ccd图像传感器基础知识
- 格式:ppt
- 大小:760.00 KB
- 文档页数:50
CCD 常用知识总结随着CCD的不断发展,尤其典型的是当微光CCD向低照度方向发展时,噪声已经成为阻碍CCD进一步发展的障碍。
噪声是CCD的一个重要参数,它是决定信噪比S/N (Singal/Noise)的重要因素,而同时信噪比又是各种数据参数中最重要的指标之一。
随着CCD器件向小型化、集成化的不断发展,CCD光敏元数的增加势必减小光敏元的面积,从而降低了CCD的输出饱和信号。
为扩大CCD的动态范围,就必须降低CCD的噪声(动态范围与噪声间的联系)。
CCD工作时,在输入结构、输出结构、信号电荷存储和转移过程中都会产生噪声。
噪声叠加在信号电荷上,形成对信号的干扰,降低了信号电荷包所代表的信息复原后的精度,并且限制了信号电荷包的最小值。
CCD图像传感器的输出信号是空间采样的离散模拟信号,其中夹杂着各种噪声和干扰。
CCD输出信号处理的目的是在不损失图像细节并保证在CCD 动态范围内,图像信号随目标亮度线形变化是尽可能消除这些噪声和干扰。
(选自《CCD降噪技术的研究》燕山大学工学硕士学位论文)CCD的发展现状CCD最初是1969年由美国贝尔实验室的两名科学家W.S.Boyle与G.E.Smith提出,1970年在贝尔实验室制造成功。
它一问世,就显示出灵敏度高、光谱响应范围大、操作容易、维护方便、成本低、易推广等一系列优点,因而受到人们的普遍重视,现已取代摄像管,成为一种最常见的图像传感器。
自CCD问世以来,特别是近几年来,一直为美、日、英、法、德、荷兰等工业发达国家所瞩目,其中美、日两国的研制与生产能力居于世界领先地位。
国外主要的CCD研制与生产单位有日本的电气、东芝、索尼、夏普、日立,美国德州仪器,荷兰飞利浦等。
二十年来,CCD向着高集成度、高灵敏度、高分辨率、宽光谱响应的方向迅速发展,不断完善。
目前国外已研制出了像素数目为9K×9K的CCD芯片,像素尺寸最小已达到2.4μm×2.4μm;像素数目为4K×4K的CCD芯片已达到商业化水平。
CCD图像传感器激光位移计-CCD的工作原理与应用(初稿)CCD,Charge Coupled Devices,电荷耦合器件~是70年代初发展起来的新型半导体器件。
它由美国贝尔实验室的W. S. Boyle和G. E. Smith于1970年首先提出~在经历了一段时间的研究之后~建立了以一维势阱模型为基础的非稳态CCD基本理论。
几十年来~CCD的研究取得了惊人的进展~特别是在像感器应用方面发展迅速~已成为现代光电子学和现代测试技术中最活跃~最富有成果的新兴领域之一。
实验目的1、了解二相线阵CCD的基本工作原理2、了解二相线阵CCD驱动信号时序3、了解线阵CCD在位移测量中的应用方法实验仪器1. CCD激光位移计2. 数字示波器准备好坐标纸、铅笔和直尺~也可用相机。
实验原理1( CCD的基本结构电荷耦合器件的突出特点是以电荷作为信号~而不同于其它大多pseudonym Ding Bingcheng), to Jiangsu and Zhejiang in Taihu Lake area opened work, towards armed, carried out guerrilla race. 4 people such as Ding Bingcheng took Zhang Yan, Zhou Fen, from Shanghai, Zhao Anmin troopsstationed at the border of Jiangsu and Zhejiang. Ding Bingcheng reach dual-COR, and "anti-" established contact of Communist Party members, when the Kuomintang military Committee in Jiangsu, Zhejiang and Deputy Commander of the Brigade in Taihu Lake and Qian Kangmin, Director of the Department of the Commission (CPC) accompanied by consultations with Commander Zhao Anmin placement I was personnel related issues. Qian Kangmin efforts, Zhao Anmin also agreed to subordinate Gong Shengxiang Brigade guns to form a band in Taihu Lake. Qian Kangmin hired a boat to bring Gong Shengxiang, together with Zhang Yan start, boats to crossnear the fan, was seized by Cheng Wanjun. After Cheng Buzheng Jin Lu Wang, Director of training helps releasing personnel, but the weapon lost. Is autumn, Ding Bingcheng Wujiang was ordered to open up again,its task is: towards reconstruction guerrillas, Communist-led team.Along with Liu Zirong (Liu), Zhang Yan (Liu), huada busy (Chen Zhengzhi), Yu Zhe (Zhou Fen), Ye Chu Xiao (Lu Qiusheng), Henry (nandeqin), "anti-" players. Flat looking men Shen Yuezhen as a guide. Shen Yuezhen Ding Bingcheng single leader, Shen Yuezhen specializing in intelligence work, in September, through