人教版七年级上册数学易错题整理训练
- 格式:doc
- 大小:86.00 KB
- 文档页数:4
人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点力表示的数为8,方是数轴上位于点力左侧一点,且AB=20,动点/从力点出发,以每秒$个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>O)秒.B A' 0F~>(1)写出数轴上点方表示的数;点/表示的数(用含力的代数式表示)(2)动点6从点方出发,以每秒J个单位长度的速度沿数轴向右匀速运动,若点/、C同时出发,问多少秒时/、6之间的距离恰好等于2?(3)动点6从点方出发,以每秒J个单位长度的速度沿数轴向左匀速运动,若点/、6同时出发,问多少秒时/、6之间的距离恰好又等于2?(4)若/为〃的中点,八为方的中点,在点/运动的过程中,线段版的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段助的长.【答案】(1)- 12; 8 - 5t(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=2O,解得t=2.75∙答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动X秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5×-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3×=20+2解得:x=lL答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:Ill 1 1MN=MP+NP= 2AP+2 BP= 2 (AP+BP) =ZAB= 2 x20=10,②当点P运动到点B的左侧时:PNBM AIll _ 1MN=MP-NP= Z AP-2 BP= 2 (AP-BP) ^AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)点A表示的数为8, B在A点左边,AB=20,;.点B表示的数是8-20=-12,•••动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,二点P表示的数是8-5t.故答案为-12, 8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q 之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动X秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.由此可得,木棒长为cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:"我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!"美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。
人教版七年级上数学易错题一.填空1.,和统称为正数。
和统称为分数。
,,,,和统称为有理数。
和统称为非负数;和通称为非正数;和统称为非正整数;和统称为非负整数。
2.-(+5)表示_____的相反数,即-(+5)=____;-(-5)表示_____的相反数,即-(-5)=___;3.已知数轴上A,B表示的数互为相反数,并且两点间的距离是6,点A在点B 的左边,则点A,B标识的数分别是_______。
二.应用题1.-7,3.5,-3.1415,π,0.03,-3又1/2,10,-0.23,-4/2自然数集合:整数集合:正分数集合非正数集合有理数集合2.观察下面一列数,探求其规律:-2分之一,3分之二,-4分之三,5分之四,-6分之五,7分之六...(1)写出7,8,9项的三个数;(2)第2012个数是什么?(3)如果这一列数无限的排列下去,与那两个数越来越近?3.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?4.小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。
列式计算,小明和小红谁为胜者?5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。
(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?6、(本题7分)今年夏天某地遭遇洪灾,甲乙两地堤坝发现险情,指挥部分别调派27 人和19人去甲乙两处抢险,后因情况紧急,两地都要求派人支援,而指挥部可调动的其他抢险队员只有20人,考虑到甲处的抢险任务重,所以甲处抢险的总人数必须是乙处总人数的2倍,问指挥部应给甲、乙两处各派多少人?有理数笔记:。
人教版七年级初一数学期中易错题集锦人教版七年级数学上册易错题集锦一、选择题:1.下列说法中正确的是()A。
有最小的正数B。
有最大的负数C。
有最小的整数D。
有最小的正整数2.在-22,π。
333四个数中,有理数的个数为()A。
1个 B。
2个 C。
3个 D。
4个3.绝对值最小的有理数是()A。
1 B。
0 C。
-1 D。
不存在4.绝对值最小的整数是()A。
-1 B。
1 C。
0 D。
不存在5.3.14-π的值为()B。
3.14-π6.比较-111/234,-1/的大小,结果正确的是()C。
<-<-7.若ab≠0,则a/b+b/a的值不可能为()D。
-28.已知数轴上的A点到原点距离为2,那么数轴上到A点距离是3的点所表示的数有()B。
2个9.数轴上表示整数的点称为整点,某数轴的单位长度为1㎝,若在数轴上画出一条长2004㎝的线段AB,则AB盖住的整点个数是()C。
2004或200510.有一个两位数,它的十位数字是b,个位数字是a,则这个两位数的大小是()C。
