人教版七年级上册数学易错题整理训练
- 格式:doc
- 大小:86.00 KB
- 文档页数:4
人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点力表示的数为8,方是数轴上位于点力左侧一点,且AB=20,动点/从力点出发,以每秒$个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>O)秒.B A' 0F~>(1)写出数轴上点方表示的数;点/表示的数(用含力的代数式表示)(2)动点6从点方出发,以每秒J个单位长度的速度沿数轴向右匀速运动,若点/、C同时出发,问多少秒时/、6之间的距离恰好等于2?(3)动点6从点方出发,以每秒J个单位长度的速度沿数轴向左匀速运动,若点/、6同时出发,问多少秒时/、6之间的距离恰好又等于2?(4)若/为〃的中点,八为方的中点,在点/运动的过程中,线段版的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段助的长.【答案】(1)- 12; 8 - 5t(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=2O,解得t=2.75∙答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动X秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5×-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3×=20+2解得:x=lL答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:Ill 1 1MN=MP+NP= 2AP+2 BP= 2 (AP+BP) =ZAB= 2 x20=10,②当点P运动到点B的左侧时:PNBM AIll _ 1MN=MP-NP= Z AP-2 BP= 2 (AP-BP) ^AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)点A表示的数为8, B在A点左边,AB=20,;.点B表示的数是8-20=-12,•••动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,二点P表示的数是8-5t.故答案为-12, 8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q 之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动X秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.由此可得,木棒长为cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:"我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!"美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。
人教版七年级上数学易错题一.填空1.,和统称为正数。
和统称为分数。
,,,,和统称为有理数。
和统称为非负数;和通称为非正数;和统称为非正整数;和统称为非负整数。
2.-(+5)表示_____的相反数,即-(+5)=____;-(-5)表示_____的相反数,即-(-5)=___;3.已知数轴上A,B表示的数互为相反数,并且两点间的距离是6,点A在点B 的左边,则点A,B标识的数分别是_______。
二.应用题1.-7,3.5,-3.1415,π,0.03,-3又1/2,10,-0.23,-4/2自然数集合:整数集合:正分数集合非正数集合有理数集合2.观察下面一列数,探求其规律:-2分之一,3分之二,-4分之三,5分之四,-6分之五,7分之六...(1)写出7,8,9项的三个数;(2)第2012个数是什么?(3)如果这一列数无限的排列下去,与那两个数越来越近?3.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?4.小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。
列式计算,小明和小红谁为胜者?5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。
(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?6、(本题7分)今年夏天某地遭遇洪灾,甲乙两地堤坝发现险情,指挥部分别调派27 人和19人去甲乙两处抢险,后因情况紧急,两地都要求派人支援,而指挥部可调动的其他抢险队员只有20人,考虑到甲处的抢险任务重,所以甲处抢险的总人数必须是乙处总人数的2倍,问指挥部应给甲、乙两处各派多少人?有理数笔记:。
人教版七年级初一数学期中易错题集锦人教版七年级数学上册易错题集锦一、选择题:1.下列说法中正确的是()A。
有最小的正数B。
有最大的负数C。
有最小的整数D。
有最小的正整数2.在-22,π。
333四个数中,有理数的个数为()A。
1个 B。
2个 C。
3个 D。
4个3.绝对值最小的有理数是()A。
1 B。
0 C。
-1 D。
不存在4.绝对值最小的整数是()A。
-1 B。
1 C。
0 D。
不存在5.3.14-π的值为()B。
3.14-π6.比较-111/234,-1/的大小,结果正确的是()C。
<-<-7.若ab≠0,则a/b+b/a的值不可能为()D。
-28.已知数轴上的A点到原点距离为2,那么数轴上到A点距离是3的点所表示的数有()B。
2个9.数轴上表示整数的点称为整点,某数轴的单位长度为1㎝,若在数轴上画出一条长2004㎝的线段AB,则AB盖住的整点个数是()C。
2004或200510.有一个两位数,它的十位数字是b,个位数字是a,则这个两位数的大小是()C。
10b +a11.XXX利用计算机设计了一个计算程序,输入与输出的数据如下表:输入输出… …1 22 323 510 417 526当输入数据8时,输出的数据是()B。
676112.若x+xy=2,y+xy=-1,则x+2xy+y的值是()A。
113.一辆汽车在a秒内行驶m米,则它在2分钟内行驶多少米。
A。
120m B。
6m C。
20m D。
10m15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是______。
4或-216.大于-3.5小于4.7的整数有_______个。
817.用“>”、“<”或“=”填空。
11/9 < 10/918.若x-y,x+y<0.19.(1) 若a>0,b0,a(-b)0.2) 若ab>0,b0,且a+b<0,则a<-b。
20.-1/2的倒数是-2,倒数等于本身的数是1和-1,相反数等于本身的数是0,绝对值等于本身的数是0.21.3的相反数是-3,若a>3,则这个数是a-3.22.数轴上点M表示2,点N表示-3.5,点A表示-1,在点M和点N中,距离A点较远的是点N。