Mao Xiaocen served as the KMT's County Clerk, Shen Yuezhen after entering the County, deftly juggling between elites, was Chang Shen Liqun, who appreciated, has created favorable conditions for gathering intelligence. Meanwhile, Shen Yuezhen introduce jindapeng (Kanewaka Wang), xiaoxin was joined the "resistance", also activelydoing the standing political instructor Yu Qingzhi Shen Wenchao, Secretary of Justice and County Government数器件是以电流或者电压为信号。
ccd图像传感器的工作原理
CCD(Charged Coupled Device)图像传感器是一种将光信号
转换为电信号的电子器件。
它具有由一系列电荷耦合转移器件组成的阵列。
其工作原理如下:
1. 光感受:图像传感器的表面涂有光敏材料,例如硅或硒化铟。
当光照射到传感器上时,光子会激发光敏材料中的电子。
2. 电荷耦合:在CCD传感器中,光激发的电子通过电场力被
引导至特定位置。
在传感器的一侧,存在着电荷耦合器件(CCD)的阵列。
这些器件由一系列电容构成,能将移动的
电子推入下一个电容。
3. 移位寄存:一旦电子被推入下一个电容,电荷耦合器件会以逐行或逐列的方式将电子移动到存储区域。
这些存储区域称为移位寄存器,在这里,电荷可以被暂时存储和传输。
4. 电荷读出:当所有行或列的电荷都被移动到相应的移位寄存器时,电子的集合就可以被读出。
通过将电荷转换为电压信号,其可以被进一步处理和转换为数字信号。
总结:CCD图像传感器的工作原理可以分为光感受、电荷耦合、移位寄存和电荷读出四个步骤。
通过光激发、电荷移动和存储,最终将光信号转换为电信号,并进一步处理为数字信号。
CCD图像传感器CCD(Charge Coupled Device)全称为电荷耦合器件,是70年代发展起来的新型半导体器件。
它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。
它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。
CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。
实验室用的数码相机、光学多道分析器等仪器,都用了CCD作图象探测元件。
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。
CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。
取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。
移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。
将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。
由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
一.CCD的MOS结构及存贮电荷原理CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。
以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。
于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。
CCD图像传感器CCD(Charge Coupled Device)全称为电荷耦合器件,就是70年代发展起来的新型半导体器件。
它就是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。
它具有光电转换、信息存贮与传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮与处理等方面得到了广泛的应用。
CCD图像传感器能实现信息的获取、转换与视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测与自动控制系统。
实验室用的数码相机、光学多道分析器等仪器,都用了CCD作图象探测元件。
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。
CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。
取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。
移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。
将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。
由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
一.CCD的MOS结构及存贮电荷原理CCD的基本单元就是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。
以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P 型硅里的多数载流子就是带正电荷的空穴,少数载流子就是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。
于就是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子就是可以传导的。
CCD图像传感器CCD,即电荷耦合器件,是70年代发展起来的新型半导体光电器件。
