地震工程学概论详解
- 格式:ppt
- 大小:3.25 MB
- 文档页数:35
第一章 绪论§1、1 地震与地震动地震是一种自然现象,每年平均发生500万次左右的地震,绝大多数很小,不可以用灵敏仪器测量的约占99%;可以感觉到地为1%,其中,5级以上的强烈地震约1000次左右,能造成严重破坏的大地震(>7%),平均每年大约发生18次。
地震给人类带来灾难,给人类社会造成不同程度的伤亡事故及经济损失。
如在20世纪,前80年(1900—1980)全球因地震造成的死亡人数高达105万人,平均每年死亡1.3万人。
1990年伊朗鲁德巴尔地震造成5万多人丧生。
1995年日本阪神地震紧急损失高达960亿美元就是例证。
为了抗御与减轻地震灾害,有必要进行建筑工程结构的抗震分析与抗震设计。
1、1、1地震类型与成因对于构造地震,可以从宏观背景和局部机制两个层次上揭示其具体成因。
宏观背景:地球的构造:R=6371Km 约 6400Km 包括:地壳、地幔与地核。
地壳有各种不均匀的岩石组成,出地面的沉积层外,陆地下面的地壳主要为:上不是花岗岩层,下部为玄武岩层;海洋下面的地壳一般只有玄武岩层,革除厚薄不一。
世界上大部分地震都发生在这一薄薄的地壳内。
地幔主要有质地坚硬的橄榄眼组成,它具有粘弹性,由于地球内部放射性物质不断释放能量,从地下20Km~700Km ,地球内部温度有大约600℃~2000℃,在这一范围内的地幔中存在着厚约几百公里的软流层,物质对流,地球内部的压力也不均衡,900Mpa~370000Mpa ,地幔内部物质在热状态和不均衡压力作用下缓慢的运动着,即可能为地壳运动的根源。
地核是地球的核心部分,分为外核(厚2100Km )和内核,其主要构成物质是镍和铁。
据推测,外和可能处于液态而内核可能是固态。
通常认为,地球最外层是有一些巨大的板块组成,(六大板块和若干小板块),六大板块即欧亚板块、美洲板块、非洲板块、太平洋板块、澳洲板块和南极板块。
板块向下延伸的深度大约为70~100Km ,由于地幔物质的对流,板块也相互运动,板块的构造运动,是构成地震产生的根本原因。
1、地震按成因分类:接近地球表面的岩层中弹性波传播所引起的震动称为地震。
按其成因可分为构造地震、火山地震和陷落地震。
2、地球上的4个主要地震带:(1) 环太平洋地震带全球约80%浅源地震和90%的中深源地震,以及几乎所有的深源地震都集中在这一地带。
(2) 欧亚地震带除分布在环太平洋地震带的中深源地震外,几乎所有的其他中深源地震和一些大的浅源地震都发生在这一地震活动带。
(3) 沿北冰洋、大西洋和印度洋中主要山脉的狭窄浅震活动带(4) 地震活跃的断裂谷3地震波类型:地震引起的振动以波的形式从震源向各个方向传播,这就是地震波。
体波(1) 纵波:由震源向外传播的疏密波,其介质质点的振动方向与波的前进方向一致。
特点:周期短,振幅小。
(2) 横波:由震源向外传播的剪切波,其介质质点的振动方向与波的前进方向垂直。
特点:周期较长,振幅较大。
5、地震仪组成:现代地震仪:拾震器,放大器和记录系统6、、一、以地面最大加速度为标准以最大速度为标准7、根据里氏震级的定义,在震中100公里外,地震仪监测到最大振幅为1微米(千分之一毫米)的地震波,地震便是0级;10微米的地震是1级地震,1毫米的地震就是3级地震。
以此类推,里氏震级每上升1级,地震仪记录的地震波振幅增大10倍近震震级标度ML –地方震级面波震级标度MS –远震、浅地震体波震级标度mb -深源、浅源、远距离10、地震烈度是表示地面及房屋等建筑物遭受地震影响破坏的程度基本烈度:地震基本烈度是具有一定发生概率的烈度值,用统计学方法计算得来的综合烈度,表明一个地区发生这个地震烈度的可能性比较大。
一个地区未来50年内一般场地条件下可能遭受的具有10%超越概率的地震烈度值称为该地区的基本烈度。
