结构化学--金属晶体和离子晶体结构
- 格式:ppt
- 大小:9.77 MB
- 文档页数:108
结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。
主要包括s 轨道、p 轨道、d 轨道和 f 轨道。
s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。
112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。
电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。
113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。
包括发射光谱和吸收光谱,可用于分析原子的结构和成分。
12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。
离子键:由正负离子之间的静电引力形成。
金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。
氢键:一种特殊的分子间作用力,比一般的范德华力强。
122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。
常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。
123 分子的极性取决于分子中正负电荷中心是否重合。
极性分子具有偶极矩,非极性分子则没有。
13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。
原子晶体:通过共价键形成,硬度大、熔点高。
分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。
金属晶体:由金属键维系,具有良好的导电性和导热性。
132 晶格结构晶体中原子、离子或分子的排列方式。
常见的晶格有简单立方、体心立方、面心立方等。
133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。
自范性:能够自发地呈现出多面体外形。
固定的熔点:在一定压力下,晶体具有固定的熔点。
21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。
结构化学习题(选编)(兰州大学化学化工学院李炳瑞)习题类型包括:选择答案、填空、概念辨析、查错改正、填表、计算、利用结构化学原理分析问题;内容涵盖整个课程,即量子力学基础、原子结构、分子结构与化学键、晶体结构与点阵、X射线衍射、金属晶体与离子晶体结构、结构分析原理、结构数据采掘与QSAR等;难度包括容易、中等、较难、难4级;能力层次分为了解、理解、综合应用。
传统形式的习题,通常要求学生在课本所学知识范围内即可完成,而且答案是唯一的,即可以给出所谓“标准答案”。
根据21世纪化学演变的要求,我们希望再给学生一些新型的题目,体现开放性、自主性、答案的多样性,即:习题不仅与课本内容有关,而且还需要查阅少量文献才能完成;完成习题更多地需要学生主动思考,而不是完全跟随教师的思路;习题并不一定有唯一的“标准答案”,而可能具有多样性,每一种答案都可能是“参考答案”。
学生接触这类习题,有助于培养学习的主动性,同时认识到实际问题是复杂的,解决问题可能有多钟途径。
但是,这种题目在基础课中不宜多,只要有代表性即可。
以下各章的名称与《结构化学》多媒体版相同,但习题内容并不完全相同。
第一章量子力学基础1.1 选择题(1) 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者(A) 动量相同(B) 动能相同(C) 质量相同(2) 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身,动量算符应是(以一维运动为例)(A) mv (B)(C)(3) 若∫|ψ|2dτ=K,利用下列哪个常数乘ψ可以使之归一化:(A) K (B)K2 (C) 1/(4) 丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是一致的,因为一维势阱中粒子的能量(A) 反比于势阱长度平方(B) 正比于势阱长度(C) 正比于量子数(5) 对于厄米算符, 下面哪种说法是对的(A) 厄米算符中必然不包含虚数(B) 厄米算符的本征值必定是实数(C) 厄米算符的本征函数中必然不包含虚数(6) 对于算符Ĝ的非本征态Ψ(A) 不可能测量其本征值g.