射频同轴连接器特性阻抗的计算
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
毫米波同轴连接器的结构与特性刘洪扬【摘要】随着毫米波技术的发展与应用,电子设备不断向小型化发展,迫切需要研制毫米波同轴连接器已势在必行。
本文对国外自70年代中期发展的3.5mm连接器直到90年代初发展到1.0mm连接器的产品结构、设计要点和产品性能作了比较详细的论述,并指出了在我国发展毫米波同轴连接器今后研究工作的重点。
【关键词】毫米波连接器结构性能一、前言同轴线和同轴连接器是应用较早的一种元件。
早期认为它的应用范围适合分米直到10厘米波段(即300MHz~3GHz),当波长再短时会出现传输功率容量小,衰减大,制造困难等一系列的缺点。
因此,早期在厘米波段中同轴线几乎完全被波导所代替。
由于技术上的困难,同轴系统被认为是不能应用到毫米波系统上。
这主要还是同轴电缆插入损耗大,当工作频率升高以后有高次杂模出现,使其无法传播电磁信号。
另一方面在一对同轴连接器接头处也会产生较强的电磁波辐射,会造成很大的电磁干扰。
正因为这些原因,就使得同轴线及其连接器无法广泛应用到毫米波频段。
很长一个时期内毫米波主要靠波导来传输。
但是波导频带较窄,甚至在某些情况下,在所给定的频带内,在其边缘还会出现重叠的现象。
由于同轴系统能够传输从直流到超高频频谱的电磁波信号,并且同轴器件具有体积小、重量轻、使用同轴器件组装的系统具有不受物理位置限制等一系列优点,因此又一直吸引着各国的同轴器件专家们去克服同轴系统存在的这些固有的困难。
自第二次世界大战结束到90年代初,同轴连接器的性能没有重要的改进。
SMA是当时使用频率最高的一种小型同轴连接器,工作频率到22GHz、60~70年代重点是发展精密同轴连接器,如14、7、3.5(mm)精密连接器。
精密同轴连接器的研制成功是同轴连接器技术发展史上的一项重大成就。
它使同轴线电压驻波比的测量精度由百分之几提高到千分之几。
这对毫米波连接器技术的发展起了很大的影响。
随着各种新型微波器件的出现,很多电子系统的传输功率不再像电子管时代那样高,再加上精密测量技术的发展和精密机械加工技术的进步,近十几年来,毫米波同轴连接器技术有了突飞猛进的发展。
同轴射频电缆阻抗计算射频同轴电缆是一种广泛应用于通信、雷达、导航等领域的传输线。
它由内导体、绝缘层、外导体和护套组成,具有低损耗、高带宽、抗干扰能力强等优点。
在射频系统中,阻抗匹配是非常重要的一个环节,因为它直接影响到信号的传输质量和系统的性能。
因此,对射频同轴电缆的阻抗计算具有重要意义。
一、射频同轴电缆的基本参数1. 内导体:射频同轴电缆的内导体通常采用铜或铝制成,其截面积和长度会影响电缆的阻抗。
2. 绝缘层:绝缘层的主要作用是防止内外导体之间的短路,同时保证射频信号的传输。
绝缘层的材料和厚度也会影响电缆的阻抗。
3. 外导体:外导体通常采用铜管或铝管制成,其直径和长度会影响电缆的阻抗。
4. 护套:护套的主要作用是保护电缆,防止外部环境对电缆的影响。
护套的材料和厚度也会影响电缆的阻抗。
二、射频同轴电缆的阻抗计算公式射频同轴电缆的阻抗计算公式为:Z = R + jX,其中Z表示阻抗,R表示电阻,X表示电抗,j表示虚数单位。
1. 电阻R的计算:电阻R主要由内导体的电阻决定,其计算公式为:R = ρL/A,其中ρ表示导体材料的电阻率,L表示内导体的长度,A表示内导体的截面积。
2. 电抗X的计算:电抗X主要由绝缘层的电容和外导体的电感决定,其计算公式为:X = 2πfL/D,其中f表示射频信号的频率,L表示外导体的长度,D表示外导体的直径。
三、射频同轴电缆阻抗计算实例假设我们要设计一根射频同轴电缆,要求其工作频率为10GHz,内导体采用铜制,截面积为1mm²,长度为1m;绝缘层采用聚乙烯材料,厚度为0.05mm;外导体采用铜管,直径为0.5mm,长度为1m;护套采用聚氨酯材料。
根据上述参数,我们可以计算出射频同轴电缆的阻抗。