基本烈度是指在一定期限内.一个地区可能普遍遭遇的最大烈度,也就是预报未来一定时间里某一地区可能遭受的最大地震影响程度.基本烈度的时间一般是以一百年为限;基本烈度所指的地区,并非是一个具体的工程建筑物场地,而是指一个较大的范围(例如一个区、县或更大的范围)的地区而言,因此基本烈度也叫区域烈度.至于具体工程场地局部浅层构造、地基土和地形地藐等对烈度的影响因素(有时也叫场地烈度或小区域烈度)13、对场地烈度的理解一般有两种.①地震烈度小区域划分方法.该法认为如果以一般中等强度的地基土作为标准,则基岩上的烈度可以降低一度,而软弱地基应提高一度并以此为界限,制定了各种单一土层的烈度调整幅度.当为多层土时将各单层土的烈度调整值按土层厚度加权平均.此外还考虑了地下水位的影响,认为地下水位接近地表时烈度可提高半度.这种方法对一般建筑物的宏观破坏现象是可行的,但用于新建工程是不全面的.因为它忽视了不同结构在不同地基上有不同的反应,对地基失效引起破坏与振动引起的结构破坏不加以区分.②认为所谓场地烈度问题就是建筑场地的地质构造、地形、地基土等工程地质条件对建筑物震害的影响,要尽量弄清楚这些因素的影响,并在工程实践中加以适当考虑.地质构造主要是指断层的影响.多数的浅源强地震均与断层活动有关;特别是深大断裂,一般与当地的地震活动性有密切关系,是确定基本烈度应当考虑的主要因素之一.具有潜在地震活动的断层通常称为发震断层,不属场地烈度问题所考虑的范围.地基土质条件对建筑物震害的影响是很明显的.但是这个问题十分复杂:这是因为地震时地面的震动是以地震波的形式从震源通过复杂的中间介质又经过许多层次的地基土的反射、折射和滤波作用,而将震动的能量传给建筑物,引起建筑的震动和破坏;另一方面当建筑物发生振动以后又将一部分振动能回输到地基中去,这样建筑物和地基土就形成了一个复杂的动力学系统.。
第5章 地震地面运动地震动是指由震源释放出的能量产生的地震波引起的地表附近土层(地面)的振动,是工程地震研究的主要内容,地面运动就是对结构的输入。
地震动可以用地面的加速度、速度或位移的时间函数表示。
地震动:加速度a(t),速度v(t),位移u(t),通称为地震动时程。
地震地面运动(Earthquake ground motion)有时也简称地震动。
地震动是引起震害的外因,其作用相当于结构分析中的荷载,差别在于结构工程中常用荷载以力的形式出现,而地震动以运动方式出现,常用荷载大多数是竖向作用,地震动则是竖向、水平甚至扭转同时作用的。
在地震工程中,人们研究的对象有三个:地震动(输入)、结构(系统)、结构反应(输出)。
只有在了解结构的地震反应之后,才可能科学地设计结构,而为了了解结构反应,则必须了解地震动与结构,两者缺一不可。
当前我们对结构的了解还很不够,特别是在结构物超过弹性阶段以后,而对地震动的了解则远远落后于对结构的了解。
地震动是一个复杂的时间过程,之所以复杂是因为存在着很多影响地震动的因素,而人们对很多重要因素难以精确估计,从而产生许多不确定性的变化。
地震动的显著特点是其时程函数的不规则性,因此,关于地震动的研究强烈地依赖对地震动观测的现状与发展。
5.1地震动观测记录到的地震动可分为六个分量:三个平动分量和三个转动分量。
目前直接得到的某一地点的记录通常为平动分量,转动分量的获得尚存在一定困难。
1、地震仪(Seismograph)地震工作者使用;记录弱震为主(1-4级地震,发生频繁,仪器连续记录);记录量:位移或速度;要求:敏感,放大倍数大,2-3千倍或104-105倍,置放在基岩。
用于:预报地震,研究震源机制,地震波传播规律等。
2、强震仪(强震加速度仪,Accelerograph)结构抗震工作者用;记录强震;记录量:加速度;目的:确定强震地震动,为结构地震反应分析和抗震设计用,估计地震动。
更确切的说有三点:为研究地震动性质提供数据;为结构设计和试验提供输入;发展抗震理论,了解结构在地震中的表现。
二十一、动荷载和静荷载区别地震作用属于动力荷载。
动力荷载与一般静力荷载的区别体现在:1)结构所受动力荷载的大小与结构自身特性密切相关,结构的质量和刚度的大小直接影响地震作用的强弱。
