第七章 函数(1)
- 格式:ppt
- 大小:542.50 KB
- 文档页数:56
成长快乐教育学科教师辅导教案学员姓名: 年 级: 高三 课 时 数:班 主 任: 辅导科目: 数学 学科教师: BeMaris 授课主题 函数(一)函数的定义教学目标1、掌握从集合论、映射的角度对函数的定义;2、掌握基本初等函数的分类、考点、要点;教学内容函数的定义在某一个变化过程中有两个变量x 和y ,对于x 每一个确定的值,y 都有唯一确定的值与它对应,则y 与x 有函数关系,一般用()x f y =表示,其中x 叫做自变量,y 叫做因变量.自变量x 的取值范围称为函数()x f y =的定义域,简写D .(这是一个集合!) 因变量y 的取值范围称为函数()x f y =的值域,简写C .(这是一个集合!)问题1:我们学过了用列举法、描述法和韦恩图法来表示一个集合,请判断下列各组集合中的元素是否性质相同?(1){}Φ、{}{}Φ、{}Q C R(2)()⎭⎬⎫⎩⎨⎧==⋅→→→→0,10||ββαα,、()()(){}00,1,,=⋅y x y x(3)如果从集合论、映射的角度去定义函数,那么就应该是:一般地,给定非空数集A 、B ,按照某个对应法则f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数,记作()A x x f y x ∈=→,.集合A 叫做函数的定义域,记为D .(A D =!)集合(){}A x x f y y ∈=,|叫做函数的值域,记为C .(B C ⊆,也就是说C 是B 的子集,不一定有B C =) 如果定义域D 与值域C 都限定为非空数集(我们一直在学这个),那么可以用图1.1来描述一个函数:图1.1 函数的定义请熟悉这个图片,我们将在第二节课复合函数中还会用到它.在图1.1中,有几个有趣的地方:1.定义域D 与值域C 在数轴上一般用区间的形式来表示,比如闭区间[]1,0、半开半闭区间[)1,0、(]1,0,全开区间()1,∞-、()∞+,0.但有些特殊的情况下,定义域D 与值域C 并不能用区间的形式表达.比如数列{}n a 的通项公式是12-=n a n ,在这里可以将n 看作是自变量,定义域是正整数,在数轴上是离散的点集;可以将n a 看作是因变量,值域是大于0的奇数,在数轴上也是离散的点集.在这个函数中,定义域与值域均不能用区间的形式表达.函数*∈-=N n n a n ,12在直角坐标系中的图像如图1.2所示:图1.2 任意一个数列的通项公式都可以看作是一个函数关系2.如果更极端一点,假设定义域D 中仅包括一个数字,比如1,值域C 中仅包括一个数字,比如2,那么用图1.1形式描述这个函数如下:图1.3 一个极端的例子 ⎩⎨⎧==21y x 是一个函数在直角坐标系中,这个函数的图像就是一个点:图1.4 函数的图像还可以是一个点3.我们继续往前走,如果去掉定义域D 与值域C 都是非空数集的限制,那么有些函数关系就很难用图像来表示,生活中有很多这样的例子.集合{}是复旦大学的一名学生a a A |= 集合{}是复旦大学的学生编号b b B |=无论你将集合A 当作定义域、集合B 当作值域,或者你将集合B 当作定义域、集合A 当作值域,都可以得到一个函数关系,不过你却很难用图像来描述你得到的函数关系.我们说很难描述,并不意味着就没有办法了.在大学阶段,有一门专业课叫做“数学建模”,请你在互联网上查询一下数学建模这方面的资料,然后写一篇你对它的认识,字数要求不低于300字,在第二次课前请交给班主任.问题2:函数()()02≠++=a c bx ax x f 图像关于任意直线l 对称后的图像仍然为某函数的图像,那么实数a 、b 和c 应满足的充要条件是什么?解析:在函数()()02≠++=a c bx ax x f 上任意取两点()11,y x A 、()22y x B ,,其中21x x ≠,由于对称轴l 是任意的,不妨假定l 过B 点,那么一定存在这样的一条对称轴l 使得将A 点翻折后正好落在B 点的正上方或者正下方.如图所示.那么我们能够得出结论:如果()x f 图像上有两个不重合的点,那么一定能找到一条直线l ,将()x f 图像沿着l 对称后,得到的图像不再是函数的图像.因此,()()02≠++=a c bx ax x f 的图像只能是一个点,即()002≠≥++a c bx ax 只有一个解,则0402=-<ac b a 且,这就是答案.附录——基本初等函数一、幂函数:()为常数a xy a=考点要点:1.二次函数及二次不等式 2.根式的核心及常见处理方法 3.分式的核心及常见处理方法 4.穿针引线法解高次方程5.圆锥曲线的一部分可以看出是一个函数的图像二、指数函数:()10≠>=a a ay x且对数函数:()10log ≠>=a a x y a 且 考点要点:1.原函数与反函数 2.指数函数图像 3.对数函数图像三、三角函数:x y sin =、x y cos =、x y tan =;x acr y sin =、x y arccos =、x y arctan =. 考点要点:1.函数的性态 2.三角比定义 3.三角比恒等式 4.三角函数图像。