人教版七年级数学上册易错题100道相交线和平行线易错题(28题)1、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向左拐300,第二次向右拐300 ;B 、第一次向右拐500,第二次向左拐1300;C 、第一次向右拐500,第二次向右拐1300 ;D 、第一次向左拐500,第二次向左拐1300. 2、如图1,AB ∥CD ,那么∠A+∠C+∠AEC =( ) A .360° B .270° C .200° D .180°(1) (2) (3) 3、如图2所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D 4 如图3所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 5 观察图形,下列说法正确的个数是( ) ①过点A 有且只有一条直线AC 垂直于直线l ; ②线段AC 的长是点A 到直线l 的距离。
③线段AB 、AC 、AD 中,线段AC 最短,根据是垂线段最短; ④线段AB 、AC 、AD 中,线段AC 最短,根据是两点之间线段最短; A .1个 B .2个 C .3个 D .4个6、下列说法中正确的是( )A .三角形三条高所在的直线交于一点。
B .有且只有一条直线与已知直线平行。
C .垂直于同一条直线的两条直线互相垂直。
EDCBA4321E DCBACD .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
7、如图,DH ∥EG ∥BC ,且DC ∥EF ,那么图中和∠1相等的角的个数是( )A 、2B 、4C 、5D 、6H C1G D FEB A8 下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A .1 B .2 C .3 D .以上结论皆错9 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138 、;B . 都是10 ;C . 42138 、或4210 、;D . 以上都不对10、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补D .平移变换中,各组对应点连成两线段平行且相等11、如图5,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180 B .270 C .360 D .54012、已知:如图6,AB//CD ,则图中α、β、γ三个角之间的数量关系为( ).A 、α+β+γ=360︒B 、α+β+γ=180︒C 、α+β-γ=180︒D 、α-β-γ=90︒abMP N 1 23 图5A B 120°α25°C D15、把“等角的补角相等”写成“如果…,那么…”形式 16、如图7,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = 17、如图8,把长方形纸片沿折叠,使,分别落在,的位置,若,则等于图7 图818、如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数.CDFEBA19、如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠DNF ,∠1=∠2,那么MG ∥NP ,试写出推理过程.图6ABCDE20 如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论无需证明.APB DC E21如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?22 如图,已知直线 1l ∥2l ,且 3l和1l 、2l 分别交于A 、B 两点,点P 在AB 上。
人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。
人教版数学七年级上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
0D C B A 期末复习易错题典型题整理姓名一、选择题1.8708900精确到万位是( )A .870万B .8.70×106C .871×104D .8.71×1062.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( )A .65-B .65C .56-D .563.a 、b 两数的平方差除以a 与b 的差的平方,用代数式表示是 ( )A.()222b a b a -- B.22b a b a -- C.()222b a b a -- D.222b a b a -- 4.当x =-3时,多项式ax 5+bx 3+cx -5的值是7,那么当x =3时,它的值是 ( )A .-3B .-7C .7D .-175.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为40,则满足条件的x 的不同值最多有( )A . 2个B . 3个C . 4个D . 5个a bab+6.若=0,则下列结论中成立的是 ( )A .a b 、是一对不等于0的互为相反数B .a b 、互为倒数C .0a =或0b =D .0a =且0b =7.若一个数的相反数为非负数,则这个数是( )A .正数 B.负数 C.正数或0 D.负数或08.甲、乙两名同学从学校到县城,甲的速度是4千米/小时,乙的速度是6千米/小时,甲先出发1小时,结果乙比甲早到1小时,则学校与县城间的路程是( )A.24千米B.12千米C.10千米D.8千米9.有两根同样长的蜡烛,粗烛可燃烧4小时,细烛可燃烧3小时。
一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现粗烛的长度是细烛的2倍,则停电时间为( )A.2小时B.2小时20分C.2小时24分D.2小时40分10.在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交11.数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( ) A.a c b d +<+ B.a c b d +=+ C.a c b d +>+ D.不确定12.一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( )A 、高12.8%B 、低12.8%C 、高40%D 、高28%二、填空题13.将数轴对折,是表示—3和1的两个点重合,若此时表示—5的点与另一个表示=x x 的点也重合,则 .14.比—4大3的数是 ,比—4大—6的数是 ,比—4的相反数大—4的数是 .15.算式—8—3+1—7按“和”的意义读作 ,按“运算”的意义读作 .16.现有一个不成立的等式“62—60=4”,请移动其中一个数字,使得等式成立,则移动后成立的等式是 .17.甲乙丙丁四个小朋友合买了一个60元的电动玩具,甲付的钱数是其他小朋友付的总钱数的一半,乙付的钱数是其他小朋友付的总钱数的31,丙付的钱数是其他小朋友付的总钱数的,41则丁付了 元.18.