雷击线路跳闸事故案例
- 格式:ppt
- 大小:73.50 KB
- 文档页数:9
英德某公司一次雷击事故案例分析发表时间:2019-08-14T09:24:09.103Z 来源:《防护工程》2019年10期作者:刘贵霞姚继乳付春阳陆健波[导读] 据该公司负责人反映,2019年04月22日13时至14时左右有雷雨天气,该公司的印刷车间内一台印刷机设备遭受雷击损坏。
广东省英德市气象局英德 513000 摘要:以英德某公司一次雷击事故案例的现场勘查数据及调查结论为依据,针对该公司内的不完善的防直击雷和防感应雷装置,提出了有针对性的防雷改进措施,为相类似的雷击事故提供了理论参考。
关键词:防直击雷雷电波侵入防雷电感应跨步电压1受灾现场情况调查据该公司负责人反映,2019年04月22日13时至14时左右有雷雨天气,该公司的印刷车间内一台印刷机设备遭受雷击损坏。
由当地气象局组成的调查组接到报案后,对受灾单位某公司内的印刷车间进行了现场地理位置、四周环境、受损设备、线路布设、接地措施等方面的勘察工作,具体情况如下: 该公司地处英德市东华镇工业项目区内,四面平坦,远处环山,附近无河流。
该印刷车间附近有仓库3栋,仓库前面都有后增加的连片金属棚,金属棚均无防雷接地措施,且未与整厂建筑物接地相连接。
印刷车间天面已装设了防直击雷措施,天面后增加有29个冷却塔,冷却塔无防雷措施。
冷却塔为非金属材质,冷却塔采用金属管道与车间设备直接连通。
北面有总配电房,印刷车间供电线路由总配电房埋地引入印刷车间一楼分配电柜,总配电房装有两台一级电源浪涌保护器,印刷车间的一楼分配电柜内未装设浪涌保护器。
据被调查人反映,雷灾发生时,该公司保安人员正在印刷车间门口附近巡逻,雷击时,目击有电光在门口水泥路边乱窜,当时该保安手持雨伞,明显感觉持雨伞的手有触电感。
雷击后,总配电房已跳闸,整个厂处于停电状态。
后来经检查恢复通电后,发现印刷车间一楼一台印刷机内部机械配件(制冷水箱)损坏,直接财产损失约一万元人民币。
2受灾原因分析根据英德市气象局气象监测网与广东省雷达探测资料综合分析,2019年04月22日11时至16时,英德市东华镇工业项目区及周边地区出现强对流天气,伴有雷电、大风、短时强降水等天气现象,其中11-14时出现3小时59.1毫米的短时强降水与12.1m/s(6级)的短时大风。
案例丨某电厂“8.1”因外部线路遭雷击跳闸全厂停电事件2017-02-26一、事故属性:涉网事件。
二、损失概况: 因雷击导致CT受损,更换六台CT。
三、事件经过2013年8月1日,某电厂#4、#5、#6机组(200MW)运行,2时00分突发强雷暴、大风、降水天气。
2时06分,网控室盘前发“某某Ⅱ线保护动作”信号,Ⅱ线开关跳闸。
2时08分,网控室盘前发“某某Ⅰ线保护动作”、“110KV BZT动作”和“330kV母差保护动作”信号,330kV某某Ⅰ线、#4机组3304、3300母联开关、#7联变3307开关、#6机组3306开关跳闸,330kVⅠ母失压。
BZT保护装臵启动跳开1107开关,1121开关联动成功,厂用电源联动正常。
2时23分,#5发电机“定时限、反时限过激磁保护”动作,#5机组3305开关跳闸,330kVⅡ母失压。
至此,#4、#5、#6发电机因出口开关跳闸与系统解列,#4、#5、#6汽轮机打闸,转速到零后投盘车正常;2时55分,三台机组安全停运,200MW机组对外全厂停电。
四、应急救援事件发生后,运行部主任(应急办公室主任)在接到现场情况汇报后,立即启动全厂全停应急处臵方案,应急小组成员立即投入到应急抢救当中,在当班值长的统一指挥下,立即按照“全厂停电事故应急处臵方案”进行事故处理,安全停运#4、#6、#5机组。
检修人员对设备进行检查、检测;查找故障原因。
经过全面检查,对受损设备系统进行了全面检测与试验。
同时,紧急采购了6台LVQB-330W2型号的CT。
更换了宏观检查受损严重的Ⅰ线CT;采用环氧树脂涂抹工艺,对Ⅱ线的CT下端第一层瓷裙放电痕迹处进行了修复处理。
在进行了Ⅱ线CT检测工作后,8月2日7时45分,Ⅱ线加运;8时10分,#5机组并网;18时27分,#7联变加运; 18时08分,#4机组并网。