10b +a11.XXX利用计算机设计了一个计算程序,输入与输出的数据如下表:输入输出… …1 22 323 510 417 526当输入数据8时,输出的数据是()B。
676112.若x+xy=2,y+xy=-1,则x+2xy+y的值是()A。
113.一辆汽车在a秒内行驶m米,则它在2分钟内行驶多少米。
A。
120m B。
6m C。
20m D。
10m15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是______。
4或-216.大于-3.5小于4.7的整数有_______个。
817.用“>”、“<”或“=”填空。
11/9 < 10/918.若x-y,x+y<0.19.(1) 若a>0,b0,a(-b)0.2) 若ab>0,b0,且a+b<0,则a<-b。
20.-1/2的倒数是-2,倒数等于本身的数是1和-1,相反数等于本身的数是0,绝对值等于本身的数是0.21.3的相反数是-3,若a>3,则这个数是a-3.22.数轴上点M表示2,点N表示-3.5,点A表示-1,在点M和点N中,距离A点较远的是点N。
人教版七年级数学上册易错题100道相交线和平行线易错题(28题)1、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向左拐300,第二次向右拐300 ;B 、第一次向右拐500,第二次向左拐1300;C 、第一次向右拐500,第二次向右拐1300 ;D 、第一次向左拐500,第二次向左拐1300. 2、如图1,AB ∥CD ,那么∠A+∠C+∠AEC =( ) A .360° B .270° C .200° D .180°(1) (2) (3) 3、如图2所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D 4 如图3所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 5 观察图形,下列说法正确的个数是( ) ①过点A 有且只有一条直线AC 垂直于直线l ; ②线段AC 的长是点A 到直线l 的距离。
③线段AB 、AC 、AD 中,线段AC 最短,根据是垂线段最短; ④线段AB 、AC 、AD 中,线段AC 最短,根据是两点之间线段最短; A .1个 B .2个 C .3个 D .4个6、下列说法中正确的是( )A .三角形三条高所在的直线交于一点。
B .有且只有一条直线与已知直线平行。
C .垂直于同一条直线的两条直线互相垂直。
EDCBA4321E DCBACD .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
7、如图,DH ∥EG ∥BC ,且DC ∥EF ,那么图中和∠1相等的角的个数是( )A 、2B 、4C 、5D 、6H C1G D FEB A8 下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A .1 B .2 C .3 D .以上结论皆错9 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138 、;B . 都是10 ;C . 42138 、或4210 、;D . 以上都不对10、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补D .平移变换中,各组对应点连成两线段平行且相等11、如图5,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180 B .270 C .360 D .54012、已知:如图6,AB//CD ,则图中α、β、γ三个角之间的数量关系为( ).A 、α+β+γ=360︒B 、α+β+γ=180︒C 、α+β-γ=180︒D 、α-β-γ=90︒abMP N 1 23 图5A B 120°α25°C D15、把“等角的补角相等”写成“如果…,那么…”形式 16、如图7,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = 17、如图8,把长方形纸片沿折叠,使,分别落在,的位置,若,则等于图7 图818、如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数.CDFEBA19、如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠DNF ,∠1=∠2,那么MG ∥NP ,试写出推理过程.图6ABCDE20 如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论无需证明.APB DC E21如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?22 如图,已知直线 1l ∥2l ,且 3l和1l 、2l 分别交于A 、B 两点,点P 在AB 上。
人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。
人教版数学七年级上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
7年级上期末易错题复习
1.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为__________.
2.已知A、B、C三点在同一直线上,若AB=20,AC=30,则BC的长为__________.3.在数轴上,A表示的数为-2,AB长为5,则B表示的数为___________.
4.有一个三位数,百位数字为a,个位数是十位数字的2倍少3,十位数比百位数字的3 倍少4,则这个三位数应表示为:____________(用含a的代数式表示)
5.学校组织一次篮球比赛,比赛要求每两个队只比赛一场,一共有8支球队参赛,则共需要安排_________场比赛。
6.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于__________.