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10,两种都会的有7人,设会弹古筝的有m 人,则该班同学共有 人(用含m 的式子表示)19.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次的自己顺序的倒数加1,第1位同学报(111+),第2位同学报(121+),第3位同学报(131+)……这样得到的20个数的积为 . 20.如果两个角的两条边分别互相平行其中一个角45°,则另一个角等于 °. 21.在等号右边的括号内填上适当的项.(1)a b c d a ++-=+( ); (2)a b c d a -+-=-( );(3)a b c d a b ---=-+( ); (4)a b c d a b +++=+-( ).22.如图,边长为a 和3的两个正方形在一起,则阴影部分面积为 . (结果用含有a 的式子表示,并化成最简形式)三、解答题 23.已知0)21(32=-+-b a ,求代数式22222ab b a +-⎪⎭⎫⎝⎛的值.24.甲、乙两工人同时接受一批生产任务,开始工作时,甲先花去212小时改装机器,提高工作效率,因此前4小时结束时,甲比乙少做400个零件,继续工作4小时后,甲反比乙多做4200个零件,问这一天甲、乙各做了多少个零件?25.观察下列各式:(1)-a+b=-(a-b) ; (2) 2-3x=-(3x-2); (3) 5x+30=5(x+6); -x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知的值求22221,21,5b b a b b a +++--=-=+.26.世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母A 、B 、C 、D 、E 的五个大小相同的正方形是展厅,剩余的是四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米. 设展厅的正方形边长为x 米:(1)用含x 米的代数式表示核心筒的正方形边长为 米;(2)求该模型的每个休息厅的图形周长(用含x 的式子表示);(3)若每个展厅的正方形周长比每个休息厅的图形周长少36米,求x 的值.27.大家知道a 的几何意义是:数轴上表示数a 的点到原点之间的距离.如1-a 的几何意义为:表示数轴上表示数a 与数1两点之间的距离.(1)试问 :5+a 的几何意义为:数轴上表示数a 与数 两点之间的距离;(2)根据绝对值的几何意义解决以下问题:设a 、b 、c 为整数,且|a ﹣b |+|c ﹣b |=1,求|c ﹣a |+|a ﹣b |+|b ﹣c |的值.28.一列客车的速度每小时60千米,一列货车的速度是每小时45千米,货车比客车长135米,如果两车在平行轨道上同向行驶,客车从后面赶上货车,它们交叉时间是1分30秒,求各车长度,如果两车在平行的轨道上相向行驶,它们交叉时间要多少秒?29.晚饭后,小明准备出去散步,出去时看了一下表,时间是6点多,时针与分针成90°角.散步回家后,小明又看了一下表,还不到7点,而时针与分针又恰好成90°角,问小明出去了多长时间?30.已知数轴上B A 、两点对应数分别为P ,和42 为数轴上一动点,对应数为x .(1)若的值;的三等分点,直接写出为线段x AB P (2)数轴上是否存在点值;?若存在,求出点距离和为点、点到使x B A P P 10,若不存在,请说明理由。
人教版七年级上册数学全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD= ∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD= ∠AOC,∠DOE= (n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).【答案】(1)解:∵∠BOC=40°,OD平分∠AOC,∴∠AOD=∠DOC=70°,∵∠DOE=90°,则∠AOE=90°﹣70°=20°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解得:x= ,∴∠AOE=60﹣x=60﹣ =(3)解:设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解得:x= ,∴∠AOE= ﹣ =【解析】【分析】(1)首先根据平角的定义,由∠AOC=∠AOB-∠BOC算出∠AOC的度数,再根据角平分线的定义由∠AOD=∠DOC =∠AOC算出∠AOD的度数,最后根据∠AOE=∠DOE-∠AOD即可算出答案;(2)可以用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE;(3)用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE。
2.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD 平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.【答案】(1)解:BE垂直平分AD,理由:∵AM⊥BC,∴∠ABC+∠5=90°,∵∠BAC=90°,∴∠ABC+∠C=90°,∴∠5=∠C;∵AD平分∠MAC,∴∠3=∠4,∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,∴∠BAD=∠ADB,∴△BAD是等腰三角形,又∵∠1=∠2,∴BE垂直平分AD(2)解:△ABD、△GAE是等边三角形.理由:∵∠5=∠C=30°,AM⊥BC,∴∠ABD=60°,∵∠BAC=90°,∴∠CAM=60°,∵AD平分∠CAM,∴∠4= ∠CAM=30°,∴∠ADB=∠4+∠C=60°,∴∠BAD=60°,∴∠ABD=∠BDA=∠BAD,∴△ABD是等边三角形;∵在Rt△BGM中,∠BGM=60°=∠AGE,在Rt△ACM中,∠CAM=60°,∴∠AEG=∠AGE=∠GAE,∴△AEG是等边三角形.【解析】【分析】(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;根据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.3.将一副三角板如图1摆放在直线MN上,在三角板OAB和三角板OCD中,,, .(1)保持三角板OCD不动,将三角板OAB绕点O以每秒的速度逆时针旋转,旋转时间为t秒.①当 ________秒时,OB平分此时 ________ ;②当三角板OAB旋转至图2的位置,此时与有怎样的数量关系?请说明理由;________(2)如图3,若在三角板OAB开始旋转的同时,另一个三角板OCD也绕点O以每秒的速度逆时针旋转,当OB旋转至射线OM上时同时停止.①当t为何值时,OB平分?②直接写出在旋转过程中,与之间的数量关系.