2001年江苏省普通高校“专转本”统一考试高等数学参考答案
- 格式:doc
- 大小:103.50 KB
- 文档页数:2
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x- B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctanπ+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型. 14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域. 19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2yx x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、y x z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2004年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题3分,满分18分.)1、[](]⎩⎨⎧∈--∈=2,00,3)(33x xx x x f ,是: ( )A 、有界函数B 、奇函数C 、偶函数D 、周期函数2、当0→x 时,x x sin 2-是关于x 的 ( ) A 、高阶无穷小B 、同阶但不是等价无穷小C 、低阶无穷小D 、等价无穷小3、直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是 ( ) A 、()1,1B 、()1,1-C 、()1,0-D 、()1,04、2228R y x =+设所围的面积为S ,则dx x R R⎰-220228的值为 ( )A 、B 、C 、2S D 、S 25、设yxy x u arctan),(=、22ln ),(y x y x v +=,则下列等式成立的是 ( ) A 、y v x u ∂∂=∂∂ B 、x vx u ∂∂=∂∂C 、xv y u ∂∂=∂∂ D 、yv y u ∂∂=∂∂ 6、微分方程xxe y y y 22'3''=+-的特解*y 的形式应为 ( )A 、xAxe 2 B 、xe B Ax 2)(+C 、x e Ax 22D 、xeB Ax x 2)(+二、填空题(本大题共6小题,每小题3分,满分18分)7、设xx x x f ⎪⎭⎫ ⎝⎛++=32)(,则=∞→)(lim x f x 8、过点)2,0,1(-M 且垂直于平面2324=-+z y x 的直线方程为9、设)()2)(1()(n x x x x x f +++= ,N n ∈,则=)0('fS 4S10、求不定积分=-⎰dx xx 231arcsin11、交换二次积分的次序=⎰⎰-dy y x f dx x x 212),(12、幂级数∑∞=-12)1(n nnx 的收敛区间为三、解答题(本大题共8小题,每小题5分,满分40分) 13、求函数xxx f sin )(=的间断点,并判断其类型.14、求极限)31ln()1()sin (tan lim 22x edtt t x xx +--⎰→.15、设函数)(x y y =由方程1=-yxe y 所确定,求22=x dx yd 的值.16、设)(x f 的一个原函数为xe x ,计算.17、计算广义积分dx x x ⎰+∞-211.18、设),(xy y x f z -=,且具有二阶连续的偏导数,求x z∂∂、yx z ∂∂∂2.19、计算二重积分dxdy y y D⎰⎰sin ,其中D 由曲线x y =及x y =2所围成.20、把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间.⎰dx x xf )2('四、综合题(本大题共3小题,每小题8分,满分24分)21、证明:⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并利用此式求dx xxx⎰+π2cos 1sin .22、设函数)(x f 可导,且满足方程)(1)(20x f x dt t tf x++=⎰,求)(x f .23、甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元。
- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。
其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。
例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。
例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。
同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。
解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。