8月5日9时43分,#6机组加运;8月6日7时05分,某某Ⅰ线CT更换后加运;至此,电厂200MW机组因外部线路遭雷击跳闸的三台机组全部恢复运行,330kV系统恢复为标准运行方式。
一、事故经过6月16日14:39,某矿35KV变电站因供电线路遭雷击造成供给主扇的I回线路581跳闸,正在运行的1号主扇停机,15:07合上母联,1#主扇重新启动后正常运行,停风28分钟。
二、事故原因分析1、对于主扇的结构、性能、工作原理以及操作规程不熟悉,在操作母联柜时操作不到位,未能在主扇一段停电的情况下及时切换到II段电源。
2、主扇司机对主扇故障应急处理程序不熟悉。
三、事故防范措施1、加强对主扇司机的业务技能培训。
2、矿有关部门加强对重要设备的重视程度。
一、事故经过:2002年8月13日9:30,主扇风机司机张XX、韩XX发现1#电机停转,同时发现10#电源柜无电压指示,为及时开启风机,司机张XX发现13#柜电压指示正常,随即合上13#柜与10#柜之间的联络开关,此时,隔离开关有火花闪过,随后13#柜电源跳闸,经过联系,35KV变电所迅速恢复了13#柜电源,于是,司机张XX、韩XX开启了2#风机。
二、事故原因1、10#电源柜无计划停电。
2、10#电源柜跳闸后,失压拖扣器未起作用,为13#柜的返送电源构成回路。
3、13#柜为35KV变电所其它馈电柜提供了电源,造成过流跳闸。
三、防范措施:1、要组织职工重新学习“三大规程”及安全技术措施。
2、加强特殊作业人员的安全管理。
一、事故经过2003年8月29日八点班,某矿当班主扇司机赵某巡检时,听见风机声音异常,经检查未发现情况,便立即停2#风机。
停机后,2#稀油站报警,再连续启动2#稀油泵启动不了。
此时,赵某又启动1#稀油泵,压力正常后按倒风机程序关2#风门,开1#风门,启动1#风机,运行正常后向调度站进行了汇报,影响生产24分钟。
二、事故原因1、主扇司机素质不高,对主扇控制原理不熟悉,主扇司机赵某听到风机声音异常后盲目人工紧急停车。
2、35KV变电所6KV母线下出线发生故障。
三、防范措施1、主扇电机要尽快安装欠压保护,避免主扇长期在低电压下运行,损坏电机。
某水电站主变遭遇雷击事故案例分析与防范一、简述某年4月1日3时15分,某水电厂#3主变压器遭雷击,事故抢修至5月30日18时40分。
二、事故经过事故前,#1机并网运行,1FP=14MW,1FQ=0MVAR,#2、#3、#4机备用,电厂经110KV鱼胡Ⅰ回线路#504开关与电网并列。
厂用Ⅰ、Ⅱ、Ⅲ段分段运行。
4月1日3时15分09秒,监控系统报“鱼胡Ⅰ回线路相间距离Ⅰ段动作”、“鱼胡Ⅰ回线路零序Ⅰ段动作”,504开关跳闸,电厂与系统解列。
运行当值人员调整#1机负荷,由#1机带1B、2B、3B主变及厂用运行。
3时15分35秒,#3主变重瓦斯、差动保护动作,530开关跳闸。
#3主变重瓦斯、差动保护动作后,组织维护人员对#3主变进行检查,发现#3主变压器的绝缘达不到规范要求,对油样进行色谱分析,发现乙炔含量高达600多PPm,内部有过高能量放电,经与厂家协商,决定吊芯检查。
4月2日,对#3主变压器进行吊芯检查,发现变压器高压侧A、B两相线圈有电弧烧伤痕迹,相间绝缘纸板环氧螺杆粉碎性炸裂。
4月4日将#3主变压器运至衡阳变压器厂,更换了A、B两相高压绕组,5月24日#3主变压器运回电厂,经试验合格5月30日18时40分将#3主变压器投入运行。
#3主变压器型号:SF8-12500/110;额定容量:12500 kVA;额定电压:110/10 kV;额定频率:50 Hz;接线组别YN,d11;相数:3;冷却方式:风冷;中性点接地:直接接地。
设备已运行4年。
三、事故原因#3主变转检修后,取油样送试验院进行色谱分析,结果油中所含气体各项指标均严重超标,表明内部存在高能放电(电弧放电)现象;从油中气体含有大量CO、CO2可看出,还存在固体绝缘燃烧现象;对变压器进行吊罩检查,发现A、B相线圈离端部约200mm处经相间绝缘隔板固定用的绝缘螺丝击穿,线圈扁铜线被烧损约1/3;高压侧避雷器C相动作一次,可见#3主变曾遭受雷击,引起内部绝缘击穿短路。