【答案】(1)1.5;;,(2)解:①由题意:,,,所以t为2时,OB平分②当时,当时,当时,【解析】【解答】(1)①当时,即,故答案为【分析】(1)该小题是简单的旋转问题,结合图1即可求得t的值及与的关系该小题第二问涉及角的旋转问题,利用特殊角解决本题就好做多了(2)平分时,根据角平分线的定义即可建立等量关系4.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.5.综合题(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=________.(用含α与β的代数式表示)【答案】(1)解:∵CO⊥AB,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠EOC= ∠AOC= ×90°=45°,∵OF平分∠BOC,∴∠COF= ∠BOC= ×90°=45°,∠EOF=∠EOC+∠COF=45°+45°=90°;(2)解:∵OE平分∠AOD,∴∠EOD= ∠AOD= ×(80+β)=40+ β,∵OF平分∠BOC,∴∠COF= ∠BOC= ×(80+β)=40+ β,∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣β;∠EOF=∠COE+∠COF=40﹣β+40+ β=80°;(3)【解析】【解答】(3)如图2,∵∠AOC=∠BOD=α,∠CO D=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE= (α+β),∴∠COE=∠DOE﹣∠COD= ,如图3,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE= (α﹣β),∴∠COE=∠DOE+∠COD= .综上所述:,故答案为:.【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义得到∠EOD=40+ β,∠COF=40+ β,根据角的和差即可得到结论;(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即可得到结论.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB 的下方.(1)若OM恰好平分∠BOC,求∠BON的度数;(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.【答案】(1)解:∵∠BOC=120°,OM恰好平分∠BOC∴∠BOM=∠BOC=60°又∵∠MON=90°∴∠BON=∠MON−∠BOM=90°−60°=30°(2)解:设的余角为x°,则由题意得:,x=15,3x=45,所以的度数为45°(3)解:(0°< <90°)..【解析】【分析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON−∠BOM,即可求出结果。
一、初一数学有理数解答题压轴题精选(难)1.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.2.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。
一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒。
(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是________。
人教版七年级数学上册考题易错汇总及答案解析1.下表是某年 1 月份我国几个城市的平均气温,在这些城市中,平均气温最低的城市是()城市北京上海沈阳广州太原平均气温﹣5.6°C2.3°C﹣16.8°C17.6°C﹣11.2°CA.北京B.沈阳C.广州D.太原【考点】有理数大小比较.【解答】﹣16.8<﹣11.2<﹣5.6<2.3<17.6,∴在这些城市中,平均气温最低的城市是沈阳,故选:B.2.据报告,70 周年国庆正式受阅人数约 12000 人,这个数据用科学记数表示()A.12×104 人B.1.2×104 人C.1.2×103 人D.12×103 人【考点】科学记数法-表示较大的数.【解答】12000 用科学记数法表示为 1.2×104.故选:B.3.下列各式中,大小关系正确的是()A.0.3<﹣B.﹣>﹣C.﹣>﹣D.﹣(﹣)=﹣【考点】相反数;绝对值;有理数大小比较.【解答】A. ,故本选项不合题意;B.∵,∴,故本选项不合题意;C.∵,∴,故本选项不合题意;D. ,故本选项不合题意. 故选:B.4.已知 a>0,b<0,且|a|<|b|,则下列关系正确的是()A.b<﹣a<a<﹣bB.﹣a<b<a<﹣bC.﹣a<b<﹣b<aD.b < a<﹣b<a【考点】绝对值;有理数大小比较.【解答】∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>0,﹣a<b,∴b<﹣a<a<﹣b. 故选:A.5.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则 a﹣b 的值为()A.24B.14C.24 或 14D.以上都不对【考点】绝对值;有理数的加法;有理数的减法.【解答】∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当 a=5,b=﹣19 时,a﹣b=5+19=24,当 a=﹣5,b=﹣19 时,a﹣b=14.综上所述:a﹣b 的值为 24 或 14.故选:C.6.有理数 m,n 在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③;④﹣n﹣m>0.A.1 个B.2 个C.3 个D.4 个【考点】数轴;有理数的加法;有理数的减法.【解答】由数轴知,n<0<m,|n|>|m|,∴m+n<0,n﹣m<0,,﹣n﹣m>0,∴正确的有:①③④共 3 个. 故选:C.7.﹣的倒数是()A.﹣B.C.﹣D.【考点】倒数.【解答】﹣的倒数是﹣,故选:A.8.已知 a,b,c 为有理数,且 a+b﹣c=0,abc<0,则的值为()A.﹣1B.1C.1 或﹣1D.﹣3【考点】绝对值;有理数的减法;有理数的乘法.【解答】∵a+b﹣c=0,∴c﹣b=a,c﹣a=b,a+b=c,∵abc<0,分两种情况:①a、b、c 三个数都是负数,则原式=+﹣=﹣1﹣1+1=﹣1,②a、b、c 三数中有 2 个正数、1 个负数,即 c 是正数,原式=+﹣=﹣1+1﹣1=﹣1,故选:A.9.下列几种说法中,正确的是()A.有理数的绝对值一定比 0 大B.有理数的相反数一定比 0 小C.互为倒数的两个数的积为 1D.两个互为相反的数(0 除外)的商是 0【考点】相反数;绝对值;倒数;有理数的乘法;有理数的除法.【解答】A.有理数的绝对值不一定比 0 大,也可能等于 0,错误;B.有理数的相反数不一定比 0 小,0 的相反数还是 0,错误;C.互为倒数的两个数的积为 1,正确;D.两个互为相反的数(0 除外)的商应该是﹣1,错误;故选:C.10.在代数式中,整式的个数是()A.3B.4C.5D.6【考点】整式.【解答】、3xy、﹣、﹣是整式,故选:B.11.