1. 计算内导体的电阻:首先我们需要知道铜的电阻率ρ约为1.68×10^-8Ω·m。
代入公式R = ρL/A,得到R = 1.68×10^-8 ×1000/1 = 1.68×10^-7Ω。
学习好资料_____________________________________________射频传输线、连接元件和过渡元件简述第一节射频传输线__________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________射频同轴连接器的设计1970.12一、同轴传输线的特性阻抗1 同轴传输线的特性阻抗的一般公式射频同轴连接器由一段同轴传输线、连接机构绝缘支架组成。
射频同轴连接器基本知识射频同轴连接器基本知识1、单位换算和一些常数:1.1 1GHz=103MHz =106KHz =109Hz1.2 1Kg = 9.8N1.3 1in = 25.4mm1.4 1bf.in = 0.112985N.m1.5 1标准大气压= 101325 Pa1.6 电磁波真空中的速度Co=3×108m/s1.7 空气介质的相对介电常数εr空=11.8 聚四氟乙烯的相对介电常数:国内用εr=2.05IEC常用εr=2.011.9 空气介质的导磁率μ空= 11.10 常用铅黄铜(Hpb59-1)的密度= 8.4g/cm32、请写出下面名词的定义:2.1电接触——各个导电件处于紧密地机械接触状态,对两个方向的电流能提供低电阻通路;2.2接触件——元件内的导电体,它与对应的导电件相插合提供电通路(提供电接触):2.3弹性接触件——能对插合的零件产生压力具有弹性的接触件;2.4连接器——通常装接在电缆或设备上,供传输线系统电连接可分离元件(转接器除外)2.5转接器——连接两根带有不能直接插合连接器传输线的两端口装置;2.6无极性连接器——能与本身等同的连接器相插合的连接器;2.7类型——表征连接器对的与结构和尺寸有关的具体插合面和锁紧机构的术语;2.8品种——表示同一类型的具体型式、形状以及组合。
例如:自由端连接器和固定连接器,直式连接器和直角连接器,同类型内直角和直角转换器;2.9规格——表示品种在特定细节方面的变化,如电缆入口处尺寸的变化;2.10等级——连接器在机械和电气精密度方面特别是在规定的反射系数方面的水平。
3、产品基本知识和性能:3.1请分别写出7/16型、N型和SMA型连接器的连接螺纹,并解释螺纹标识中每个字母及数学所表示的含义(对于公制螺纹请说明是粗牙普通螺纹还是细牙普通螺纹)7/16型——M29×1.5表示标称直径为29mm(1.141in),螺距为1.5mm(0.059in)的公制螺纹,该螺纹为细牙普通螺纹。
微波传输理论公式一、特性阻抗及相关公式同轴线单位长度串联阻抗 Z 1=R 1+ωL 1R 1为单位长度串联电阻 L 1为单位长度串联电感 同轴线单位长度并联导纳 Y 1=G 1+ωC 1G 1为单位长度并联电导 C 1为单位长度并联电容 ω 为工作角频率 则特性阻抗为: 1111110C j G L j R Y Z Z ωω++==(1) 对于无损耗长线 R 1→0, G 1→0 故 110C L Z =(2)均匀同轴线在理想条件下单位长度的电感和电容为:ab L ln 21πμ=(3)abC ln21πε=其中b 是外导体内径,a 是内导体外径。
μ为介质的导磁系数,ε为介电系数。
将(3)代入(2)式可得:abZ ln 210εμπ=(4a ) 令:0μμμr = 其中米亨70104-⨯=πμ0εεεr = 其中米法9361010-⨯=πεr r με和为介质的相对介电常数和导磁率。