2008年江苏省普通高校“专转本”统一考试高等数学参考答案1、B2、A3、D4、C5、A6、B7、08、3 9、(2,17)10、c x x ++-21cos 11、π12、[]2.2-13、6233)21(lim )21(lim )2(lim ⋅∞→∞→∞→-=-=-xx x x x x xx x x ,令2x y -=,那么6631)11(lim )2(lim ey x x y x x x =+=-⋅-∞→∞→.14、.sin )(cos )(cos 1)(sin )(t t x t t y t t x t t y ==-==‘’‘’’‘,,,[].)cos 1(1)()()()()(cos 1sin )()(2322t t x t x t y t x t y dx y d t t t x t y dx dy --=-=-==‘’‘,,,,,’, 15、⎰⎰⎰⎰++-+-=++-++=+C x dx x x dx x x d dx x x dx x x 1ln )1(1)1(111233 .1ln 2323C x x x x ++-+-= 16、⎰⎰⎰⎰⎰-==⋅==1121121211212112211)(222)(212121212121dx e ex de e dx x ex d e dx ex x x x x x=.22222222101212121=+-=-=-⎰e e ee dx ee x x17、由题意得:,,,-)032(=→AB )5,0,2(-=→AC ,那么法向量为 ).6,10,15(032250225003=⎪⎪⎭⎫⎝⎛--=⨯=→,--,-AC AB n 18、.221,‘f x y f x z -=∂∂)1(212221212112‘’‘’,,,,-+f x f xy f f y x z +=∂∂∂ ‘’‘’‘’,,-=223212121f xy f x y f x f -+19、⎰⎰⎰⎰⎰⎰+=1002110222xx Ddy x dx dy x dx dxdy x⎰⎰=+=+=+=121212104347234124x x xdx dx x 20、积分因子为.1)(2ln 22xeex xdx x==⎰=--μ 化简原方程22x y xy +=,为.2x x y dx dy =- 在方程两边同乘以积分因子21x ,得到.1232x xy dx x dy =- 化简得:.1)(2xdx y x d =- 等式两边积分得到通解⎰⎰=-.1)(2dx xdx y x d 故通解为C x x x y 22ln += 21、令y x y x F -=1),(,那么x 和y 的偏导分别为20001),(x y x F x -=,.1),(00-=y x F y 所以过曲线上任一点),(00y x 的切线方程为:.01020=-+-y y x x x 当X =0时,y 轴上的截距为001y x y +=. 当y =o 时,x 轴上的截距为.0020x y x x +=令002000001),(x y x y x y x F +++=,那么即是求),(00y x F 的最小值. 而4)1(211),(00000000≥+=+++=x x x x x x y x F ,故当100==y x 时,取到最小值4. 22、(1)⎰==-=1015445353)4(πππx dx x x V . (2)由题意得到等式:⎰⎰-=-122022)2()2(aadx x x dx x x化简得:⎰⎰=aa dx x dx x 0122.解出a ,得到:213=a ,故.2131=a 23、令)()()(x f a x f x g -+=,那么)()2()(a f a f a g -=,).0()()0(f a f g -= 由于0)0()(<g a g ,并且)(x g 在[]a ,0上连续.故存在)0(a ,∈ξ,使得0)(=ξg ,即)()(a f f +=ξξ.24、将xe 用泰勒公式展开得到:⋅⋅⋅+++=2!21!111x x e x代入不等式左边:131211)!21!111)(1()1(322≤⋅⋅⋅---=⋅⋅⋅+++-=-x x x x x e x x。
2002年江苏省普通高校“专转本”统一考试高等数学参考答案01-05、ACABD 06-10、CBABB 11、1 12、-∞(,]113、0 14、32+--x e 15、⎰⎰x e dy y x f dx ln 01),(16、23 17、1 18、221y x x z +=∂∂,4222)(y x y x y z +-=∂∂∂ 19、解:令1-=x t ,则2=x 时1=t ,0=x 时,1-=t ,所以())1ln()1ln(1111111100120+=++=+++=---⎰⎰⎰e e dx x dx e dx x f x 20、原式=1240102201222πθπ=⋅=+⎰⎰⎰⎰-rdr r d dx y x dy y y 21、)1(cos +=x e y x22、C x +22arcsin 41 23、(1)e k =(2)⎪⎪⎩⎪⎪⎨⎧=-≠⎪⎪⎭⎫ ⎝⎛+-++=0 (2)0.......)1ln()1(1)1()(21'x e x x x x x x x f x24、(1)316422204260222=+=⎰⎰⎰⎰+-+---x x x x x x dy dx dy dx S (2)ππππ15512)2()6()42(2020222222=---+-=⎰⎰⎰--dx x dx x dx x x V 25、证明:x x x F cos 1)(2--=π,因为)()(x F x F =-,所以)(x F 是偶函数,我们只需要考虑区间⎪⎭⎫⎢⎣⎡2,0π,则x x x F sin 2)('+-=π,x x F cos 2)(''+-=π. 