(B) 不可能测量其平均值<g>.(C) 本征值与平均值均可测量,且二者相等(7) 将几个非简并的本征函数进行线形组合,结果(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变(C) 仍是原算符的本征函数,但本征值改变1.2 辨析下列概念,注意它们是否有相互联系, 尤其要注意它们之间的区别:(1) 算符的线性与厄米性(2) 本征态与非本征态(3) 本征函数与本征值(4) 本征值与平均值(5) 几率密度与几率(6) 波函数的正交性与归一性(7) 简并态与非简并态1.3 原子光谱和分子光谱的谱线总是存在一定的线宽,而且不可能通过仪器技术的改进来使之无限地变窄. 这种现象是什么原因造成的?1.4 几率波的波长与动量成反比. 如何理解这一点?1.5 细菌的大小为微米量级, 而病毒的大小为纳米量级. 试通过计算粗略估计: 为了观察到病毒, 电子显微镜至少需要多高的加速电压.1.6 将一维无限深势阱中粒子的波函数任取几个, 验证它们都是相互正交的.1.7 厄米算符的非简并本征函数相互正交. 简并本征函数虽不一定正交,但可用数学处理使之正交. 例如,若ψ1与ψ2不正交,可以造出与ψ1正交的新函数ψ’2ψ’=ψ2+cψ12试推导c的表达式(这种方法称为Schmidt正交化方法).1.8 对于一维无限深势阱中粒子的基态, 计算坐标平均值和动量平均值,并解释它们的物理意义.1.9 一维无限深势阱中粒子波函数的节点数目随量子数增加而增加. 试解释: 为什么节点越多, 能量越高. 再想一想: 阱中只有一个粒子, 它是如何不穿越节点而出现在每个节点两侧的?1.10 下列哪些函数是d2/dx2的本征函数: (1) e x (2) e2x (3) 5sin x (4)sin x+cos x (5)x3. 求出本征函数的本征值.1.11 对于三维无限深正方形势阱中粒子, 若三个量子数平方和等于9, 简并度是多少?1.12 利用结构化学原理,分析并回答下列问题:纳米粒子属于介观粒子,有些性质与宏观和微观粒子都有所不同. 不过,借用无限深势阱中粒子模型,对纳米材料中的“量子尺寸效应”还是可以作一些定性解释.例如: 为什么半导体中的窄能隙(<3eV)在纳米颗粒中会变宽, 甚至连纳米Ag也会成为绝缘体?第二章原子结构2.1 选择题(1) 对s、p、d、f 原子轨道进行反演操作,可以看出它们的对称性分别是(A) u, g, u, g (B) g, u, g, u (C) g, g, g, g(2) H原子的电离能为13.6 eV, He+的电离能为(A) 13.6 eV (B) 54.4eV (C) 27.2 eV(3) 原子的轨道角动量绝对值为(A) l(l+1)2(B)(C) l(4) p2组态的原子光谱项为(A) 1D、3P、1S(B) 3D、1P、3S(C) 3D、3P、1D(5) Hund规则适用于下列哪种情况(A) 求出激发组态下的能量最低谱项(B) 求出基组态下的基谱项(C) 在基组态下为谱项的能量排序(6) 配位化合物中d→d跃迁一般都很弱,因为这种跃迁属于:(A) g←/→g(B)g←→u(C) u←/→u(7) Cl原子基态的光谱项为2P,其能量最低的光谱支项为(A) 2P3/2 (B) 2P1/2(C) 2P02.2 辨析下列概念,注意它们的相互联系和区别:(1) 复波函数与实波函数(2) 轨道与电子云(3) 轨道的位相与电荷的正负(4) 径向密度函数与径向分布函数(5)原子轨道的角度分布图与界面图(6)空间波函数、自旋波函数与自旋-轨道(7)自旋-轨道与Slater行列式(8)组态与状态2.3 请找出下列叙述中可能包含着的错误,并加以改正:原子轨道(AO)是原子中的单电子波函数,它描述了电子运动的确切轨迹. 原子轨道的正、负号分别代表正、负电荷. 原子轨道的绝对值平方就是化学中广为使用的“电子云”概念,即几率密度. 若将原子轨道乘以任意常数C,电子在每一点出现的可能性就增大到原来的C2倍.2.4(1) 计算节面对应的θ;(2) 计算极大值对应的θ;(3) 在yz平面上画出波函数角度分布图的剖面, 绕z轴旋转一周即成波函数角度分布图. 