苏教版九年级数学第七章三角函数知识点梳理一、锐角三角函数的意义:(1)一个锐角的正弦、余弦、正切就叫做这个角的三角函数。
①锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA 。
(即直角三角形中两条直角边的比)②锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。
(即直角三角形中锐角A 所对的直角边与斜边的比) ③锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA 。
(即直角三角形中锐角A 相邻的直角边与斜边的比) (2)如图,在△ABC 中,∠c=900二、锐角三角函数之间的关系:(1)等角(锐角)的三角函数之间的关系:如果几个锐角相等,则其三角函数值对应相等;反之,如果几个锐角的三角函数值对应相等,则这几个锐角相等。
即锐角的三角函数值只与角的度数有关; 若度数相等,则其三角函数值则对应相等。
边A的对边sinA 斜∠=斜边A的邻边cosA ∠=边A 边A的tanA 的邻对∠∠=(2)同一个锐角的三角函数之间的关系 ①sin²A+cos²A=1(即同一个锐角的正弦值和余弦值的平方和为1。
)② (即同一个锐角的正切值=这个角的正弦值与该角余弦值的商。
) (3)互余两锐角之间的三角函数之间的关系①若∠A 与∠B 互为余角,则sin A= cos (90︒- A )= cosB②若∠A 与∠B 互为余角,则tan A ×tan (90︒- A )= 1即tan A ×tanB = 1即:若∠A 与∠B 互为余角,则①∠A 的正弦值=∠B 的余弦值;∠A 的余弦值=∠B 的正弦值。
②∠A 的正切值与∠B 的正切值互为倒数。
三、锐角三角函数值的变化规律(或增减性)①当角度在0---90之间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小)。
②当角度在0---90之间变化时,余弦值随着角度的增大(或减小)而减小(或增大)。
四、特殊角的三角函数cosAsinAtanA =五、解直角三角形(1)意义:由直角三角形中的已知元素(除直角外),求出所有未知元素的过程,叫做解直角三角形。
第3课时任意角的三角函数(1)一、学习目标1.掌握任意角的正弦、余弦、正切的定义.2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号.二、问题导引预习教材P166——170的内容,思考下面的问题.在前面的学习中,我们在初中角的基础上将角的概念进行了推广,得到了任意角的概念,另外,还学习了角的另一种度量方法——弧度制.在初中学习了锐角后,我们研究了锐角的三角函数,现在,学习了任意角,那么我们能研究任意角的三角函数吗?如果能,又该如何研究呢?能通过锐角的三角函数来研究任意角的三角函数吗?三、即时体验1.填表:角正弦余弦正切2.已知角α的终边过点P(-3, 4),则sinα=, cosα=, tanα=.3.角-1328°的正弦值、余弦值、正切值的符号分别是、、.四、导学过程类型1由角的终边上的点求三角函数值【例1】已知角α的终边经过点P(2, -5),求α的正弦值、余弦值、正切值.类型2三角函数值的符号的判定【例2】确定下列三角函数值的符号:(1) cos; (2) sin(-565°); (3) tan.类型3由三角函数值求角的终边上的点的坐标【例3】已知角θ的顶点为坐标原点,始边为x轴的正半轴,若P(4, y)是角θ终边上一点, 且sinθ=-,求y的值.五、课堂练习1. (多选)若sinθcosθ<0,则角θ的终边在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若<θ<π,则点P(cosθ, sinθ)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知角α的终边经过点P(5, 12),则sinα+cosα=.4. sin1 cos2 tan3值的符号是.5.已知角α的终边经过点P(5t, 12t)(t≠0),求sinα+cosα的值.六、课后作业1. 若-<θ<-π,则点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若角α的终边过点P(2sin30°, -2cos30°),则sinα的值等于 ()A. B. - C. - D. -3.若sinαcosα>0, cosαtanα<0,则角α的终边落在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. (多选)已知θ是第二象限角,则下列判断中正确的是()A. sin cos>0B. sin<0C. cos<0D. tan>05.