将εμ、代入式(4a )得:ab Z r r ln 600εμ= (4b )因光在真空中的速度及导磁率精确值为:米亨秒米77001056637.121042.1458,792,299--⨯=⨯=±=πμC则0ε精确值为: 854185.89503.351090==-πε法米所以我们可以得到一组精确公式:⎪⎪⎪⎭⎪⎪⎪⎬⎫Ω==⋅==)(ln 9584916.59)()()/(ln 200000)/(ln /632.5511011a brr ab r a b r PF C PH L Z m PH L m PF C εμμε (5) 在任何媒质中,εμ、和电磁波速度的关系是: με1=v (6)设真空中光速为0C ,则:米法/10854185.8112200-⨯==c με(7) Ω50同轴线内外径比可由式(4a )获得:[]302926.2250ln 01=⨯=-μμεεπr r ab所以单位长度空气线的电感、电容分别为:米法米亨11ln 2170110673442.610668363.1ln 20--⨯==⨯==a b r C L a br επεπμμ 其中 9,648,000.14,000,000.1==r r εμ(空气的相对介电常数和导磁率)对TEM 波,主模在传输线中的速度为: 111C L v =(8) 对非铁磁性介质,有0=r μ,结合(6)、(7)式可得:rc v ε0=(8a )将式(8)、(8a)代入(2)式得:1810101031c c c vc Z r r ⨯===εε (9) 由此可见,只要能算出传输线每单位长度的电容。
射频同轴连接器技术简介一、射频连接器发展概况·1939年出现的UHF连接器是最早的RF连接器;·二战期间,随着雷达、电台和微波通信的发展,产生了N、C、BNC、TNC等中型系列;·1958年后,随着整机设备的小型化,出现了SMA、SMB、SMC等小型化产品;·1964年制定了美国军用标准MIL-C-39012《射频同轴连接器总规范》·七十年代末,毫米波连接器出现;·九十年代初,HP公司推出频率高达110GHz的1.0mm连接器,并用于其仪器设备中;·九十年代出现表现贴装射频同轴连接器,并大量用于手机产品中。
我国射频同轴连接器的发展·我国从五十年代开始由整机厂研制RF连接器;·六十年代组建专业工厂,开始了专业化生产;·一九七二年国家组织集中设计,使国产的RF连接器自成体系,只能在国内使用,产品标准水平低,且不能与国际通用产品对接互换;·八十年代起开始采用国际标准,根据IEC169和MIL-C-39012,颁布了GB11313和GJB681,使射频同轴连接器的生产和使用逐步与国际接轨;·经过十几年的努力,目前通用R连接器的整体水平与国外差距不大,但精密连接器的设计与生产跟国外仍有较大差距。
二、射频连接器的标准体系美军标美国是世界上最大的通用型RF连接器制造和消费国,其技术水平也是一流的因此美国军用标准MLC39012被认为是RF连接器的最高标准。
其它先进国家的标准有德国DIN、英国BS、日本JIS和IEC标准等。
这些国家或国际标准大都是参照或等同美军标制订的,有些国家或公司甚至直接应用美军标。
IEC标准IEC标准是指导性标准,不是强制性标准,因此很少被直接引用;值得一提的是德国在某些专用新型连接器方面也有一些优势,例如:DIN47223、7/16(L29)系列、DIN47297、SAA系列、DIN41626、DSA系列,这些系列产品在通信领域应用较广泛,德国的标准和产品已得到全世界认可,但美国尚无这些标准出现。
射频连接器集中设计资料(一) 连接器设计基本公式 :1.特性阻抗: 近似公式:dDZ ln600ε=(1) 精确公式:dDZ ln0006.095860.590ε±=(2) 式中,0Z —理想*同轴线的特性阻抗,单位Ω D—外导体内径 d—内导体外径ε—介质相对介电常数 2.同轴线的电感、电容、电阻、电导:dDL ln21Π=μ m Hd DC ln 21εΠ= m FσμΠ⎟⎠⎞⎜⎝⎛+=11121f d D R m Ω (3) dD G ln 21σΠ=m•Ω01μμμ•= 70104−×Π=μ m H 01εεε•= 9010361−×Π=ε m F式中,L 、C、R 和G 分别表示单位长度上的电感、电容、电阻和电导.μ—相对导磁率 ε—相对介电常数σ—导体导电率 1σ—介电导电率 f —频率3.