对照下列所示的轨道界面图, 从物理意义和图形特征来说明二者的相似与相异.2.5 氢原子基态的波函数为试计算1/r的平均值,进而计算势能平均值<V>, 验证下列关系:<V> = 2E= -2<T>此即量子力学维里定理,适用于库仑作用下达到平衡的粒子体系 (氢原子基态只有一个1s电子,其能量等于体系的能量) 的定态, 对单电子原子和多电子原子具有相同的形式.2.6 R. Mulliken用原子中电子的电离能与电子亲合能的平均值来定义元素电负性. 试从原子中电子最高占有轨道(HOMO)和最低空轨道(LUMO)的角度想一想,这种定义有什么道理?2.7 原子中电子的电离能与电子亲合能之差值的一半, 可以作为元素化学硬度的一种量度(硬度较大的原子,其极化率较低). 根据这种定义,化学硬度较大的原子,其HOMO与LUMO之间的能隙应当较大还是较小?2.8 将2p+1与2p-1线性组合得到的2p x与2p y, 是否还有确定的能量和轨道角动量z分量?为什么?2.9 原子的轨道角动量为什么永远不会与外磁场方向z重合, 而是形成一定大小的夹角? 计算f轨道与z轴的所有可能的夹角. 为什么每种夹角对应于一个锥面, 而不是一个确定的方向?2.10 快速求出P原子的基谱项.2.11 Ni2+的电子组态为d8, 试用M L表方法写出它的所有谱项, 并确定基谱项.原子光谱表明, 除基谱项外, 其余谱项的能级顺序是1D<3P<1G<1S, 你是否能用Hund规则预料到这个结果?2.12 d n组态产生的谱项, 其宇称与电子数n无关, 而p n组态产生的谱项, 其宇称与电子数n有关. 为什么?2.13 试写出闭壳层原子Be的Slater行列式.2.14 Pauli原理适用于玻色子和费米子, 为什么说Pauli不相容原理只适用于费米子?第三章双原子分子结构与化学键理论3.1 选择题(1) 用线性变分法求出的分子基态能量比起基态真实能量,只可能(A) 更高或相等(B) 更低(C) 相等(2) N2、O2、F2的键长递增是因为(A) 核外电子数依次减少(B) 键级依次增大(C) 净成键电子数依次减少(3) 下列哪一条属于所谓的“成键三原则”之一:(A) 原子半径相似(B) 对称性匹配(C) 电负性相似(4) 下列哪种说法是正确的(A) 原子轨道只能以同号重叠组成分子轨道(B) 原子轨道以异号重叠组成非键分子轨道(C) 原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道(5) 氧的O2+ , O2, O2- , O22-对应于下列哪种键级顺序(A) 2.5, 2.0, 1.5, 1.0(B) 1.0, 1.5, 2.0, 2.5(C) 2.5, 1.5, 1.0 2.0(6) 下列哪些分子或分子离子具有顺磁性(A) O2、NO (B) N2、F 2(C) O22+、NO+(7) B2和C2中的共价键分别是(A)π1+π1,π+π(B)π+π,π1+π1(C)σ+π,σ3.2 MO与VB理论在解释共价键的饱和性和方向性上都取得了很大的成功, 但两种理论各有特色. 试指出它们各自的要点 (若将两种理论各自作一些改进, 其结果会彼此接近).3.3 考察共价键的形成时, 为什么先考虑原子轨道形成分子轨道, 再填充电子形成分子轨道上的电子云, 而不直接用原子轨道上的电子云叠加来形成分子轨道上的电子云?3.4 “成键轨道的对称性总是g, 反键轨道的对称性总是u”. 这种说法对不对? 为什么?3.5 一般地说, π键要比σ键弱一些. 但在任何情况下都是如此吗? 请举实例来说明.3.6 N2作为配位体形成配合物时, 通常以2σg电子对去进行端基配位(即N ≡N→), 而不以1πu电子对去进行侧基配位。
结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及结构与性能之间关系的学科。
它是化学领域的重要基础,对于理解化学反应、物质的性质和材料科学等方面具有关键作用。
以下是对结构化学一些重要知识点的汇总。
一、原子结构原子由原子核和核外电子组成。
原子核包含质子和中子,质子数决定了原子的元素种类。
电子在原子核外的分布遵循一定的规律。
玻尔模型提出了电子在特定轨道上运动,但其存在局限性。
量子力学的发展给出了更精确的描述,电子的运动状态用波函数来表示。
电子具有四个量子数:主量子数(n)决定电子所在的能层;角量子数(l)决定电子亚层;磁量子数(m)决定电子在亚层中的轨道取向;自旋量子数(ms)表示电子的自旋方向。