在⎥⎦⎤⎢⎣⎡∈π2arccos ,0x 时,0)(''>x F ,即表明)('x F 在⎥⎦⎤⎢⎣⎡π2arccos ,0内单调递增,所以函数)(x F 在⎪⎭⎫⎢⎣⎡π2arccos ,0内严格单调递增; 在⎪⎭⎫ ⎝⎛∈2,2arccos ππx 时,0)(''<x F ,即表明)('x F 在⎪⎭⎫ ⎝⎛2,2arccos ππ内单调递减,又因为0)2('=πF ,说明)(x F 在⎪⎭⎫ ⎝⎛2,2arccos ππ内单调递增. 综上所述,)(x F 的最小值是当0=x 时,因为0)0(=F ,所以)(x F 在⎪⎭⎫ ⎝⎛-2,2ππ内满足0)(≥x F .26、(1)设生产x 件产品时,平均成本最小,则平均成本 x x x x C x C 40120025000)()(++==, 10000)('=⇒=x x C (件)(2)设生产x 件产品时,企业可获最大利润,则最大利润⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛-=-240120025000201440)()(x x x x x C x xP , ()16000)()('=⇒=-x x C x xP .此时利润167000)()(=-x C x xP (元).。
理科专升本高数试题参考答案2001年()一、填空(每小题3分,共30分) 1)75;2))1(25-=x y ;3)21=a ;4)xy y x y y xx eydxdy x2)cos(2)cos(222222-++--=;5)2ln 21;6)23=s ;7)0322=-+z y x ;8)13222=++zy x;9))1(214--e;10)]1,1(-。
二、选择填空(每小题3分,共18分)BBDBCD三、计算题(每小题5分,共35分) 1)π4; 2))()(8)(42222t f u f t u f dxy d ''+'=(其中2t u =),()(4u f t dxdy '=);3)u xvv uv xuuxyf e xyff y x y y e yfy eyx z cos 4)cos sin (2cos sin 22++++=∂∂∂(其中22,sin y x v y e u x +==),(v x u xf y e f xz 2sin +=∂∂); 4))1(2ae--π;5)xxxe x xec ec y 223221)2(21+-+=;6)0322=--+z y x ;7)ee 337-。
四、(9分)(略)五、(8分)证明(略)2002年(西南交大)一、填空(每小题3分,共45分) 1)1-;2)1-;3)21;4)ycos 22-;5)0422=-+-a a y x π;6)3;7)221436587π⋅⋅⋅⋅;8))2sin 2cos (21x c x c e y x+=-;9)014523=-+-z y x ; 10)3221;11)x yz 522=+;12)π)1(1--e;13)24R π;14)∑∞=-022)1(21n nn nx ;15)xe2)2(ln 。
二、选择填空(每小题4分,共20分)BCCDD 。
三、计算题(每小题5分,共20分) 1)8;2)21;3)2222yxy x +-;4)8π。
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+.(0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤.(0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为 .(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,22(,)ln v x y x y =+,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = .(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n nn α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n n n ∞=+∑B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 . (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn- D.1(1)2n n +-(1112)幂级数01nn x n ∞=+∑的收敛域为_ _ _________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式04300(tan sin )d tan sin limlim312xx x t t tx xx x→→--==⎰ 