超高压输电线路雷击跳闸典型故障分析依阳随着我国电力事业的不断发展,在我国境内大量建设的超高压输电线路成为新的电力供应体系的主体,而输电线路的稳定运行是电力事业的重要保障。
然而在实际运行中,由于自然环境以及外界干扰等因素的影响,导致了超高压输电线路的故障现象不断发生。
本文以一起超高压输电线路雷击跳闸故障为案例,通过对故障的分析,总结出超高压输电线路故障处理的基本思路和方法,为保障电网的稳定运行提供参考。
一、故障概述2019年8月某天,一台750千伏超高压输电线路因雷击而发生跳闸故障,对周边电力设施和用户的供电造成了影响。
故障前,该线路经历了多次雷电天气,但均未发生异常情况。
故障发生时,气象部门并未发布相关天气预警。
接收到跳闸信号后,地面巡检人员前往现场查看,发现线路塔杆附近有明显的雷击痕迹,但导线和地线没有断裂,其他设备和设施也未出现异常。
电力调度中心随即展开故障处理工作,并在一小时后排除故障,恢复了电力供应。
二、故障原因分析由于超高压输电线路具有较高的电压、电流和电磁场强度,容易受到天气、地形、物体等自然环境因素和电力负荷、设备运行等外部因素的影响。
因此,从多个方面分析故障原因,对于故障的判断、防范和解决具有重要意义。
1. 雷击雷击是一种常见的超高压输电线路故障原因。
经过现场查看,故障发生时塔杆附近有明显的雷击痕迹,表明该线路受到了雷击。
当雷电击中超高压输电线路时,会产生较大的电流和电压冲击,导致设备带电或被击穿,引起跳闸故障。
此外,由于线路经历了多次雷电天气,导致线路绝缘系统老化,增加了故障的发生概率。
2. 设备损坏超高压输电线路的输电设备包括支柱、导线、绝缘子、跳闸器等。
这些设备在运行中,可能因为开关动作不当或设备老化而导致失效,从而导致输电线路跳闸故障。
3. 负载异常超高压输电线路输送大量的电力,当电力负荷异常时,如电流过大或负荷瞬变,会造成设备的过载和跳闸故障。
此外,大量负荷的集中开关也容易引起跳闸故障,短路电流和削弱电压等因素都是导致故障的原因之一。
发电机因雷电冲击致使全厂停电案例分析1.概述xx年xx月xx日,某发电厂发生一起因持续强雷暴雨造成的#1、#2机组全停、厂用电全部失去的事故。
该厂总装机容量4×300MW。
电气主接线方式为发电机-变压器组接线,发电机出口电压20kV,直接经变压器升压接入220kV母线,每台发变组单元装设一台220kV SF6开关,另设一台三卷高压厂用变压器给本机组两段6kV厂用母线供电。
每两台发变组单元装设一台三卷启动/备用变,向两段6kV公用段母线供电,并作为两台机组6kV厂用段备用电源,其中#l、#3机6kV厂用段与对应公用段母线互为联锁备用;6kV公用I段与公用Ⅱ段互为手动备用。
220kV配电装置集中在网控室控制,220kV系统为双母双分段接线方式;6回出线接入电网,分别为220kV RZ甲、乙线;RP甲、乙线;RY线;RB线共6回。
2.事故经过2.1故障前的运行方式:事故发生前,全厂四台机运行.220kV系统及厂用电均为正常运行方式,即RB线2284、ZR甲线2229、#l发变组2201挂1母;RP甲线2228、ZR乙线2230、#2发变组2202、#1启动/备用变2211挂2母;RP乙线2348、#3发变组2203、#2启/备变2212挂5母;RY线2230、#4发变组2204挂6母。
母联开关2012、2056及分段开关2015、2026在合位,各机组带本机组厂用电运行,各备用电源开关均在联锁备用状态,事故发生时电厂所在地区出现持续强雷雨天气。
2.2事件经过:XX月XX日8:13升压站传来一声巨响,集控、网控中央信号事故喇叭响,控制室常明灯熄灭,事故照明灯亮。
#l机组2201、#2机组2202、#l启/备变2211、ZP甲线2228、ZP乙线2348、RZ乙线2230、l、2母母联开关2012、2、6母分段开关2026均跳闸。
由于#l、2机组以及#l启/备变05T跳闸,I期厂用电全部失去。
#l 柴油发电机自动启动正常,380V保安IA段、IB段在失压后30秒内相继恢复供电;#2柴油发电机自启动不成功,值班员立即到柴油发电机房手动启动#2柴油发电机成功,于8:14分分别恢复380V保安ⅡA段及保安ⅡB 段供电。
