第四部分全液压制动系统
- 格式:doc
- 大小:3.66 MB
- 文档页数:23
液压制动系统工作原理
工作原理:
当驾驶员踩下制动踏板时,力量会通过传给主缸。
主缸内部有活塞,
当主缸受到力量压缩时,活塞会向前移动。
同时,主缸的前腔中的液体被
挤压,流经制动管路进入制动器。
在制动器中,液压力使制动缸内的活塞或鼓轮筒膨胀,使制动片或制
动鼓与车轮接触,从而产生制动摩擦力。
摩擦力将车辆的动能转化为热能,使车辆逐渐减速。
液压传动装置是液压制动系统中的重要组成部分,主要由液压泵、液
压储罐和液压油组成。
液压泵负责产生液压力,将液压油送入制动管路;
液压储罐存储液压油,以确保系统的工作持续稳定。
1.制动力矩大:液压制动系统能够利用液体的性质实现高效的制动,
使制动力矩更大,制动效果更好。
2.稳定性好:液体具有良好的稳定性,不易受到温度和湿度的影响,
保证制动的稳定性和可靠性。
3.可调性强:液压制动系统可通过调整液体的流量和压力来控制制动
力度,满足不同驾驶条件下的制动需求。
4.传动效率高:液体是不可压缩的,液压传力效率高,制动反应迅速。
5.系统复杂度低:液压制动系统相对于其他制动系统而言,零部件较少,结构相对简单,容易维修和维护。
总之,液压制动系统通过液体的压力来实现车辆的制动。
它利用液压
原理将驾驶员踩下的制动踏板的力量转化为制动器上的摩擦力,从而实现
车辆的减速停车。
液压制动系统具有较高的制动力矩、稳定性好、可调性强、传动效率高和系统复杂度低等优点,因此被广泛应用于各种类型的车辆中。
高铁制动装置知识点高铁制动装置是保证高铁列车在运行过程中安全停车的重要组成部分。
了解高铁制动装置的知识点对于高铁运行和维护保养具有重要意义。
本文将介绍高铁制动装置的相关知识点,包括液压制动系统、电气制动系统以及常见故障处理等内容。
一、液压制动系统液压制动系统是高铁列车上常用的制动装置之一。
它由制动器、液压传动系统和控制系统三部分组成。
1. 制动器制动器是液压制动系的核心部件,负责产生制动力和制动力矩。
高铁车辆常采用盘式制动器,它由刹车片、刹车盘和刹车卡钳组成。
当刹车踏板踩下时,液压液体进入刹车卡钳,推动刹车片紧贴刹车盘,产生摩擦制动力。
2. 液压传动系统液压传动系统是液压制动系统的动力传输部分,它由制动液、液压泵站、制动管路和连杆机构组成。
制动液负责传递踏板踩下的力,通过液压力将制动器推动。
3. 控制系统控制系统是液压制动系统的重要组成部分,它由控制阀、传感器和电控装置组成。
控制阀负责控制制动液的流动,传感器用于获取列车运行的相关参数,电控装置则根据传感器信息对制动进行调节。
二、电气制动系统电气制动系统是高铁列车上的另一种制动装置,它主要通过电力和电子控制来产生制动力和制动力矩。
1. 直流电阻制动直流电阻制动是电气制动系统的一种常见方式。
它通过改变电机绕组的电流路径,将电机反作用力转化为制动力矩。
当列车需要减速或停车时,电流经过额外的电阻,使电机转矩增加,产生制动效果。
2. 逆变器制动逆变器制动是一种通过改变电机供电频率和电压,控制电机运行状态来实现制动功能的方式。
逆变器将直流电能转化为交流电能,通过改变交流电的频率和电压来控制电机转矩,实现列车的制动。
三、常见故障处理高铁制动装置在运行过程中可能会出现一些故障,及时处理故障是确保高铁安全运行的关键。
以下是一些常见的故障处理方法:1. 制动力不足制动力不足可能会导致高铁制动缓慢或者无法停车。
解决方法包括检查刹车片的磨损情况,及时更换损坏的刹车片;检查液压系统是否存在泄漏,及时修复漏液处。
叙述汽车液压制动系统的组成及其工作过程汽车液压制动系统是现代汽车中非常重要的一个部分,它在车辆行驶过程中起到了至关重要的作用。
本文将详细叙述汽车液压制动系统的组成以及其工作过程。
一、汽车液压制动系统的组成汽车液压制动系统主要由主缸、制动踏板、助力器、制动管路、制动分泵、制动器等组成。
1. 主缸:主缸是液压制动系统的核心部件之一,它起到了转换踏板力的作用。
主缸内部有一个活塞,当踩下制动踏板时,主缸内的活塞会向前推动,将踏板力转化为液压压力。
2. 制动踏板:制动踏板是由驾驶员踩下的部件,通过踩下制动踏板,驾驶员可以操控整个液压制动系统的工作。
3. 助力器:助力器是为了增加制动踏板力量而设计的装置。