已知角α的终边经过点P,则sinα=, tanα=.6. sin cos tan的值的符号是(填“正”或“负”).7. 已知角α的终边落在射线y=2x(x≥0)上,那么sinα·cosα=.8.设是第一象限角,且|cosα|=-cosα,则α可能是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. (多选)函数y=++的可能取值为()A. -3B. -1C. 1D. 310.已知角θ的终边过点P(x, 3)(x≠0),且cosθ=x,那么tanθ=.11.若角α的终边过点P(-4m, 3m)(m≠0),求2sinα+cosα的值.12.已知角α的终边在直线y=kx上,若sinα=-,且cosα<0,试求k的值.13.已知角α的终边上一点P到x轴、y轴的距离之比为4∶3,且cosα<0,求cosα-sinα的值.。
第七章 §1 样条函数及其基本性质1.产生样条函数的原因?多项式逼近→分段多项式逼近→样条逼近,多项式逼近简单易行,局部性好,但高次多项式逼近会产生龙格现象,另外高次多项式零点很多导致函数震荡剧烈,不适合逼近平滑的函数;分段多项式逼近只保证了各分段之间的连续性,连接处左、右导数存在,但不相等,函数不光滑,不能满足精密机械设计;样条函数是一种各相邻段上的多项式之间具有某种连接性质的特殊的分段多项式,它既有低次多项式的简单性,又有相当的光滑性和灵活适应性,还避免了高次多项式插值的不稳定性,是函数逼近的重要工具。
2.样条函数的定义和构造 (1)定义设给定一组结点011N N x x x x +-∞=<<<<=∞又设分段函数()S x 满足条件:1 在每个区间1[,]j j x x +上()S x 是一个次数不超过n 的实系数代数多项式;(分段多项式)2 ()S x 于[,]-∞∞上具有一直到1n -阶的连续导数;(由于每个子区间为n 次多项式,故在各分段上已经具有1n -阶的连续导数,故需要在连接点处满足1n -阶的连续导数,样条函数构造的出发点) 则称()y S x =为n 次样条函数,12(,)n N S x x x 表示以点i x 称为样条结点的n 次样条函数.对于21n -次样条函数()y S x =如果在区间1(,]x -∞和[,)N x ∞上的表达式都是1n -次多项式,则特别称之为21n -次的自然样条函数,记作2112(,)n N N x x x -.(2)构造(见教材) 任一12()(,,)n N S x S x x x ∈均可唯一记为1()()()()Nn n j j j S x p x c x x x +==+--∞<<∞∑,函数系211,,,,(),()n n n N x x x x x x x ++--为构成样条函数12(,,)n N S x x x 的一组基底,任一2112()(,,)n N S x N x x x -∈记为2111()()()()Nn n j j j S x p x c x x x --+==+--∞<<∞∑,为了保证在[,)N x ∞上是一个1n -次多项式(定理3),则系数必须满足约束条件10(0,1,,1)Nkj jj c xk n ===-∑。
第七章函数练习题(1)一、选择题1. 一个完整的C源程序是【】。
A)要由一个主函数或一个以上的非主函数构成B)由一个且仅由一个主函数和零个以上的非主函数构成C)要由一个主函数和一个以上的非主函数构成D)由一个且只有一个主函数或多个非主函数构成2. 以下关于函数的叙述中正确的是【】。
A)C语言程序将从源程序中第一个函数开始执行B)可以在程序中由用户指定任意一个函数作为主函数,程序将从此开始执行C)C语言规定必须用main作为主函数名,程序将从此开始执行,在此结束D)main可作为用户标识符,用以定义任意一个函数3. 以下关于函数的叙述中不正确的是【】。
A)C程序是函数的集合,包括标准库函数和用户自定义函数B)在C语言程序中,被调用的函数必须在main函数中定义C)在C语言程序中,函数的定义不能嵌套D)在C语言程序中,函数的调用可以嵌套4. 在一个C程序中,【】。
A)main函数必须出现在所有函数之前B)main函数可以在任何地方出现C)main函数必须出现在所有函数之后D)main函数必须出现在固定位置5. 若在C语言中未说明函数的类型,则系统默认该函数的数据类型是【】A)float B)longC)int D)double6. 以下关于函数叙述中,错误的是【】。
A)函数未被调用时,系统将不为形参分配内存单元B)实参与形参的个数应相等,且实参与形参的类型必须对应一致C)当形参是变量时,实参可以是常量、变量或表达式D)形参可以是常量、变量或表达式7. 若函数调用时参数为基本数据类型的变量,以下叙述正确的是【】。