2)地震作用是一种不规则的循环往复荷载,其解答不具有静力问题解答的唯一性,工程上主要关注地震作用峰值;3)与静力荷载相比,地震作用具有更大的随机性,表现在发生过程的不确定性、发生地点、时间、强弱的不确定性上。
因此,抗震设计有别于一般静力设计。
世界范围内的主要地震带(1)环太平洋地震带 (2)地中海喜马拉雅地震带或欧亚地震带(3)大洋海岭地震带二十二、板边地震和板内地震特点有一些地震并不发生在板块边缘附近,这些地震称为板内地震。
与板边地震性比,板内地震有如下三个特点:1. 地震地点零散,频度较低2. 板内地震危害大.二十三、地震序列类型火山地震、天然地震、陷落地震、诱发地震主震:某一次较大的地震;前震:主震之前与之相关的地震余震:主震之后发生的地震通常地震序列有三种基本类型:①主震余震型:主震释放能量最大,伴以相当数目的余震和不完整的前震。
典型的有汶川大地震、唐山大地震。
②震群型地震:主要能量通过多次较强地震释放,并伴以大量小震,如1966年邢台地震,1988年澜沧——耿马地震等。
③单发型地震,主震突出,前阵与余震很小,如1976年内蒙和林格尔地震。
世界地震构造系统全球地震可分为三个地震构造体系:(1)环太平洋地震构造系(2)大陆地震构造系(3)洋脊地震构造系(与人类活动关系不大)中国地震分区与地震带从地震分布特征来看,我国位于世界两大地震构造系的交汇部位;从地震地质背景来看,我国大陆存在发生频繁地震的内因和外在条件。
我国地震频繁而强烈。
我国地震基本特征:1)我国地震大多属浅源构造地震,一般,东部10-20km,西部40-50km。
2)强震区和强震带的分布主要受断块构造控制,绝大多数地震与区域性大断裂有关。
3)一定地区内的地震活动过程,存在明显的平静期和活跃期的交替现象。
地震工程学•1地震工程学概述•2地震学基础知识•3工程地震——地震作用与灾害 •4结构地震反应分析•5工程抗震与结构抗震设计•6几个专题4 结构地震反应分析•4.1 概述☞•4.2 运动微分方程的建立☞•4.3 抗震结构模型化☞•4.4 地震动输入•4.5 结构地震反应分析方法☞•4.6 其他☞4.1 概述地震作用计算方法及其发展重要环节满足最低抗震设防安全要求简化方法和较复杂的精细方法静力理论阶段反应谱理论阶段动力分析理论阶段✓1920年,日本大森房吉、佐野利器等提出。
✓假定:①结构视为刚体;②各质点加速度相同;又称为烈度法。
静力理论阶段Gkgt x G t xm F ===max 0max 0)()( ✓适用范围:此方法忽略了地震作用与结构动力特性直接相关、结构为非刚性等关键特性,仅适用于T < 0.2秒。
✓意义:划时代,从无到有地震系数反应谱理论阶段1940年,美国Biot (无阻尼)、Housner (有阻尼)等提出。
与结构动力特性(振型、T 、阻尼)、地震强度、建筑场地等因素有关; 目前各国设计应用最广(与振型分解法结合求解多自由度,精度满足工程);局限是仍属于静力作用。
即按静力计算方法计算结构的地震效应(等效静力法)。
意义:崭新阶段,长足的进步,方便实用max0(t)x (t)x m F +=动力分析理论阶段—时程分析法最近二十年。
前提:①地震记录的积累;②核电站、海洋平台以及高层结构设计的需要;③计算机的广泛应用和运算速度的提高;将实际地震加速度时程记录(简称地震记录)作为动荷载输入,进行结构的地震响应分析,反应时程变化。
优点:能体现地震动三要素,进行结构的强度及变形验算等。
意义:飞跃,但仍有很多挑战其他动力方法:⏹非线性静力分析方法(Static Pushover Analysis)⏹随机振动理论分析,能量方法,但尚未被抗震设计规范采纳。
4.1 概述•确定性•非确定性—随机输入•确定性地震反应分析•随机地震反应分析结构•线性地震反应分析•非线性地震反应分析•单点(1D,2D,3D )•多点计算途径•时域分析•频域分析•线性•非线性•确定性•非确定性—随机•平面•空间适用范围极为有限。