
相关文档 最新文档