A)实参与其对应的形参共占存储单元B)只有当实参与其对应的形参同名时才共占存储单元C)实参与对应的形参分别占用不同的存储单元D)实参将数据传递给形参后,立即释放原先占用的存储单元9. 函数调用时,当实参和形参都是简单变量时,他们之间数据传递的过程是【】。
A)实参将其地址传递给形参,并释放原先占用的存储单元B)实参将其地址传递给形参,调用结束时形参再将其地址回传给实参C)实参将其值传递给形参,调用结束时形参再将其值回传给实参D)实参将其值传递给形参,调用结束时形参并不将其值回传给实参10. 若函数调用时的实参为变量时,以下关于函数形参和实参的叙述中正确的是【】。
九年级下数学三角函数教学案班级 姓名:课 题 7.5解直角三角形学 习 目 标 使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形. 重 点 直角三角形的解法.难 点三角函数在解直角三角形中的灵活运用.教学流程随笔栏一、探究活动:1.如图,在Rt △ABC 中,∠ACB =90°,其余5个元素之间有以下关系(1)两锐角互余∠A +∠B = .(2)三边满足勾股定理a 2+b 2= .(3)边与角关系sinA = =a c ,cosA =sinB =bc,tanA = ,a= = , b= = .二、典例研究:例1. 由下列条件解直角三角形:在Rt △ABC 中,∠C=90°: (1)已知BC=5,∠A=30°,求AC 、AB 的长,tanA 的值.(2) 已知AC+CB=12,tanB=1,求三边的长,sinB 的值.三、课堂反馈:1.在下列直角三角形中不能求解的是( )A.已知一直角边一锐角B.已知一斜边一锐角C.已知两边D.已知两角 2.由下列条件解题:在Rt △ABC 中,∠C=90°: (1)已知AC=10,sinB=23,求BC ,AB .(2)已知AB=20,cosA=21,求BC ,tanB .bac3.等腰三角形的底边长20 cm ,面积为33100cm 2,求它顶角和底角的度数.4.Rt △ABC 中,∠C =90°,AC =8,∠CAB 的平分线AD =3316, 求∠B 的度数以及边BC 、AB 的长.四、拓展提高:在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是△ABC ,其中AB=AC ,∠BAC=120°,在点A 处有一束红外光线AP ,从AB 开始,绕点A 逆时针匀速旋转,每秒钟旋转15°,到达AC 后立即以相同旋转速度返回AB ,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP 交BC 边于点M ,BM 的长为(320-20)cm .(1)求AB 的长;(2)从AB 处旋转开始计时,若旋转6秒,此时光线AP 与BC 边的交点在什么位置?若旋转2020秒,交点又在什么位置?请说明理由.五、课堂小结: 课堂反思九年级下数学三角函数教学案班级姓名:课题7.6锐角三角函数的简单应用(1)学习目标1.会把现实生活中较简单的实际问题转化为直角三角形的问题;2.在解决实际问题的过程中进一步体会三角函数的意义.重点把现实生活中较简单的实际问题转化为直角三角形的问题.难点把现实生活中较简单的实际问题转化为直角三角形的问题.教学流程随笔栏一、探索研究1.如图1,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 m2.如图3,AB是伸缩性遮阳棚,CD是窗户,要想夏至正午时的阳光刚好不能射入窗户,则AB的长度是米.(假如夏至正午时的阳光与地平面的夹角是600)二、典例研究:例1.如图,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5m,风筝飞到C处时的线长BC为30m,这时测得∠CBD=75º.求此时风筝离地面的高度.(精确到0.1m,参考数据sin75°≈0.97,cos75°≈0.26,tan75°≈3.7)例2.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果保留根号)三、课堂反馈2.1.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB 的支撑点O到地面的高度OH.(用含α,β的式子表示)四、拓展延伸身高1.65米的小明在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,小明位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,小明与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.(1)求风筝距地面的高度GF;(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若小明充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、我的收获课堂反思:九年级下数学三角函数教学案班级 姓名:课题 7.6锐角三角函数的简单应用(2)学 习目 标3.