在代数式x﹣y,3a,a2﹣y+ ,,xyz,,中有()A.5 个整式B.4 个单项式,3 个多项式C.6 个整式,4 个单项式D.6 个整式,单项式与多项式个数相同【考点】整式.【解答】单项式有:3a,xyz,共 3 个.多项式有x﹣y,a2﹣y+ 共3 个,所以整式有 6 个. 故选:D.12.下列说法错误的是()A.﹣ x3y 的系数是﹣B.0 是单项式C. xy2 的次数是 2D.3x2﹣9x﹣1 的常数项是﹣1【考点】单项式;多项式.【解答】A.﹣x3y 的系数是﹣,故正确;B.0 是单项式,故正确;C. 的次数为 3,不是 2,故错误;D.3x2﹣9x﹣1 的常数项是﹣1,故正确;故选:C.13.多项式﹣ x3y2﹣x5y2+8 的最高次项是()A.x5y2B.﹣x5y2C.D.8【考点】多项式.【解答】多项式﹣x3y2﹣x5y2+8 的最高次项是﹣x5y2,故选:B.14.去括号正确的是()A.﹣(a﹣1)=a+1B.﹣(a﹣1)=a﹣1C.﹣(a﹣1)=﹣a+1D.﹣(a﹣1)=﹣a﹣1【考点】去括号与添括号.【解答】﹣(a﹣1)=﹣a+1,正确,故选项 C 符合题意;故选:C.15.下列代数式是同类项的是()A. 与 x2yB.2x2y 与 3xy2C.xy 与﹣xyzD.x+y 与 2x+2y【考点】同类项.【解答】A. 与 x2y,所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确;B.2x2y 与 3xy2,所含字母相同,但相同字母的指数不同,不是同类项,故本选项错误;C.xy 与﹣xyz,所含字母不尽相同,不是同类项,故本选项错误;D.x+y 与 2x+2y 是多项式,不是同类项,故本选项错误. 故选:A.16.将四张边长各不相同的正方形纸片按如图方式放入矩形 ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示. 设右上角与左下角阴影部分的周长的差为 l.若知道 l 的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④【考点】整式的加减.【解答】设①、②、③、④四个正方形的边长分别为 a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道 l 的值,则不需测量就能知道正方形④的周长,故选:D.17.若 x=2 是关于 x 的一元一次方程 ax﹣2=b 的解,则 3b﹣6a+2 的值是()A.﹣8B.﹣4C.8D.4【考点】一元一次方程的解.【解答】将 x=2 代入一元一次方程 ax﹣2=b 得 2a﹣b=2∵3b﹣6a+2=3(b﹣2a)+2∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4 即 3b﹣6a+2=﹣4故选:B.18.小明在解方程去分母时,方程右边的﹣1 没有乘 3,因而求得的解为 x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【考点】解一元一次方程.【解答】根据题意,得:2x﹣1=x+a﹣1,把 x=2 代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.19.下列四组变形中,属于移项变形的是()A.由 5x+10=0,得 5x=﹣10B.由,得 x=12C.由 3y=﹣4,得D.由 2x﹣(3﹣x)=6,得 2x﹣3+x=6【考点】等式的性质;解一元一次方程.【解答】A、移项得出 5x=﹣10,故本选项正确;B 、去分母得出 x=12,故本选项错误; C、方程的两边除以 3 得出,y=﹣,故本选项错误; D、去括号得出 2x ﹣3+x=6,故本选项错误;故选:A.20.方程去分母得() A.3(2x+3)﹣x=2(9x﹣5)+6B.3(2x+3)﹣6x=2(9x﹣5)+1 C.3(2x+3)﹣x=2(9x﹣5)+1 D.3(2x+3)﹣6x=2(9x﹣5)+6【考点】解一元一次方程.【解答】方程的两边都乘以 6 可得:3(2x+3)﹣6x=2(9x﹣5)+6.故选:D.21.解方程 4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得 4x﹣4﹣x=2x+1;②移项,得 4x+x﹣2x=4+1;③合并同类项,得 3x=5;④化系数为 1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【考点】解一元一次方程.【解答】方程 4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得 4x ﹣4﹣x=2x+1;②移项,得 4x﹣x﹣2x=4+1;③合并同类项,得 x=5;④化系数为 1,x=5.其中错误的一步是②. 故选:B.22.某班组每天需生产 50 个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了 6 个零件,结果比规定的时间提前 3 天并超额生产 120 个零件,若设该班组要完成的零件任务为 x 个,则可列方程为()A. B.C. D.【考点】由实际问题抽象出一元一次方程.【解答】实际完成的零件的个数为 x+120,实际每天生产的零件个数为 50+6,所以根据时间列的方程为:=3,故选:C.23.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 10 人不能上车,若每辆客车乘 43 人,则只有 1 人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④【考点】由实际问题抽象出一元一次方程.【解答】根据总人数列方程,应是 40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④. 故选:D.24.如图,将正方体的表面展开,得到的平面图形可能是()A.B.C.D.【考点】几何体的展开图.【解答】A.平面图形有凹字形,不能围成正方体,故本选项不合题意;B.平面图形能围成正方体,故本选项符合题意;C.平面图形不能围成正方体,故本选项不合题意;D..平面图形不能围成正方体,故本选项不合题意;故选:B.25.用平面去截正方体,在所得的截面中,不可能出现的是()A.七边形B.六边形C.平行四边形D.等边三角形【考点】认识立体图形;截一个几何体.【解答】∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴在所得的截面中,不可能出现的是七边形,故选:A.26.下列图形折叠后能得到如图的是()A.B.C.D.【考点】展开图折叠成几何体.【解答】A.折叠后①,②,③相邻,故此选项正确;B.折叠后①与③是相对面,不可能是①,②,③相邻,故此选项错误;C.折叠后①与③是相对面,不可能是①,②,③相邻,故此选项错误;D.折叠后②与③是相对面,不可能是①,②,③相邻,故此选项错误.故选:A.27.在图中,∠ACE 的补角、余角分别是()A.∠ECB、∠ECDB.∠ECD、∠ECBC.∠ACB、∠ACDD.∠ACB、∠ACD【考点】余角和补角.【解答】∠ACE 的补角是∠ECB,∠ACE 的余角是∠ECD. 故选:A.28.