233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ), 由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . yOS1x12y x=图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令yu x=,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂.21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰; (2)()()224804d 8d 16y V y y yy πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+;。
第五章 常微分方程(简记ODE )本章主要知识点● 可分离变量的ODE● 一阶线性非齐次常微分方程及推广● 二阶常系数线性齐次与非齐次常微分方程● 一些特殊类方程一、可分离变量的ODE1.基本型的解法 基本型:()()dy G x H y dx= 基本解法: ()()dy G x dx H y = ()()dy G x dx H y =⎰⎰例5.1.1)0(,==-y e dx dy y x 解:dx e dy e x y =⎰⎰=dx e dy e x y通解为:c e e x y += 将1,0==y x 得:1-=e c 得 1-+=e e e x y例5.2.(1)ln y y y xdx '+= 解:(1)ln y dy xdx y+= 1(1)ln dy xdx y +=⎰⎰,得:ln ||ln y y x x x C +=-+例5.3.dx y x dy y x )1()1(122+=+-解:dx x x y dy y 2211)1(-=++,2(1)1y dy y +=+⎰ 得:()21arctan ln 12y y C ++= 例5.4.已知()f x 满足0()(1)()1x f t dt x f x +-=⎰,求()f x 。
解:由0()(1)()1xf t dt x f x +-=⎰知(0)1f =-。
方程两边对x 求导得()()(1)()0f x f x x f x '++-=,分离变量求得2()(1)c f x x =-, 将(0)1f =-代入得1c =-,21()(1)f x x =--。
2.可转化的可分离变量的齐次方程 ()x y f y'= 方法:令()y p y p x x y p xp x''=⇒=⇒=+ xdx p p f dp p f dx dp x p =-⇒=+⇒)()(。
例5.5.y x y x dx dy +-= 解:xyx ydx dy +-=11 令p p dx dp x p xp p y px y x y p +-=+⇒+=⇒=⇒=11'', pp p p p p dx dp x +--=-+-=⇒121112 xdx p p dp p =--+⇒221)1( x dx p dp p =+-+⇒⎰2)1(2)1( C x p p +=---⇒ln 21ln 212,将xy p =代入即可。
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
第三章 不定积分本章主要知识点:● 不定积分的意义,基本公式 ● 不定积分的三种基本方法 ● 杂例历年考试真题 1.(2001)不定积分=( D )A.B.C + C. arcsin x D. arcsin x C +解析: 利用不定积分的定义.2. (2001)计算21xxe dx e+⎰。
解: 22ln(1)11x x x x x xx x e e e e dx dx e e C e e+-==-++++⎰⎰ 3. (2002)设()f x 有连续的导函数,且0,1a ≠,则下列命题正确的是( A )A. 1()()f ax dx f ax C a'=+⎰ B. ()()f ax dx f ax C '=+⎰C. (())()f ax dx af ax ''=⎰D. ()()f ax dx f x C '=+⎰解析: 由'()()f x dx f x C =+⎰''11()()()f ax dx f ax dax f ax C a a==+⎰⎰ 4. (2002)求积分2解:221arcsin 4x C + 5. (2003)若()(),()F x f x f x '=连续,则下列说法正确的是( C )A. ()()F x dx f x c =+⎰B. ()()dF x dx f x dx dx =⎰ C.()()f x dx F x c =+⎰ D.