能把现实生活中较复杂的实际问题(仰角、俯角、方位角)转化为直角三角形的问题;4.体会“化斜为直”的思想 .重点 在解决实际问题的过程中,进一步体会三角函数的意义. 难点 在解决实际问题的过程中,进一步体会三角函数的意义.教学流程 随笔栏一、探索研究 1.当从高处测量低处的目标时,视线与水平线之间的夹角叫做 角, 2.当从低处测量高处的目标时,视线与水平线之间的夹角叫做 角. 如图,∠1叫做 角,∠2叫做 角.3.如图,为了测量电线杆的高度AB ,在离电线杆21米的C 处,用1米的测角仪CD 测得电线杆顶端B 的仰角a =30°.在图中标出仰角a ,并求电线杆AB 的高度.(结果保留根号)二、典例研究:例1.某校九年级数学兴趣小组为测量校内旗杆高度,如图,在C 点测得旗杆顶端A 的仰角为30°,向前走了6米到达D 点,在D 点测得旗杆顶端A 的仰角为60°(测角器的高度不计). (1)AD =_______米; (2)求旗杆AB 的高度.(3≈1.73)例2.如图,小山顶上有一信号塔AB ,山坡BC 的倾角为30°,现为了测量塔高AB ,测量人员选择山脚C 处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E 处,再测得塔顶仰角为60°,求塔高AB (结果保留整数,3≈1.73,2≈1.41)30°60° A 6米 D C B铅垂线水平线视线视线21三、课堂反馈1.如图,人们从O处的某海防哨所发现,在它的北偏东60°方向相距600米的A处有一艘快艇正向正南方向航行,经过若干时间快艇到达哨所东南方向的B处,则A、B 之间的距离是米.2.某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).四、拓展延伸在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距83km的C处.(1)求该轮船航行的速度(结果保留根号);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.五、我的收获课堂反思:NM东北BCAl九年级下数学三角函数教学案班级 姓名:课题 7.6锐角三角函数的简单应用(3) 学 习 目 标 5.能把现实生活中较复杂的实际问题(坡度、坡角)转化为直角三角形问题; 6.体会“化斜为直”的思想. 重点 在解决实际问题的过程中,进一步体会三角函数的意义. 难点 在解决实际问题的过程中,进一步体会三角函数的意义.教学流程 随笔栏一、探索研究 一张水库拦水坝的横断面的设计图如图所示,坡面的垂直高度与水平宽度的比叫 做 (或 ),记作i ,即i = ,坡度通常用l ︰m 的形式,从三角 函数的概念可以知道,坡度与坡角之间的关系是 .1.一坡面的坡角为600,则坡度i= .2..小明沿着坡角为20°的斜坡向上前进80m, 则他上升的高度是 ( ) A .080m cos 20 B .080m sin 20C .80sin200mD .80cos200m 3.如图是一个拦水大坝的横断面图,AD ∥BC, .斜坡AB=10m,大坝高为8m,(1)则斜坡AB 的坡度i AB = .(2)如果坡度i AB =1︰3,则坡角∠B= .(3)如果坡度i AB =1︰2,AB=8m ,则大坝高度为___m. 二、典例研究:例1.如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.例2.如图1,某超市从一楼到二楼的电梯AB 的长为16.50米,坡角∠BAC 为32°. (1)求一楼与二楼之间的高度BC (精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249.A B CD三、课堂反馈1. 小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( ) A .5200m B .500m C .3500m D .1000m2.如图,一水库迎水坡AB 的坡度1i =︰3,则该坡的坡角α= .3. 如图,在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东60°方向,船P 在船B 的北偏西45°方向,AP 的距离为30海里.(1)求船P 到海岸线MN 的距离;(2)若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.