如图是某个几何体的展开图,则这个几何体是()A.三棱柱B.四棱柱C.四棱锥D.三棱锥【考点】几何体的展开图.【解答】观察图形可知,这个几何体是三棱柱. 故选:A.29.下列说法正确的是()A.两点之间的所有连线中,直线最短B.若点 P 是线段 AB 的中点,则 AP=BPC.若 AP=BP,则点 P 是线段 AB 的中点D.若 CA=3AB,则 CA=CB【考点】线段的性质:两点之间线段最短;两点间的距离.【解答】A、两点之间的所有连线中,线段最短,故本选项错误;B、根据线段中点的定义可知,若 P 是线段 AB 的中点,则 AP=BP,故本选项正确;C、如图:AP=BP,但 P 不是线段 AB 的中点,故本选项错误;D、如图:AB=1,AC=3,此时 CA=CB,故本选项错误.故选:B.30.下列说法中正确的有()①射线比直线小一半;②连接两点的线段叫两点间的距离;③过两点有且只有一条直线;④两点之间所有连线中,线段最短A.1 个B.2 个C.3 个D.4 个【考点】直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;两点间的距离.【解答】①射线比直线小一半,根据射线与直线都无限长,故这个说法错误;②连接两点的线段的长度叫两点间的距离,此这个说法错误;③过两点有且只有一条直线,此这个说法正确;④两点之间所有连线中,线段最短,此这个说法正确;故正确的有 2 个.故选:B.31.直线 a 上有 5 个不同的点 A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【考点】直线、射线、线段.【解答】根据题意画图:由图可知有 AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共 10 条.故选:D.32.某公司员工分别在 A、B、C 三个住宅区,A 区有 30 人,B 区有 15 人,C 区有 10 人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A 区B.B 区C.C 区D.A、B 两区之间【考点】两点间的距离.【解答】∵当停靠点在 A 区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在 B 区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在 C 区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在 A、B 区之间时,设在 A 区、B 区之间时,设距离 A 区 x 米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当 x=0 时,即在 A 区时,路程之和最小,为 4500 米;综上,当停靠点在 A 区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在 A 区.故选:A.33.如图,点 O 在 AB 上,∠AOC=120°,OD,OE 分别为∠AOC.∠BOC 的角平分线,图中大于 0°小于 180°的角中,相等的共有()对.A.6B.5C.4D.3【考点】角平分线的定义.【解答】∵∠AOC=120°,OD,OE 分别为∠AOC.∠BOC 的角平分线,∴∠AOD=∠COD=∠BOC=60°,∠COE=∠BOE=30°,∴∠AOC=∠BOD=120°,∴图形中相等的角共有 5 对,故选:B.34.如图,在△ABC 中,∠C=90°,点 D,E 分别在边 AC,AB 上.若∠B=∠ADE,则下列结论正确的是()A.∠A 和∠B 互为补角B.∠B 和∠ADE 互为补角C.∠A 和∠ADE 互为余角D.∠AED 和∠DEB 互为余角【考点】余角和补角.【解答】∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A 和∠ADE 互为余角. 故选:C.35.有理数 x 在数轴上的位置如图所示,化简|x|﹣3|2﹣x|得 .【考点】数轴;绝对值.【解答】根据题意得 x>2,∴2﹣x<0,∴|x|﹣3|2﹣x|=x﹣3(x﹣2)=x﹣3x+6=﹣2x+6.故答案为:﹣2x+6.36.下列说法:①若|a|=﹣a,则 a 为负数;②若|a|﹣|b|=a+b,则 a>0>b;③若 a>0,a+b>0,ab≤0,则|a|>|b|;④若|a+b|=|a|﹣|b|,则 ab≤0,其中正确的是 .【考点】绝对值;有理数的加法;有理数的乘法.【解答】:①若|a|=﹣a,则 a 为非正数,即 a 为 0 或负数,所以①不正确,;②若|a|﹣|b|=a+b,则 a>0>b,不正确,因为当 a=b=0 时,原等式成立;③若 a>0,a+b>0,ab≤0,则|a|>|b|,正确,因为异号两数相加取绝对值较大的加数的符号;④若|a+b|=|a|﹣|b|,则 ab≤0,正确,因为 a,b 两个数异号,或者其中一个数为 0 即可.故答案为③④.37.单项式的系数是;次数是 .【考点】单项式.【解答】根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是 3.38.多项式 x+7 是关于 x 的二次三项式,则 m= .【考点】多项式.【解答】∵多项式是关于 x 的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即 m≠﹣2,综上所述,m=2,故填空答案:2.39.当 k=时,关于 x,y 的代数式 x6﹣5kx4y3﹣4x6+3x4y3+3 合并后不含x4y3 项.【考点】合并同类项.【解答】关于 x,y 的代数式 x6﹣5kx4y3﹣4x6+3x4y3+3 合并后不含 x4y3 项,即﹣5kx4y3 与 3x4y3 合并以后是 0,∴﹣5k+3=0,解得.故答案为:.40.小马在解关于 x 的一元一次方程=3x 时,误将﹣2x 看成了+2x,得到的解为 x=6,请你帮小马算一算,方程正确的解为 x= .【考点】解一元一次方程.【解答】当 x=6 时,=3×6,解得:a=8,∴原方程是=3x,解得:x=3. 故答案为:3.41.小华同学在解方程 5x﹣1=()x+3 时,把“()”处的数字看成了它的相反数,解得 x=2,则该方程的正确解应为 x= .【考点】解一元一次方程.【解答】设()处的数字为 a,根据题意,把 x=2 代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为 x=.故答案为:.42.已知关于 x 的方程 2mx﹣6=(m+2)x 有正整数解,则整数 m 的值是 .【考点】解一元一次方程.【解答】解关于 x 的方程 2mx﹣6=(m+2)x,得:x= .∵x 为正整数,∴为正整数,又∵m 是整数,∴m﹣2 是 6 的正约数,∴m﹣2=1,2,3,6,∴m=3,4,5,8.43.为了倡导居民节约用水,自来水公司规定:居民每户用水量在 8 立方米以内,每立方米收费 0.8 元;超过规定用量的部分,每立方米收费 1.2 元.小明家 12 月份水费为 18 元,求小明家 12 月份的用水量,设小明家 12 月份用水量为 x 立方米,根据题意,可列方程为 .