()()dF x dx f x dx =⎰解析: 不定积分的定义6. (2003)ln x xdx ⎰解: 设ln ,u x dv xdx ==,则222ln ln ln ln 222x x x x xdx xd x d x ==-⎰⎰⎰ 221ln 2211(ln )22x x xdx x x C =-=-+⎰ 7. (2004)求不定积分3=41arcsin 4x C + 解析:3341arcsin arcsin arcsin 4dx xd x x C ==+⎰8. (2004)设()f x 的一个原函数为xe x ,计算(2)xf x dx '⎰解: 因为()f x 的一个原函数为x e x,所以2(1)()()x xe x ef x x x -'==,1111(2)(2)(2)(2)(2)(2)2222xf x dx xf x d x xdf x xf x f x dx ''===-⎰⎰⎰⎰=22211(21)1(2)(2)(2)24884x xx x e x xf x f x d x C e C x x x---=-+=+⎰ 9. (2005)若()(),f x dx F x C =+⎰则sin (cos )xf x dx =⎰( D )A. (sin )F x C +B. (sin )F x C -+C. (cos )F x C +D. (cos )F x C -+ 解析:sin (cos )(cos )cos (cos )xf x dx f x d x F x C =-=-+⎰⎰10. (2005)计算3tan sec x xdx ⎰解:原式=222tan tan sec (sec 1)sec sec sec sec x x xdx x dx xd x x =-=-⎰⎰⎰=31sec sec 3x x C -+ 11.(2006)已知2()xf x dx eC =+⎰,则()f x dx '-=⎰( C ).A.22xeC -+ B .212x e C -+ C. 22x e C --+ D. 212x e C --+解析: 由题意2()2x f x e =,'2()4x f x e ∴=,'2()4x f x e --= 所以222()42(2)2xx xf x dx edx e d x e C ---'-==--=-+⎰⎰⎰12.(2006)计算dx x⎰解:原式=322(1ln )(1ln )3x x C +=++13. (2007) 设函数()f x 的一个原函数为sin 2x ,则'(2)f x dx =⎰( A )A. cos 4x C +B.1cos 42x C + C. 2cos 4x C + D. sin 4x C +解析: ()2cos 2f x x =,所以'()4sin 2f x x =,'(2)4sin 4sin 4(4)cos 4f x dx xdx xd x x C ===+⎰⎰⎰14. (2007)求不定积分2xx e dx -⎰.解:22()x xx e dx x d e --=-⎰⎰2222()x x x xx e xe dx x e xd e ----=-+=--⎰⎰222x x xx e xe e dx ---=--+⎰222xx x x e xe e C ---=---+单元练习题31.=⎰x d 2cos 。
2001―2021年江苏专转本高等数学真题(附答案)2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分后,共15分后)1、下列各极限正确的是()a、lim(1?x?01x)x?eb、lim(1?x??1x1)x?ec、limxsinx??1x?1d、limxsinx?01x?12、不定积分?11?x211?x2dx?()a、b、11?x2?cc、arcsinxd、arcsinx?c3、若f(x)?f(?x),且在?0,内f'(x)?0、f''(x)?0,则在(??,0)内必有()a、f'(x)?0,f''(x)?0c、f'(x)?0,f''(x)?02b、f'(x)?0,f''(x)?0d、f'(x)?0,f''(x)?04、?x?1dx?()0a、022b、2c、-1d、15、方程x?y?4x在空间直角坐标系则中则表示()a、圆柱面b、点c、圆d、旋转抛物面二、填空题(本大题共5小题,每小题3分后,共15分后)?x?tetdy6、设立?,则2dxy?2t?t?'''t?0?7、y?6y?13y?0的通解为8、交换积分次序?dx?022xxf(x,y)dy?y9、函数z?x的全微分dz?110、设f(x)为连续函数,则?[f(x)?f(?x)?x]x3dx?11三、计算题(本大题共10小题,每小题4分,共40分)11、已知y?arctanx0x?ln(1?2)?cosx?5,求dy.x?12、排序lim?2edtt2x?0xsinx.13、求f(x)?(x?1)sinxx(x?1)2的间断点,并说明其类型.14、未知y?x?15、计算?e2xx2lnyx,求dydxx?1,y?1.1?edx.16、未知?0k1?x2??dx?12,谋k的值.17、求y'?ytanx?secx满足yx?0?0的直和.218、计算??sinydxdy,d是x?1、y?2、y?x?1围成的区域.d19、已知y?f(x)过坐标原点,并且在原点处的切线平行于直线2x?y?3?0,若f(x)?3ax'2?b,且f(x)在x?1处为获得极值,先行确认a、b的值,并算出y?f(x)的表达式.20、设z?f(x,2xy),其中f具备二阶已连续略偏导数,谋zx、zxy2.2四、综合题(本大题共4小题,第21小题10分后,第22小题8分后,第23、24小题各6分后,共30分后)21、过p(1,0)并作抛物线y?(1)切线方程;(2)由y?x?2,切线及x轴围起的平面图形面积;x?2的切线,求(3)该平面图形分别拖x轴、y轴转动一周的体积。