普通高中课程标准实验教科书数学5(必修)
- 格式:pdf
- 大小:2.14 MB
- 文档页数:10
一元二次不等式的解法(第一课时)说课稿
一、教材分析
1、教学内容
本节课是人教A版普通高中课程标准实验教科书数学必修5第三章第二节《一元二次不等式及其解法》第1课时。
2、教材地位和作用
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出本现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
3、教学目标
知识目标:正确理解一元二次不等式、一元二次方程、二次函数的关系。
熟练掌握一元二次不等式的解法。
能力目标:培养数形结合思想、抽象思维能力和形象思维能力。
思想目标:在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。
情感目标:通过具体情境,使学生体验数学与实践的紧密联系,感受数学魅力,激发学生求知欲望。
4、重难点
重点:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、教法探讨
1、选择教法的原则和依据
根据学生的原有知识和现有的认知规律,以发展学生的能力和应试水平为原则。
2、教法选择
探究、启发诱导法,分层教学法。
重点以引导学生为主,让学生积极主动的参与到新知识的探究中去。
三、学法分析
结合本节内容和学生实际,适当引入研究性学习,采用讲练结合方法,通过阅读发现问题,分析探索,合作交流最终形成技能。
使学生在观察、思考、交流中体验数学学习的乐趣。
《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。
②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。
③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。
让学生享受学习数学带来的情感体验和成功喜悦。
二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。
教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。
三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。
以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。
以多媒体作为教学辅助手段,加深学生对基本不等式的理解。
四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。
2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。
教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。
2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。
)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。
五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。
普通高中课程标准实验教科书(人教A版数学必修五)§2.1 数列的概念与简单表示方法第2课时数列递推公式的教学设计一.教学内容数是刻画静态下物体的量,按一定顺序排列着的一列数称为数列。
在日常生活中,人们经常遇到需要用有关数列知识来解决的问题。
在数学中,数列是一种特殊的函数,是反映自然规律的基本数学模型。
数列的知识也是学生将来学习高等数学的基础。
由于数列这部分知识与以前所学知识具有较强的联系,特别与函数等知识有密切联系,新教材安排数列在函数之后教学,有利于用函数的观点来认识数列本质,也有利于加深巩固对函数概念的理解。
数列的递推公式这一节,是在前面学习了数列的有关概念后,介绍的另一种确定数列的办法。
本节的许多教学情境来源与生活实际,体现新课标的应用特点,加强学生对数列概念的感性认识。
本节的学习需要学生不断地观察、分析、归纳、猜想,还要综合应用前面知识解决数列中一些问题,培养学生逻辑思维、抽象思维、归纳思维等能力,有助于学生数学能力的提高。
二.教学目标本节课通过对谢宾斯基三角形的分析,让学生体会递推思想,了解从特殊到一般的归纳方法。
具体目标为:1.要求学生了解递推公式是给出数列的一种方法。
2.学生会根据数列的递推公式写出数列的前几项,利用递推思想解决一些实际问题,3.培养学生推理能力,严密的思维习惯,促进个性品质的良好发展。
通过课内外知识的介绍,开阔学生的眼界。
本节课教学重点:利用递推思想求出递推关系。
本节课教学难点:利用递推关系求出数学通项公式。
三.教学情况分析在本节之前,学生已经对函数知识有了一定程度的理解与掌握。
数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。
在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。
函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。
由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。
余弦定理一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。
通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
二、学生学习情况分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。
在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。
总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
三、设计思想新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。
本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。
四、教学目标继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。
通过相关教学知识的联系性,理解事物间的普遍联系性。
五、教学重点与难点教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
教学设计内容要求
实
2 引出第一种均制定理的证明方法。
讲授新课一、均值定理的内容
记笔记第一遍记忆
PPT
逐步显示
3
二、均值定理的变形
推出并逐步
了解
增强理解 2 三、几何法证明
动手实践另一种证明折纸11
爱国主义教
育四、介绍数学家赵爽(三国时期东吴的数学
家)和北京第24届国际数学家大会会标
朗读
进行爱国主
义教育
PPT PPT
展示
2 五、应用举例
学生思考解
答
初步应用PPT展示15
六、小结
再对定理记
学生归纳
PPT展示 2
忆和认知
学习效果评价
评价方式:教学目标制定符合学生实际,教学重点、难点处理得当,内容布局合理,衔接自然,教学方法灵活多样;注重启发引导,电化教学手段运用恰当,PPT手段提高了教学效率,激发了学生学习兴趣,调动学生学习积极性,教学环节安排紧凑合理,与学生思维比较合拍;教态自然,讲练结合,教学效果良好。
本教学设计与以往未使用信息技术教学设计相比的特点300-500字数本教学设计与以往对比,未使用现代信息技术,讲课时比较枯燥无味,抄题浪费时间,学生积极性不太高,吸引不了学生注意力,课容量不太大;本教学设计使用了PPT,对于新课引入,调动学生积极性,培养学生自主学习能力,激发学生学习兴趣起到了很大的促进作用。
通过例题板演,学生互相交流,提高严谨与求实的学习作风,形成锲而不舍的钻研精神和科学态度,自主探究知识发生发展的过程并发现结论,让学生真正体会到学习的快乐、成就感,达到预期的教学效果。
教学反思。
普通高中课程标准实验教科书数学5(人民教育出版社B版)第二章数列陈爱华(北京市育英学校)一、新课标解读数列作为一种特殊的函数,是反映自然规律的基本数学模型。
在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
内容与要求(1)数列的概念和简单表示法通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数。
(2)等差数列、等比数列①通过实例,理解等差数列、等比数列的概念。
②探索并掌握等差数列、等比数列的通项公式与前n项和的公式。
③能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题。
④体会等差数列、等比数列与一次函数、指数函数的关系。
解读(1)教学中,教师应引导学生通过日常生活中的实例,了解数列的概念和几种表示方法,揭示数列是一类特殊函数的本质属性,是反映自然规律的基本数学模型之一。
重视通过具体实例(如教育贷款、购房贷款、人口增长等)使学生理解等差等比数列模型的作用,培养学生从实际问题中抽象出数列模型的能力。
(2)新课标要求在数列的教学中,应保证基本技能的训练,引导学生通过必要的练习,掌握数列中各量之间的关系,但训练要控制难度和复杂程度。
这体现了《课程标准》在内容处理上的一个原则:删减繁琐的计算、人为技巧化难题和过分强调细枝末节的内容。
(3)要学生掌握并能应用等差等比数列有关公式解题,还在能力上要求学生会用归纳、叠加、叠乘、倒序相加、错位相减等方法解决数列综合问题(4)新课标要求教学上要注重数列的实际应用,关注学生对数列模型本质的理解,以及培养运用数列模型解决实际应用问题的能力二、地位与作用数列是高中数学的重要内容之一,其地位作用体现在以下四个方面:(1)数列是一种特殊的函数,它既与函数等知识有密切的联系,又丰富了函数的内容。