【考点】由实际问题抽象出一元一次方程.【解答】∵8×0.8=6.4<18,∴x>8,根据题意,可列方程为:8×0.8+1.2(x﹣8)=18,故答案为:8×0.8+1.2(x﹣8)=18.44.王强从 A 处沿北偏东 60°的方向到达 B 处,又从 B 处沿南偏西 25°的方向到达 C 处,则王强两次行进路线的夹角为度.【考点】方向角.【解答】由图可知,∠ABD=60°(两只线平行,内错角相等)由因为∠2=25°所以∠1=60°﹣25°=35°. 故答案为:35°.45.已知关于 x、y 的单项式xm﹣ny2 与单式﹣xym 是同类项,试求整式﹣[5m﹣(2mn+2n﹣3n)]﹣( mn﹣3n)的值.【考点】同类项;整式的加减-化简求值.【解答】∵单项式xm﹣ny2 与单式﹣xym 是同类项,∴m﹣n=1,m=2,解得,m=2,n=1,﹣[5m﹣(2mn+2n﹣3n)]﹣( mn﹣3n)=﹣m+ (2mn+2n﹣3n)﹣( mn﹣3n)=﹣m+mn+n﹣ n﹣ mn+3n=﹣m﹣ mn+ n,当 m=2,n=1 时,原式=﹣×2﹣×2×1+ ×1=﹣ .46.已知有理数 a,b 在数轴上的位置如图所示,解决以下问题:(1)化简:2b+a+|3b﹣a|﹣|2a﹣b|;(2)已知(3x﹣6)2+|2﹣2y|=2b+a+|3b﹣a|﹣|2a﹣b|,请你求出代数式 3xy+2(x2+2y)﹣3(xy+x2)的值.【考点】数轴;绝对值;整式的加减-化简求值.【解答】(1)观察数轴可知:b<0,a>0,∴3b﹣a<0,2a﹣b>0,∴2b+a+|3b﹣a|﹣|2a﹣b|=2b+a+a﹣3b﹣(2a﹣b)=2a﹣b﹣2a+b =0;(2)∵(3x﹣6)2+|2﹣2y|=2b+a+|3b﹣a|﹣|2a﹣b|=0,又∵(3x﹣6)2≥0,|2﹣2y|≥0,∴,∴x=2,y=1;∴3xy+2(x2+2y)﹣3(xy+x2),=﹣x2+4y,=﹣22+4×1,=0.47.设 a,b,c,d 为有理数,=ad﹣bc,当=10 时,求代数式 2(x﹣2)﹣3(x+1)的值.【考点】有理数的混合运算;整式的加减;解一元一次方程.【解答】根据题中的新定义运算方法得:6x﹣4(3x﹣2)=10,去括号得:6x﹣12x+8=10,解得:x=,∴2(x﹣2)﹣3(x+1)=2x﹣4﹣3x﹣3=﹣x﹣7=﹣()﹣7=.∴代数式 2(x﹣2)﹣3(x+1)的值是.48.图 1 是由一副三角板拼成的图案,根据图中提供的信息,解答下列问题:(1)图 1 中,∠EBC 的度数为;(2)能否将图 1 中的三角板 ABC 绕点 B 逆时针旋转 ? 度(0°<幔?90°,如图 2),使旋转后的∠ABE=2∠DBC?若能,求出 ? 的度数,若不能,请说明理由;(3)能否将图 1 中的三角板 ABC 绕点 B 顺时针旋转 ? 度(0°<幔?90°,如图 3),使旋转后的∠ABE=2∠DBC?请直接回答,不必说明理由;答:(填“能”或“不能”)【考点】角的计算.【解答】(1)∠EBC=∠ABC+∠EBD=60°+90°=150°;(2)第一种情况:若逆时针旋转 ? 度(0<幔?60°),如图 2:据题意得 90°﹣幔?2(60?得幔?30°,∴∠EBC=90°+(60°﹣30°)=120°;第二种情况,若逆时针旋转 ? 度(60°≤幔?90°),据题意得 90°﹣幔?2(﹣?60?得幔?70°,∴∠EBC=90°﹣(70°﹣60°)=80°;故∠EBC=∠120°或80°;(3)若顺时针旋转 ? 度,如图 3,据题意得 90°+幔?2(60°+ ?得幔僵?30°∵0<幔?90°,幔僵?30°不合题意,舍去.。
人教版七年级上册数学易错题整理训练1.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为__________.2.已知A、B、C三点在同一直线上,若AB=20,AC=30,则BC的长为__________.3.在数轴上,A表示的数为-2,AB长为5,则B表示的数为___________.4.有一个三位数,百位数字为a,个位数是十位数字的2倍少3,十位数比百位数字的3 倍少4,则这个三位数应表示为:____________(用含a的代数式表示)5.学校组织一次篮球比赛,比赛要求每两个队只比赛一场,一共有8支球队参赛,则共需要安排_________场比赛。
6.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于__________.7.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=__________;②若[x+3]=﹣15,且x是整数,则x=__________.8.若∠AOB=50°,∠BOC=20°,则∠AOC=_______________.9.观察下面一列数:﹣,,﹣,,﹣,,…探求其规律.得到第2012个数是____ ______.第n个数应该表示为____________________.10.若a的绝对值等于5,b=﹣2,且ab>0,则a+b=__________.n=________________.11.若(m﹣2)2+|n+3|=0,则m﹣n=__________.m12.a、b在数轴上得位置如图所示,化简:|a+b|﹣2|b﹣a|=__________.13.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=__________.14.在有理数范围内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为x= __________.15.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍__________根,拼成第n个图形(n为正整数)需要火柴棍__________根(用含n的代数式表示).16.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m ﹣10=43m+2;③=;④=;⑤43m=n+2.其中正确的是__________(只填序号).17.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为__________(结果用n 表示).18.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意x=__________,第个格子中的数为__________;(2)若前m 个格子中所填整数之和p=2015,则m=__________,若p=2014,则m=__________;(3)若取前3个格子中的任意两个数记作a 、b ,且a≥b ,那么所有的|a ﹣b|的和可以通过计算|9﹣★|+|9﹣△|+|★﹣△|得到,其结果为__________;若取前9个格子,则所有的|a ﹣b|的和为__________.19.三个有理数a、b、c之积是负数,其和是正数,当x =c cb ba a++时,则______29219=+-x x 。
7年级上期末易错题复习
1.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为__________.