衰减公式:G Z Z R B B B s 00212+=+=介导dD f d D B ln11121×•Π•⎟⎠⎞⎜⎝⎛+=σε导 m 奈 112εμσ=介B m 奈 (4)1奈=8.57分贝 式中:s R 表示导体集肤表面电阻 4.击穿功率公式:222max120ln ⎟⎠⎞⎜⎝⎛=d D d DD PEε (5) 式中,P—击穿功率 单位:瓦max E —最大冲穿电强度(空气一般为mυ6103×)5.相位,相位常数:gLC w λαΠ==2l l •Π==Φελα02 (6)式中,g λ 、0λ表示同轴线中和真空中的波长.l —线的长度6.输入阻抗公式:0001sin cos sin cos Z ljZ l Z ljZ l Z Z H H •+••+•=αααα (7)式中,H Z —负载阻抗,l—以终端起标的长度 7.反射系数:lj H H e Z Z Z Z •−+−=Γα200 (8)Γ−Γ+=11SWR V (9)式中, SWR V 表示电压驻波比,standing-wave.ratio Γ是反射系数Γ的幅值. 8.工作频率极限:工作频率上限由11TE 模的截止频率决定. 11TE 模的截止频率可近似地表示为:()d D f co +=ε8.190 (10)由于导体有限电导率会引起一定的趋表深度和一定的串联电阻,这决定了精密同轴传输线的工作频率下限.这个下限可近似地由下式决定:221110824.19⎟⎠⎞⎜⎝⎛+×=d D A f ρ Z MH (11) 式中,A—允许的阻抗误差 %ρ—导体的电阻率 m Ω9.机械公差对特性阻抗的影响:对(1)式微分,可得机械公差引起特性阻抗的变化量:⎟⎠⎞⎜⎝⎛Δ−Δ=Δd d D D Z Z Z 0060ε (12) 对于Ω50的空气线,上式变为:⎟⎠⎞⎜⎝⎛Δ−Δ=ΔD d D Z Z 3.22.100(13) 对于Ω75的空气线,⎟⎠⎞⎜⎝⎛Δ−Δ=ΔD d D Z Z 49.38.000(14) 式中,D Δ—外导体直径公差 d Δ—内导体直径公差 由此引起的驻波比为:1Z Z V SWR Δ+= (15) 10.不同心度引起特性阻抗的偏差:2220240d D e Z −−≈Δ (16)对于Ω50的同轴线220296De Z −≈Δ (17)11.有限电导率引起特性阻抗的影响:()00111302Z j d D f Z +⎟⎠⎞⎜⎝⎛+=Δρ (18) 12.导体槽对特性阻抗的影响:在Ω50的空气介质中,导体上槽所引起的特性阻抗偏差为下式决定:02115.12⎟⎠⎞⎜⎝⎛+=Δd w N Z (19)02225.12⎟⎠⎞⎜⎝⎛+=ΔD W N Z式中,Z Δ—特性阻抗变化的百分数 N—槽的数目w—内导体上的槽宽 W—外导体上的槽宽为补偿这个变化,开槽处内外导体直径也应相应变化dw N d 21104+=Δ (20)计算公式为:DW N D 22104−=Δ(其实,在实际设计中,极少应用此式) 13.导体间隙对特性阻抗的影响: 由导体间隙引起的驻波比由下式决定:00111ln 064.0⎟⎟⎠⎞⎜⎜⎝⎛−Π−Π=w N D w N d fg S g (21) 00221ln 064.0⎟⎟⎠⎞⎜⎜⎝⎛−Π−Π=WN D WN D fg S g 式中,S 是以%为单位的驻波比(即1−=SWR V S ) f—频率 Z GHg—间隙宽度 密耳(10001时) g d —间隙处内导体直径 时 g D —间隙处外导体直径 时.其它符号的意义与以前相同. 等效介质介电常数的计算:在实际应用中,常遇到在同一模截面上有几种不同介质的情况,典型结构有环形和扇形两种: 环形绝缘子的等效介电常数由下式决定:−−=••Σ=11ln 1lni i ini nD DdD εε (22)式中,i ε—第i 层环的介电常数i D —第i 层的外径 1−i D —第i 层的内径 n D —实为外导体内径D d D =0扇形绝缘子等效介电常数为下式所决定:⎟⎠⎞⎜⎝⎛•Σ==−3601i i ni Q εε (23a ) 式中,i ε—第i 块扇形的相对介电常数 i Q —第i 块扇形所占据的角度同轴线内导体阶梯电容,单位cm