具有灵敏度高,分辨率好,光谱响应宽,动态范围大等一系列优点。
至今,CCD已从实验室研究走向实际应用阶段。
在航空航天、卫星侦察、遥感遥测、天文测量、传真、静电复印、非接触工业测量、光学图像处理等领域都得到了广泛的应用;在动态非接触的尺寸检测、液面位置的遥测等光电测试技术中更引起人们高度的重视;特别是在摄像和信号处理等技术领域已独树一帜。
可见,CCD技术是一项具有广泛应用前景的新技术。
一CCD简介CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件。
可以称为CCD图像传感器。
CCD是一种半导体器件,能够把光学影像转化为数字信号。
CCD上植入的微小光敏物质称作像素(Pixel)。
一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。
CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。
CCD上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。
二CCD发展史CCD是于1969年由美国贝尔实验室(Bell Labs)的维拉·波义耳(Willard S. Boyle)和乔治·史密斯(GeorgeE. Smith)所发明的。
当时贝尔实验室正在发展影像电话和半导体气泡式内存。
将这两种新技术结合起来后,波义耳和史密斯得出一种装置,他们命名为“电荷‘气泡’元件”。
这种装置的特性就是它能沿着一片半导体的表面传递电荷,便尝试用来做为记忆装置,当时只能从暂存器用“注入”电荷的方式输入记忆。
但随即发现光电效应能使此种元件表面产生电荷,而组成数位影像。
到了70年代,贝尔实验室的研究员已经能用简单的线性装置捕捉影像,CCD就此诞生。
有几家公司接续此一发明,着手进行进一步的研究,包括快捷半导体、美国无线电公司)和德州仪器。
其中快捷半导体的产品领先上市,于1974年发表500单元的线性装置和100x100像素的平面装置。
一文了解CCD图像传感器-设计应用CCD(Charge Coupled Device)图像传感器由CCD电荷耦合器件制成,是固态图像传感器的一种,是贝尔实验室的W.S.Boyle和G.E.Smith于1969年发明的新型半导体传感器。
它是在MOS集成电路的基础上发展起来的,能进行图像信息的光电转换、存储、延时和按顺序传送。
它的集成度高、功耗小、结构简单、耐冲击、寿命长、性能稳定,因面应用广泛。
D电荷耦合器件CCD电荷耦合器件是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列,其构造如图7—14所示。
在P型或N型硅衬底上生长一层很薄(约1200A)的二氧化硅,再在二氧化硅薄层上依次沉积金属或掺杂多晶硅形成电极,称为栅极。
该栅极和P型(或N型)硅衬底形成了规则的MOS电容器阵列,再加上两端的输入及输出二极管构成了CCD电荷耦合器件芯片。
每一个MOS电容器实际上就是一个光敏元件,如图7—15所示。
当光照射到MOS电容器的P型硅衬底上时,会产生电子空穴对(光生电荷),电子被栅极吸引并存储在势阱中。
入射光越强,产生的光生电子—空穴对越多,势阱中收集到的电子就在CCD芯片上同时集成了扫描电路,它们能在外加时钟脉冲的控制下,产生三相时序脉冲信号,由左到右,由上到下,将存储在整个面阵的光电元件下面的电荷逐位、逐行、快速地以串行模拟脉冲信号输出。
输出的模拟脉冲信号可以转换为数字信号存储,也可以输入视频显示器显示出原始图像。
2.应用范围CCD图像传感器单位面积光电元件的位数很多,一个光电元件形成一个像素,成像分辨率高、信噪比大、动态范围大,可以在微光下工作。
彩色图像传感器采用三个光电二极管组成一个像素的方法。
被测景物图像的每一个光点由彩色矩阵滤光片分解为红、绿、蓝三个光点,分别照射到每一个像素的三个光电二极管上,各自产生的光生电荷分别代表该像素的红、绿、蓝三个光点的亮度。
经输出和传输后,可在显示器上重新组合,显示出每一个像素的原始色彩,这就构成了彩色图像传感器。
CCD的基础知识CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件。
可以称为CCD 图像传感器,也叫图像控制器。
CCD是一种半导体器件,能够把光学影像转化为数字信号。
CCD上植入的微小光敏物质称作像素(Pixel)。
一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。
CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。
CCD 上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。
1.功能特性CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和复现。
其显著特点是:1.体积小重量轻;2.功耗小,工作电压低,抗冲击与震动,性能稳定,寿命长;3.灵敏度高,噪声低,动态范围大;4.响应速度快,有自扫描功能,图像畸变小,无残像;5.应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确,商品化生产成本低。
因此,许多采用光学方法测量外径的仪器,把CCD器件作为光电接收器。
CCD从功能上可分为线阵CCD和面阵CCD两大类。
线阵CCD通常将CCD内部电极分成数组,每组称为一相,并施加同样的时钟脉冲。
所需相数由CCD芯片内部结构决定,结构相异的CCD可满足不同场合的使用要求。
线阵CCD 有单沟道和双沟道之分,其光敏区是MOS电容或光敏二极管结构,生产工艺相对较简单。
它由光敏区阵列与移位寄存器扫描电路组成,特点是处理信息速度快,外围电路简单,易实现实时控制,但获取信息量小,不能处理复杂的图像(线阵CCD如右图所示)。
面阵CCD 的结构要复杂得多,它由很多光敏区排列成一个方阵,并以一定的形式连接成一个器件,获取信息量大,能处理复杂的图像。
2.性能参数2.1光谱灵敏度CCD的光谱灵敏度取决于量子效率、波长、积分时间等参数。
量子效率表征CCD芯片对不同波长光信号的光电转换本领。