原子轨道是电子在核外空间出现概率密度分布的形象化描述。
s 轨道呈球形,p 轨道呈哑铃形。
电子填充原子轨道遵循能量最低原理、泡利不相容原理和洪特规则。
二、分子结构分子的化学键包括共价键、离子键和金属键。
共价键的形成是原子间通过共用电子对达到稳定结构。
价键理论认为共价键的形成是原子轨道重叠的结果。
杂化轨道理论解释了分子的空间构型,如 sp、sp2、sp3 杂化等。
价层电子对互斥理论可以预测分子的几何构型。
分子的极性取决于分子的正负电荷中心是否重合。
分子间作用力包括范德华力和氢键。
范德华力包括取向力、诱导力和色散力,它们对物质的物理性质有重要影响。
氢键的存在会使物质的熔点、沸点升高。
三、晶体结构晶体具有规则的几何外形和固定的熔点。
晶体分为离子晶体、原子晶体、分子晶体和金属晶体。
离子晶体由阴阳离子通过离子键结合而成,具有较高的熔点和硬度。
原子晶体中原子通过共价键形成空间网状结构,如金刚石。
分子晶体中分子间通过范德华力或氢键结合,熔点和硬度较低。
金属晶体由金属阳离子和自由电子通过金属键结合,具有良好的导电性和导热性。
晶体的空间点阵结构用晶胞来描述,通过晶胞参数可以计算晶体的密度等性质。
四、化学键的性质键能是指断开化学键所需的能量,键能越大,化学键越稳定。
《结构化学》教学大纲课程简介:结构化学是现代物理化学学科的重要分支,是在原子、分子水平上讨论物质的性质与几何结构和电子结构之间的关系。
在电子结构上,从量子力学规律出发,推演出一般微观粒子的运动规律、原子和分子中电子的运动状态以及化学键的本质;在几何结构上,通过数学群论等工具,对分子的结构进行分析,探讨分子空间几何结构与性质的关系;基于X衍射等技术,对晶体的微观几何结构进行研究,阐明晶体性质与内部周期性结构的关系。
教学对象:化学学院化学、材料和分子工程专业二年级同学预备知识:无机化学、有机化学基础知识教学目的:《结构化学》课程是化学学院本科生重要的基础理论课,在化学课程结构中具有重要的地位,同时是本科阶段接触的第一门理论课程。
在此以前,化学学科给同学的印象主要是实验科学,因而《结构化学》课程对更新同学们的观念极为重要。
在本课程的学习中,不仅让学生通过学习掌握结构化学的基本知识,而且要求学生能深刻理解“性质反映结构,结构决定性质”这一基本原理,使学生从更高水平上理解各种化学的现象。
课程内容及学时分配:1.量子力学基础(9课时)1-1 微观粒子的运动特征1-2 量子力学基本假设1-3 势箱中运动的粒子2.原子的结构和性质(9课时)2-1 氢原子及类氢离子的Schrödinger方程及其解2-2 量子数的物理意义2-3 波函数及电子云图形2-4 多电子原子结构2-5 电子的自旋2-6 原子光谱项3.分子结构(20课时, 其中讲授教授18课堂, 1次模型实习2课时)3-1氢分子离子结构3-2分子轨道理论3-3双原子分子结构3-4共轭体系和休克尔分子轨道理论3-5分子对称性4.晶体结构(23课时, 其中讲授教授15课堂, 4次模型实习8课时)4-1 晶体的点阵结构和晶体的性质4-2 晶体结构的对称性4-3 金属晶体结构4-4 离子晶体结构4-5 其它键型的晶体结构4-6 晶体的X射线衍射—晶体结构分析原理。
高中化学选修三第三章晶体结构与性质一、晶体常识1、晶体与非晶体比较自范性:晶体的适宜的条件下能自发的呈现封闭的,规则的多面体外形。
对称性:晶面、顶点、晶棱等有规律的重复各向异性:沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,因此导致的在不同方向的物理化学特性也不尽相同。
2、获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3、晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4、晶胞中微粒数的计算方法——均摊法某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学常见的晶胞为立方晶胞。
立方晶胞中微粒数的计算方法如下:①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2④晶胞内部粒子为1个晶胞独自占有,即为1注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。