Ff ,当乘以外导体圆周长时,所得阶梯电容是Ff 计算公式:()()111011.114ln 211ln 11001522−−×+⎟⎟⎠⎞⎜⎜⎝⎛−−−++Π=−ταααααααεd C cm F ()()111011.114ln 211ln 1105.6152214−−×+⎟⎟⎠⎞⎜⎜⎝⎛−−−++×=−−τααααααα cm F 当101.0p α≤和1.00.6≤≤τ的范围内,公式引起的最大误差为cmfF3.0±同轴线外导体阶梯电容,单位cm Ff ,当乘以内导体圆周长时,所得阶梯电容是()法拉1510−=Ff计算公式:()()4.18.1012.14ln 211ln 11001522−−×+⎟⎟⎠⎞⎜⎜⎝⎛−−−++Π=−ταααααααε04d C cm F ()()4.18.01012.414ln 211ln 1105.6152214−−×+⎟⎟⎠⎞⎜⎜⎝⎛−−−++×=−−τααααααα cm F 当7.001.0p α≤和0.65.1≤≤τ的范围内,公式引起的最大误差为cmfF 6.0±(二)不连续性电容的计算:不连续性的电容的精确计算十分繁,在工程应用中,只要应用事先计算绘成的曲线,或应用近似计算公式就够了.1.内导体或外导体上的单一台阶同轴线内导体,阶梯电容可用下式近似计算:()()111011.114ln 211ln 1100152201−−×+⎟⎟⎠⎞⎜⎜⎝⎛−−−++Π=−ταααααααεεd C cm F (23b) 在101.0p α≤和0.60.1≤≤τ的范围内,公式引起的最大误差为cmfF3.0±.在7.001.0≤≤α和0.65.1≤≤τ的范围内,同轴线外导体,阶梯电容可用下式近似计算:()()4.18.1012.14ln 211ln 1100152202−−×+⎟⎟⎠⎞⎜⎜⎝⎛−−−++Π=−ταααααααεε04d C cm F (24) 公式所引起的最大误差为cmfF 6.0±在0.17.0≤≤α和0.65.1≤≤τ的范围内,()()4.112.6202−•−×+=ταCd c d cmFρ⎟⎟⎠⎞⎜⎜⎝⎛−−−++Π=220014ln 211ln 1100ααααααεεd C cm F 公式引起的最大误差小于cmFρ3.0±。
SMA直角转接器的设计陈肇扬,王新恩【摘要】本文主要是通过几年来对SMA直角转接器的研制情况总结,阐述其设计原理,提出过渡模式,总结出一个经验公式,并简单地介绍一下一些特殊工艺及性能特征。
一、前言在微波同轴连接器系列中,直角转接器是一种必不可少的元件,随着我国电子工业的不断发展,引进设备的日益增多,对微波同轴元器件提出高精度、小型化的要求。
近几年来我们开始研制SMA型射频同轴连接器系列,到目前为止,已有数十个品种、规格、本文主要是介绍SMA直角转接器的研制情况,阐述它的设计原理、设想它的过渡模式,总结出一个经验公式,并简要地介绍在制造过程中的一些特殊工艺及SMA直角转接器的主要性能特征。
二、设计原理众所周知,当微波讯号,从同轴线传输到直角转弯处时,从场论的观点来看,必定产生畸变,这主要是因为直角转弯处可以看成为由二段同轴线直角相交而成,它的电力线分布如图1所示。
显然,在直角转弯处,场是不均匀的。
而我们的目的是,当TEM波传输到直角转弯处时,具有低的输入反射,要求不产生高次谐波。
但在这样的过渡段中,传输的波已不再是纯的TEM波,可能激发出高阶模。
储藏了电抗性能量,在直角转弯处呈现一个电抗。
在设计过程中,要是没有考虑到这一点,就可能使直角转接器的性能变坏。
图 1当然,若用耦合波理论来解决这个问题也是可以的。
那就必须找到一个适当的分布函数,使它仅仅在要求的给定频率范围之中,反射系数总小于某一个给定的极大值。
但是,对于工程技术人员来说,即使寻找出这个分布函数,要加工出符合这个分布函数边界条件的零件是很不容易的事。
因此,我们认为,用寻找适当的分布函数方法来解决直角过渡问题似乎太烦杂,也没有必要。
我们觉得,用物理概念来解决似乎比较方便一点。