2.已知A、B、C三点在同一直线上,若AB=20,AC=30,则BC的长为__________.3.在数轴上,A表示的数为-2,AB长为5,则B表示的数为___________.
4.有一个三位数,百位数字为a,个位数是十位数字的2倍少3,十位数比百位数字的3 倍少4,则这个三位数应表示为:____________(用含a的代数式表示)
5.学校组织一次篮球比赛,比赛要求每两个队只比赛一场,一共有8支球队参赛,则共需要安排_________场比赛。
6.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于__________.
7.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则
①[8.9]=__________;②若[x+3]=﹣15,且x是整数,则x=__________.
8.若∠AOB=50°,∠BOC=20°,则∠AOC=_______________.
9.观察下面一列数:﹣,,﹣,,﹣,,…探求其规律.得到第2012个数是__________.第n个数应该表示为____________________.
10.若a的绝对值等于5,b=﹣2,且ab>0,则a+b=__________.
n=________________.
11.若(m﹣2)2+|n+3|=0,则m﹣n=__________.m
12.a、b在数轴上得位置如图所示,化简:
|a+b|﹣2|b﹣a|=__________.
13.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=__________.
14.在有理数范围内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为
x=__________.
15.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍__________根,拼成第n个图形(n为正整数)需要火柴棍__________根(用含n的代数式表示).
16.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m﹣2;②40m﹣10=43m+2;
③=;④=;⑤43m=n+2.其中正确的是__________(只填序号).
17.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则
…+的值为__________(结果用n 表示).
18.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
9 ★ △ x ﹣6 2 …
(1)可求得x=__________,第2014个格子中的数为__________;
(2)若前m 个格子中所填整数之和p=2015,则m=__________,若p=2014,则m=__________;
(3)若取前3个格子中的任意两个数记作a 、b ,且a ≥b ,那么所有的|a ﹣b|的和可以通过计算|9﹣★|+|9﹣△|+|★﹣△|得到,其结果为__________;若取前9个格子,则所有的|a ﹣b|的和为__________.
19.三个有理数a、b、c之积是负数,其和是正数,当x =c c
b b
a a
++时,则
______29219=+-x x 。
二、解答题
1.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
(1)求每套队服和每个足球的价格是多少?
(2)若城区四校联合购买100套队服和a 个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.
3.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数__________,点P表示的数__________(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
4.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B
点对应的数为100.
(1)A、B间的距离是__________;
(2)若点C也是数轴上的点,C到B的距离是C到原点O的距离的3倍,求C对应的数;(3)若当电子P从B点出发,以6个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A点出发,以4个单位长度/秒的速度向左运动,设两只电子蚂蚁在数轴上的D点相遇,那么D点对应的数是多少?
(4)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向右运动.设数轴上的点N到原点O的距离等于P
点到O的距离的一半,有两个结论①ON+AQ的值不变;②ON﹣AQ的值不变.请判断那个结论正确,并求出结论的值.
5.随着我市经济的快速发展,家庭经济收入不断提高,汽车已越来越多地进入到普通家庭.据重庆市交通部门统计,2010年底我市私人轿车拥有量约为80万辆,2010年底至2012年底我市每年私人轿车拥有量的增长率均为25%.(1)求截止到2012年底我市的私人轿车拥有量约为多少万辆?
(2)碳排放是关于温室气体排放的一个总称或简称.目前国内的温室气体污染源中,汽车排放是主要方式之一,关于汽车二氧化碳排放量的计算方法,可以参照互联网上流传的计算公式:二氧化碳排放量(公斤)=油耗消耗数(升)×2.7公斤/升.
根据国际上通行的办法,对于那些无法避免而产生的碳排放进行碳补偿,植树是最为普遍的形式.如果以一辆私家车每年行驶1.5万公里,每百公里油耗10升来计算:作为参照,一棵树一年光合作用吸收的二氧化碳大约是18公斤,每一亩地的植树量大约为90棵.根据这一参数,请你计算:一辆私家车每年排放的二氧化碳大约是多少公斤?需要植树多少亩才能抵消这一年开车所产生的二氧化碳对环境的影响?
(3)为缓解汽车拥堵状况和环境污染问题,市交通部门拟控制私人轿车总量,要求到2014年底全市私人轿车拥有量最多为158.25万辆.另据估计,从2013年初起,我市此后每年报废的私人轿车数量是上年底私人轿车拥有量的10%.假定从2013年开始,每年新增私人轿车数量相同,请你计算出我市每年新增私人轿车数量最多为多少万辆?。