四、拓展延伸如图,已知斜坡AB 长60米,坡角(即∠BAC )为30°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请将下面2小题的结果都精确到0.1米,参考数据:(3≈1.732)(1)若修建的斜坡BE 的坡角(即∠BEF )不大于45°,则平台DE 的长最多为 米; (2)一座建筑物GH 距离坡角A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM )为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG ⊥CG ,问建筑物GH 高为多少米?五、我的收获 课堂反思:九年级下数学三角函数教学案班级姓名:课题锐角三角函数复习(1)学习目标回顾三角函数定义、理清锐角三角函数边角关系、求(特殊)三角函数值.重点理清锐角三角函数边角关系、求(特殊)三角函数值.难点理清锐角三角函数边角关系、求(特殊)三角函数值.教学流程随笔栏例题1:在△ABC中,∠C=90°,求三角函数值:sinA= sinB=cosA= CosB=tanA= tanB=例题2:如图,在△ABC中,∠C=90°, ∠B=30°,AC=3,求AB、BC的值.变式:如上图,在△ABC中,∠C=90°, ∠A=60°,AB=8,求AC、BC的值.例题3:如图,在△ABC中,∠B=90°, cosA=54,AB=8,求AC、BC的值.变式:如图,在△ABC中,∠B=90°, sinA =135,AB=24,求AC、BC的值.例题4:如图,在△ABC中,∠C=90°, ∠B=45°,AB=36,求AC的值.BACAB C例题5:如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=43,求sinC 的值.例题6:如图,在△ABC 中,已知∠B=40°,BC=12,AB=10,能否求出AC ?如果能,请求出AC 的长度?(参考数据:sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)例题7:如图,在△ABC 中,AB=AC=10,sinC=53,点D 是BC 上一点,且DC=AC . (1)求BD 的长; (2)求tan ∠BAD . 课堂反思九年级下数学三角函数教学案班级姓名:课题三角函数复习(2)学习目标三角函数的简单运用.重点三角函数的简单运用.难点三角函数的简单运用.教学流程随笔栏例1.在离地面高6米处的拉线固定一烟囱BC,拉线与地面成60°角,求拉线AC的长.例2.太阳光与地面成42.5°的角,一树的影长10米,求树高.(精确到0.1米)已知:sin42.5°≈0.68,cos42.5°≈0.74,tan42.5°≈0.92.例3.如图,河对岸有一铁塔AB.在C处测得∠ACB为30°,向塔前进16米到达D,在D处测得∠ADB为45°,求铁塔AB的高.例4.如图,要测量小山上电视塔BC的高度,在山脚A处测得:∠BAD=40°,∠CAD=29°,AC=200米. (参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin29°≈0.48,cos29°≈0.87,tan29°≈0.55.)(1)求山脚到电视塔的水平距离AD长;(精确到1米)(2)求电视塔BC的高.(精确到1米)例5.为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿河边取两点B、C,在点B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200米.请你求出该河段的宽度(结果保留根号).例6.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,救援队伍在B处测得A 在B的北偏东60°的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C处,再从C处下水游向A处救人,已知A在C的北偏东30°的方向上,且救援人员在水中游进的速度均为1米/秒.(1)求点A到陆地BC的距离;(2)在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由.(参考数据3=1.7,精确到1米)例7.地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A处时,车载GPS(全球卫星定位系统)显示村庄C在北偏西26°方向,汽车以35km/h的速度前行2h到达B处,GPS显示村庄C在北偏西52°方向.(1)求B处到村庄C的距离;(2)求村庄C到该公路的距离.(结果均精确到0.1km)(参考数据:sin26°≈0.44,cos26°≈0.90,sin52°≈0.79,cos52°≈0.62)课堂反思九年级下数学三角函数教学案班级姓名:课题三角函数复习(3)教学目标复习解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力.重点解决与仰角、俯角有关的实际问题.难点在系统复习知识的同时,使学生能够灵活运用知识解决问题。