即只要找出一个适当的方法,以补偿过渡段中不可避免存在的不连续电容所引起的电抗,达到整个传输段在要求的给定频率范围之内,反射系数总小于某一个给定的极大值。
根据这个设想,我们拟就高阻抗补偿模式来解决直角过渡问题。
射频电缆的参数理论第一节特性阻抗特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它取决于导体的直径以及绝缘结构的等效介电常数。
特性阻抗对于电缆的使用有很大的影响。
例如在选择射频电缆作为发射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线出现驻波,有些地方会出现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。
电缆内部反射的存在,还会造成传输信号的畸变,使传输信号出现重影,严重影响信号传输质量。
为了便于使用,射频电缆的阻抗已经标准化了。
因此在选用电缆时应尽可能选用标准阻抗值。
对于射频同轴电缆有以下三中标准阻抗:50±2ohm 推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等;75±3ohm 用于视频或者脉冲数据传输,用于大长度例如CATV电缆传输系统;100±5ohm 用于低电容电缆以及其它特种电缆。
以下是同轴电缆特性阻抗计算的各种公式。
§1.1同轴电缆阻抗公式根据传输理论,特性阻抗公式为:Zc =)/()(C j G L j R ωω++式中,R 、L 、G 、C 、代表该传输线的一次参数,而ω=2πf 代表信号的角频率。
对于射频同轴电缆传输高频信号,通常都有R <<ωL ,G <<ωC ,此时特性阻抗公式可以简化为:Zc =C L / =60•ln(D/d)/ε =138•lg(D/d)/ε (ohm ) 式中,D 为外导体内直径 (mm )d 为内导体外直径 (mm ) ε为绝缘相对介电常数表1给出了常用绝缘材料的相对介电常数。
表1常用介质材料的特性§1.2皱纹外导体同轴电缆阻抗公式皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。
测量出L和C后可以计算阻抗:Zc =CL/§1.4特性阻抗与电容的关系同轴电缆的特性阻抗与电容有如下简单的关系,即Zc=104/3· / C式中,C为电缆电容(pF/m)第二节电容电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算:C=1000ε/(18lnD/d)=24.13ε/(lgD/d)(pF/m)第三节衰减衰减是射频电缆的重要参数之一,它反映了电磁能量沿电缆传输时的损耗的大小。
射频pa输出阻抗计算公式
嘿,朋友们!你们知道射频 PA 输出阻抗计算公式吗?哈哈,那可得听我好好讲讲啦!
射频 PA 输出阻抗的计算可不是一件简单的事儿哦!一般来说,它可以通过一些特定的方法和公式来确定。
想象一下,这就好比是在找一条通往宝藏的秘密路径,得一步步探索呢!
常用的一种方法是通过负载牵引技术来确定。
就好像你要找到最合适的鞋子去搭配你的衣服一样,得不断尝试不同的负载,才能找到那个最完美的匹配。
比如说,你可以在不同的负载条件下测量射频 PA 的性能参数,比如功率、效率等,然后根据这些数据来推算出输出阻抗。
再给你们举个例子吧!假设我们有一个射频 PA,我们给它接上不同的负载电阻,然后观察它的输出功率变化。
通过仔细分析这些变化,我们就能慢慢摸索出它的输出阻抗范围啦。
这就像是在黑暗中摸索着找开关,需要耐心和细心呢!
另外,还有一些基于电路模型的计算方法。
可以把射频 PA 看作是一个复杂的电路,里面有各种元件和参数。
通过分析这些电路元件的特性和相互关系,也能计算出输出阻抗哦。
这就好比是解开一个复杂的谜题,每一个小细节都可能是关键!
哎呀呀,是不是觉得有点复杂啦?别担心,只要多实践、多尝试,慢慢就会明白啦!就像学骑自行车一样,一开始可能会摇摇晃晃,但只要坚持,很快就能骑得稳稳当当啦!