发电机因雷电冲击致使全厂停电案例分析1.概述xx年xx月xx日,某发电厂发生一起因持续强雷暴雨造成的#1、#2机组全停、厂用电全部失去的事故。
该厂总装机容量4×300MW。
电气主接线方式为发电机-变压器组接线,发电机出口电压20kV,直接经变压器升压接入220kV母线,每台发变组单元装设一台220kV SF6开关,另设一台三卷高压厂用变压器给本机组两段6kV厂用母线供电。
每两台发变组单元装设一台三卷启动/备用变,向两段6kV公用段母线供电,并作为两台机组6kV厂用段备用电源,其中#l、#3机6kV厂用段与对应公用段母线互为联锁备用;6kV公用I段与公用Ⅱ段互为手动备用。
220kV配电装置集中在网控室控制,220kV系统为双母双分段接线方式;6回出线接入电网,分别为220kV RZ甲、乙线;RP甲、乙线;RY线;RB线共6回。
2.事故经过2.1故障前的运行方式:事故发生前,全厂四台机运行.220kV系统及厂用电均为正常运行方式,即RB线2284、ZR甲线2229、#l发变组2201挂1母;RP甲线2228、ZR乙线2230、#2发变组2202、#1启动/备用变2211挂2母;RP乙线2348、#3发变组2203、#2启/备变2212挂5母;RY线2230、#4发变组2204挂6母。
母联开关2012、2056及分段开关2015、2026在合位,各机组带本机组厂用电运行,各备用电源开关均在联锁备用状态,事故发生时电厂所在地区出现持续强雷雨天气。
2.2事件经过:XX月XX日8:13升压站传来一声巨响,集控、网控中央信号事故喇叭响,控制室常明灯熄灭,事故照明灯亮。
#l机组2201、#2机组2202、#l启/备变2211、ZP甲线2228、ZP乙线2348、RZ乙线2230、l、2母母联开关2012、2、6母分段开关2026均跳闸。
由于#l、2机组以及#l启/备变05T跳闸,I期厂用电全部失去。
#l 柴油发电机自动启动正常,380V保安IA段、IB段在失压后30秒内相继恢复供电;#2柴油发电机自启动不成功,值班员立即到柴油发电机房手动启动#2柴油发电机成功,于8:14分分别恢复380V保安ⅡA段及保安ⅡB 段供电。
超高压输电线路雷击跳闸典型故障分析依阳2019年6月22日晚,河南省依阳县发生了一起超高压输电线路雷击跳闸故障。
该事件直接导致全县大面积停电,并给供电公司的抢修工作带来了极大的困难。
在故障处理过程中,对故障原因的详细分析和定位具有非常重要的意义。
本文将针对该事件进行分析。
一、事件过程2019年6月22日20时许,依阳县境内发生了一场雷雨天气。
当时,河南电网公司依阳供电分公司的超高压输电线路出现异常,导致局部跳闸。
可此后,线路再次受到雷击,导致跳闸范围进一步扩大,供电公司调度中心迅速响应,启动应急预案,调派人员前往现场抢修。
然而,由于受到严重的雷雨天气影响,所派人员无法顺利登上离地约50米的超高压输电线路杆塔进行检修,导致整个依阳县大面积停电,停电面积约为800平方公里。
二、故障分析对于该事件,供电公司经过紧急抢修,于当晚11时左右恢复了依阳县的供电。
但这只是暂时的处理措施,为了彻底解决该故障,必须从故障原因和故障定位两个方面进行全面分析。
1.故障原因供电公司技术人员对该超高压输电线路进行了详细的检查和测试,并对故障原因进行了初步推断。
据了解,该超高压输电线路经过多年的运行,设备老化程度较高,某些零部件已经失去一定的耐雷能力。
在该晚的雷雨天气中,由于该线路所处的地形条件和环境气象的影响,极易引发雷击现象,致使跳闸事件的发生。
2.故障定位对于该超高压输电线路的故障定位,供电公司技术人员采取了全方位的方法,具体包括:(1)开展巡检排查:技术人员利用直升机搜寻跳闸范围的附近超高压输电线路杆塔,检查设备是否存在受损现象。
(2)在线检修:针对现场部分线路杆塔的故障情况,技术人员用绳索悬挂在电缆上,根据现场实际情况开展钳工、铁工、架线等多种工作。
(3)利用无人机:通过使用自主飞行的无人机对线路及附近的森林、山体、沟谷等地形进行拍照、勘察,提供全方位的场景信息,为技术人员的工作提供依据。
三、故障处理依阳县停电事件后,供电公司迅速行动,展开抢修工作。