7.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则
①[8.9]=__________;②若[x+3]=﹣15,且x是整数,则x=__________.
8.若∠AOB=50°,∠BOC=20°,则∠AOC=_______________.
9.观察下面一列数:﹣,,﹣,,﹣,,…探求其规律.得到第2012个数是__________.第n个数应该表示为____________________.
10.若a的绝对值等于5,b=﹣2,且ab>0,则a+b=__________.
n=________________.
11.若(m﹣2)2+|n+3|=0,则m﹣n=__________.m
12.a、b在数轴上得位置如图所示,化简:
|a+b|﹣2|b﹣a|=__________.
13.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=__________.
14.在有理数范围内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解应为
x=__________.
15.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍__________根,拼成第n个图形(n为正整数)需要火柴棍__________根(用含n的代数式表示).
16.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m﹣2;②40m﹣10=43m+2;
③=;④=;⑤43m=n+2.其中正确的是__________(只填序号).
17.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则
…+的值为__________(结果用n 表示).
18.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
9 ★ △ x ﹣6 2 …
(1)可求得x=__________,第2014个格子中的数为__________;
(2)若前m 个格子中所填整数之和p=2015,则m=__________,若p=2014,则m=__________;
(3)若取前3个格子中的任意两个数记作a 、b ,且a ≥b ,那么所有的|a ﹣b|的和可以通过计算|9﹣★|+|9﹣△|+|★﹣△|得到,其结果为__________;若取前9个格子,则所有的|a ﹣b|的和为__________.
19.三个有理数a、b、c之积是负数,其和是正数,当x =c c
b b
a a
++时,则
______29219=+-x x 。
二、解答题
1.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
(1)求每套队服和每个足球的价格是多少?
(2)若城区四校联合购买100套队服和a 个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.
3.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数__________,点P表示的数__________(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
4.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B
点对应的数为100.
(1)A、B间的距离是__________;
(2)若点C也是数轴上的点,C到B的距离是C到原点O的距离的3倍,求C对应的数;(3)若当电子P从B点出发,以6个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A点出发,以4个单位长度/秒的速度向左运动,设两只电子蚂蚁在数轴上的D点相遇,那么D点对应的数是多少?
(4)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向右运动.设数轴上的点N到原点O的距离等于P
点到O的距离的一半,有两个结论①ON+AQ的值不变;②ON﹣AQ的值不变.请判断那个结论正确,并求出结论的值.
5.随着我市经济的快速发展,家庭经济收入不断提高,汽车已越来越多地进入到普通家庭.据重庆市交通部门统计,2010年底我市私人轿车拥有量约为80万辆,2010年底至2012年底我市每年私人轿车拥有量的增长率均为25%.(1)求截止到2012年底我市的私人轿车拥有量约为多少万辆?
(2)碳排放是关于温室气体排放的一个总称或简称.目前国内的温室气体污染源中,汽车排放是主要方式之一,关于汽车二氧化碳排放量的计算方法,可以参照互联网上流传的计算公式:二氧化碳排放量(公斤)=油耗消耗数(升)×2.7公斤/升.
根据国际上通行的办法,对于那些无法避免而产生的碳排放进行碳补偿,植树是最为普遍的形式.如果以一辆私家车每年行驶1.5万公里,每百公里油耗10升来计算:作为参照,一棵树一年光合作用吸收的二氧化碳大约是18公斤,每一亩地的植树量大约为90棵.根据这一参数,请你计算:一辆私家车每年排放的二氧化碳大约是多少公斤?需要植树多少亩才能抵消这一年开车所产生的二氧化碳对环境的影响?
(3)为缓解汽车拥堵状况和环境污染问题,市交通部门拟控制私人轿车总量,要求到2014年底全市私人轿车拥有量最多为158.25万辆.另据估计,从2013年初起,我市此后每年报废的私人轿车数量是上年底私人轿车拥有量的10%.假定从2013年开始,每年新增私人轿车数量相同,请你计算出我市每年新增私人轿车数量最多为多少万辆?。