总之呢,射频 PA 输出阻抗计算公式可不是一下子就能搞懂的,需要我们不断学习、不断探索。
难道不是吗?所以啊,大家可别轻易放弃哦,加油吧!。
射频同轴电缆特性阻抗Z C 的测试胡 树 豪这里介绍射频同轴电缆特性阻抗Z C 的6种测试方法。
它们同样也适合于双绞线,只不过仪器要转换为差分系统而已。
一、λ/4线接负载法1、测试方法与步骤:·待测电缆一段,长约半米(无严格要求),两端装上连接器。
扫频范围由仪器低频扫到百余兆赫即可。
对于其它长度的电缆,扫频范围请自定。
·仪器工作在测反射(或回损)状态,作完校正后画面应选阻抗圆图。
·在测试端口接上待测电缆,电缆末端接上精密负载。
·画面不外三种情况:轨迹集中为一点,则Z C = Z 0(测试系统特性阻抗,一般为50Ω)。
轨迹呈圆弧或圆圈状,在圆图右边,则Z C > Z 0 。
轨迹呈圆弧或圆圈状,在圆图左边,则Z C < Z 0 。
·将光标移到最接近实轴的点上,记下此点的电阻值R in (不管电抗值)。
n i C R Z Z 0=例如:R in = 54Ω,则Z C = 52Ω,若R in = 46Ω,则Z C = 48Ω。
若轨迹不与实轴相交,则扫频范围不够或电缆太短;若交点太多,则扫频范围太宽或电缆太长。
2、优点轨迹直观连续,不易出错。
连接器的反射可以通过λ/4线抵消。
3、缺点必须截取短样本。
必须两端装连接器。
电缆质量必须较好,否则不同频率的测试结果起伏较大,不好下结论。
4、物理概念与对公式的理解λ/4线有阻抗变换作用,其输入阻抗Z in 与负载阻抗Z L 之间满足Z in = Z C 2/Z L 关系。
现在Z L = Z 0,Z in = R in ,代入展开即得上面的Z C 计算公式。
λ/4线的阻抗变换公式是众所周知的,但作为特性阻抗的测试方法却未曾见。
在测阻抗曲线试验中发现,与实轴相交的这一点是可用来测特性阻抗的;因为它把矛盾扩大了,反而更容易测准。
由于曲线是很规矩的,不易出错。
但必须用第一个交点,即除原点以外的最低频率的与实轴最近的一点,用第二点就可能出问题。
射频传输线、连接元件和过渡元件简述第一节射频传输线射频同轴连接器的设计一、同轴传输线的特性阻抗1 同轴传输线的特性阻抗的一般公式射频同轴连接器由一段同轴传输线、连接机构绝缘支架组成。
所以,对同轴传输线的特性阻抗有一个比较全面的了解对射频同轴连接器的设计是非常重要的。
同轴传输线特性阻抗的一般公式:Cj G L j R Z ωω++='0 (1)上式中: Z o ¹—特性阻抗,欧姆R —每单位长度上导体的内部电阻,欧姆/米G —每单位长度上介质的电导,西门子/米L —每单位长度的电感,享/米C —每单位长度的电容,法/米ω=2πff —频率,赫当R=G=0时,公式(1)简化为:CL Z =0 (2) 在微波频率,导体的内部电感是很小的,每单位长度上的电感很接近于每单位长度上的外部电感:dD L ln 21πμ=(3) 上式中: L —每单位长度的外部电感,享/米μІ=μr μo — 介质的导磁率, 享/米μr —介质的相对导磁率μo =4π×10-7—真空导磁率,享/米 D —外导体的内径 d —内导体的外径单位长度的电容可按下计算:dD C /ln 21πε=(4)上式中:C — 每单位长度电容,法/米 ε1 =εr ε0—介质的介电常数,法/米 εr —— 介质的相对介电常数ε0 =1/C o 2μo —真空介电常数,法/米 C O —在真空中的光速 C O =(±)×108,米/秒将公式(3)和(4)代入(2),并只考虑非磁性介质的情况(μr =),可得到:dDZ rln00006.095860.590ε±=(5) 请注意,真空光速:001με=C真空导磁率μo 被任意地规定为严格等于4π×10-7享/米。
根据精确地进行的实验我们知道光速为0±300米/秒,因此,εo 并不严格等于1/36π×10-9,根据公式计算,εo 应为1/π×10-9。