二、构成物质的四种晶体1、四种晶体的比较(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。
如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
晶格能:1mol气态阳离子和1mol气态阴离子结合生成1mol离子晶体释放出的能量。
(4)分子晶体①分子间作用力越大,物质熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及结构与性能之间关系的学科。
它为我们理解物质的性质和化学反应提供了基础。
以下是对结构化学中一些重要知识点的汇总。
一、原子结构1、玻尔模型玻尔提出了原子的行星模型,认为电子在特定的轨道上绕核运动,轨道具有固定的能量。
2、量子力学模型薛定谔方程是描述微观粒子运动状态的基本方程。
电子具有波动性和粒子性,其运动状态用波函数来描述。
3、原子轨道原子轨道是波函数的数学表达式,常见的有 s、p、d、f 轨道。
4、电子排布遵循能量最低原理、泡利不相容原理和洪特规则,电子依次填充不同的原子轨道。
二、分子结构1、价键理论认为原子通过共用电子对形成共价键,包括σ 键和π 键。
2、杂化轨道理论原子在形成分子时,轨道会杂化,形成等性杂化和不等性杂化。
3、价层电子对互斥理论用于预测分子的几何构型,根据中心原子的价层电子对数和孤电子对数来判断。
4、分子轨道理论将分子看作一个整体,电子在分子轨道中运动,分子轨道有成键轨道和反键轨道。
三、化学键1、离子键由正负离子之间的静电引力形成,通常在金属和非金属元素之间形成。
2、共价键原子间通过共用电子对形成,具有方向性和饱和性。
3、金属键金属原子通过自由电子形成的化学键,具有良好的导电性和导热性。
4、氢键一种特殊的分子间作用力,比范德华力强,但比化学键弱。
四、晶体结构1、晶体的分类根据晶体中粒子的排列方式,可分为离子晶体、原子晶体、分子晶体和金属晶体。
2、晶胞晶体的基本重复单元,通过晶胞可以研究晶体的结构和性质。
3、晶体的堆积方式如金属晶体的面心立方堆积、体心立方堆积等。
4、晶体的缺陷包括点缺陷、线缺陷和面缺陷,对晶体的性能有重要影响。
五、结构与性能的关系1、熔点和沸点与晶体类型和化学键的强度有关。
2、硬度和强度与晶体的结构和化学键的类型有关。
3、导电性和导热性金属晶体具有良好的导电性和导热性,而离子晶体在熔融或溶液状态下导电。
4、光学性质晶体的结构会影响其对光的折射、反射和吸收。
齐鲁师范学院齐鲁师范学院结构 化学第九章 晶体结构§9.0 晶体的通性 §9.1 晶体的周期性-点阵结构 §9.2 晶面指标 §9.3 晶体的对称性 §9.4 圆球的堆积 §9.5 典型的晶体结构1结构 化学§9.0 晶体的通性一、晶体由原子、分子、离子等微粒在空间按一定规则进 行周期性排列所构成的固体物质。
晶体的分布非常广泛,自然界的固体物质(尤其是无机物) 绝大多数是晶体,气体、液体和非晶物质在一定条件下也可以 转变成晶体。
非晶是固体的另一种状态,如玻璃、松香和明胶等物质,它 们内部的微粒没有周期性排列特征,可以视为是“过冷液体”, 们内部的微粒没有周期性排列特征,可以视为是“过冷液体” 称为玻璃体或非晶态物质。
晶体物质内部的周期性排列,使得它们具有一些特殊性质。
2齐鲁师范学院齐鲁师范学院结构 化学二、晶体的共同特点 、晶体的共同特点(1)均匀性 一块晶体内部各个部分的宏观性质是相同的。
结构 化学(2)各向异性同一块晶体在不同方向上会具有不同的物理性质。
例如,电导率、热膨胀系数、折光率以及机械强度 等性质,会因方向不同而数值不同。
这是由于晶体内 部的周期性排列,造成了不同方向上原子或分子的排 列情况各不相同。
非晶体没有各向异性的特征。
例如密度、化学组成等,这些性质都是均匀的。
虽然晶体内部具有微粒排列的周期性变化,但是宏 观观察分辨不出这种微观的不连续性。
所以晶体具 有宏观均匀性。
玻璃体也具有宏观均匀性,但这种均匀性源自于 原子、分子无序排列的统计结果。
34齐鲁师范学院齐鲁师范学院结构 化学(3)自范性 晶体在生长过程中会自发地形成规范的凸多面体 外形。
自范性源自于周期性排列。
并且具有如下规律。
晶面数 + 顶点数 = 晶棱数 + 2结构 化学(4)有明显的熔点(5)有对称性结构(6)可以使 X-射线发生衍射 非晶体没有自范性。