射频同轴连接器特性阻抗的计算
文章介绍了射频同轴连接器特性阻抗的计算方法之一,快速简便的获得阻抗值,方便采购与检验等环节。
标签:同轴连接器;射频转接器;特性阻抗;阻抗匹配
1 前言
微波技术在新世纪得到更广泛的发展,作为微波技术的重要器件射频同轴连接器显得至关重要,选择匹配的连接器可以提高系统的性能。
而作为选择连接器的重要因素,阻抗匹配显得很重要,了解和掌握阻抗的计算方法可以一定程度的保证器件选择、产品进货检验等。
2 射频同轴连接器简介
用于射频同轴馈线系统的连接器通称为射频同轴连接器。
射频同轴连接器按连接方式分类为:螺纹式连接器,卡口式连接器,推入式连接器,推入锁紧式连接器。
常用的射频同轴连接器有SMA型、SMB型、SSMB型、N型、BNC型、TNC型等。
射频同轴连接器电气性能方面包括特性阻抗、耐压、最高工作频率等因素,特性阻抗是连接器与传输系统及电缆的阻抗匹配,是选择射频同轴连接器的主要指标,阻抗不匹配会导致系统性能的很大下降。
通过计算的阻抗来选择匹配的连接器,方便采购、检验及设计。
利用射频同轴连接器的结构尺寸计算其阻抗值的方法,快速简便。
3 射频同轴连接器特性阻抗的计算
射频同轴连接器的特性阻抗主要依据其外导体的内直径和内导体的外直径以及和填充的介质共同决定的。
如图1所示
3.3 实例2
BNC 型连接器的特性阻抗:
BNC 型连接器使用于低功率,按特性阻抗分为50Ω和75Ω两种。
不同于其它类型连接器的特点是50Ω与75Ω的内导体与外导体的尺寸一样,构成特性阻抗不同的区别在是否填充介质,也就是说有一种阻抗的连接器的填充是空气。
75Ω特性阻抗的连接器没有填充介质,即空气介质(εr=1)。
50Ω特性阻抗的在
内外导体之间填充的是常见的聚四氟乙烯介质,εr大约在2.2-2.4之间。
BNC 型连接器外导体的内直径的标称值是6.5mm,内导体的外直径是2.06-2.21mm。
同样对于外导体内直径的标称值由于机加工过程所造成的±0.05mm的误差范围,这样就可以算出在有无介质条件下的BNC 型射频同轴连接器的特性阻抗。
下面是有填充介质时的特性阻抗。
75Ω(填充介质为空气,εr=1):内导体外直径为2.06mm,外导体内直径为6.45是阻抗为68.4;当两者分别是2.21mm和6.55mm时结果为65.1
50Ω(填充介质为空气,εr=2.2):内导体外直径为2.06mm,外导体内直径为6.45是阻抗为46.2;当两者分别是2.21mm和6.55mm时结果为43.9 我们再来计算一例:
3.4 计算时的注意事项
3.4.1 內导体外直径
射频同轴连接器的内导体的外直径不是指中心插针上端的直径(较细),而是下端较粗的那部分的直径。
这部分的直径与插孔部分的外直径相同,测量两者之一既可,在计算时应该采用这部分的尺寸。
3.4.2 外导体内直径
一些接插件制作厂家没有给出外导体的内直径,给出的是外导体的外直径容易产生错误,因此在计算阻抗时不能采用,可以用游标卡尺进行测量。
下面列出了目前部分类型射频同轴连接器的外导体的内直径,仅供大家来参考。
N螺纹式7mm;BNC卡口式6.5mm;TNC螺纹式6.5mm;SMA螺纹式4.13mm;SMB插入式3mm
参照标准(IEC169)
4 结束语
在射频与微波技术及光电行业飞速发展的时代,射频同轴连接器得到很大程度的提升空间,制造企业参差不齐,产品质量鲜有保障。
在其中选择好的、适合的连接器,使设计的理念得以实现需要在这纷繁的些信息中分拣。
在企业研发条件及人员配置方面的约束下,以上的测量方法提供了一种不用仪器仪表的检验方法,快速简单,易于掌握,普通的操作人员都可以进行试验及测量。
多年来国际通用的射频同轴连接器采用两套标准,一套是MIL标准,一套是IEC标准,我国制定的标准为GB11313国标和GJB681国军标,不管是军用还是商用射频同轴连接器,只要是同一系列或同一型号的界面结构和尺寸是一致的,均可以实现机械互换性,因此,这种测量方法是通用的。