它通过真空或液压的方式,将驾驶员踩下的力量放大,从而提供更大的制动力。
4. 制动管路:制动管路是将主缸的液压压力传输到制动器的管道系统。
它由一系列的金属管道和软管组成,以保证液压压力的传递和回油。
5. 制动分泵:制动分泵是一种特殊的泵,它用于将主缸的液压压力分配到各个制动器上。
通常,每个车轮都有一个制动分泵。
6. 制动器:制动器是汽车液压制动系统的最终执行部件,它将制动压力转化为制动力,实现车辆的制动。
制动器一般包括制动盘、制动片和制动钳等部件。
二、汽车液压制动系统的工作过程汽车液压制动系统的工作过程可以简单概括为以下几个步骤:1. 踩下制动踏板:当驾驶员踩下制动踏板时,制动踏板会向前移动,通过连接杆将力量传递给主缸。
2. 主缸产生液压压力:主缸内的活塞会随着制动踏板的移动而向前推动,由此产生液压压力。
3. 压力传递:液压压力通过制动管路传输到各个制动器上。
制动管路中的金属管道和软管会将液压压力传递到制动器的制动盘和制动片上。
4. 制动器工作:制动器接收到液压压力后,制动盘和制动片之间会产生摩擦力,从而产生制动力。
制动力作用在车轮上,使车轮减速甚至停止转动。
5. 释放制动:当驾驶员松开制动踏板时,液压压力会减小,制动器释放制动,车轮恢复正常转动。
全动力液压制动系统常见故障的排除
徐广锋;邢继志;石景林
【期刊名称】《工程机械与维修》
【年(卷),期】2002(000)011
【摘要】@@ 全动力液压制动系统包括充液阀、脚制动阀、紧急制动阀、压力开关、溢流阀和液压蓄能器等(见附图).其中的关键元件是充液阀和脚制动阀,下面就这两种阀的常见故障作简要分析并介绍其排除方法.
【总页数】2页(P132-133)
【作者】徐广锋;邢继志;石景林
【作者单位】
【正文语种】中文
【中图分类】U4
【相关文献】
1.液压制动系统常见故障的诊断与排除
2.装载机全液压制动系统的常见故障分析与排除
3.汽车液压制动系统常见故障的诊断与排除
4.汽车液压制动系统常见故障的诊断与排除
5.汽车液压制动系统常见故障的诊断与排除
因版权原因,仅展示原文概要,查看原文内容请购买。
汽车制动系统工作原理详解为了确保行车安全,汽车制动系统成为车辆中最为关键的部件之一。
它负责控制和减缓车辆速度,使车辆能够稳定地停下或减速。
本文将详细解析汽车制动系统的工作原理,包括液压制动和刹车片的协同作用,以及制动过程中的主要部件。
一、液压制动系统的作用及构成部分液压制动系统是汽车制动系统的重要组成部分,通过将驾驶员的制动操作转化为液压信号,从而实现刹车效果。
它由主缸、助力器、制动管路以及刹车器等几个关键部分构成。
1. 主缸:主缸位于驾驶舱内,通过驾驶员的制动踏板操作来产生制动信号。
当驾驶员踏下制动踏板时,主缸内液体压力增加,将制动信号传递给制动器。
2. 助力器:助力器旨在减轻驾驶员的制动操作力度。
它通过感应驾驶员的制动踏板力度变化,产生相应的助力信号,从而降低制动的难度。
3. 制动管路:制动管路是液压制动系统中连接主缸、助力器和刹车器的管道。
它起到传递制动信号和液压力的作用。
4. 刹车器:刹车器负责把液压力转换为制动力,并施加在车轮上,从而减速或停车。
它由制动卡钳、刹车盘和刹车鼓构成。
二、刹车片的作用和工作原理刹车片是汽车制动系统中非常关键的部件,它通过与刹车盘或刹车鼓的摩擦来产生制动力。
常见的刹车片包括盘式刹车片和鼓式刹车片。
1. 盘式刹车片:盘式刹车片主要应用于轿车和一些商用车上。
当驾驶员踏下制动踏板时,制动系统会产生液压力,使得刹车盘固定在车轮轴上的刹车卡钳夹紧刹车盘。
同时,刹车片与刹车盘之间的摩擦力产生制动力,使车辆减速或停车。
2. 鼓式刹车片:鼓式刹车片常用于汽车的后轮制动系统。
它由鼓式刹车盘、刹车鼓和刹车片组成。
当制动信号传递到刹车器时,刹车鼓会扩张开,使刹车片与刹车鼓内壁之间产生摩擦力,从而减速或停车。
三、制动过程中的关键部件除了液压制动和刹车片,汽车制动系统中还有一些关键部件,它们也对制动效果发挥重要作用。
1. 刹车盘和刹车鼓:刹车盘和刹车鼓是车轮中心固定的圆盘或圆筒形零件,它们承载着制动片对刹车器施加的摩擦力。
液压制动阀工作原理液压制动阀是用来控制汽车制动系统的重要组成部分,其工作原理是根据液压力学的基本原理来实现的。
液压制动阀主要由主缸、制动室、换向阀和液压执行器等部分组成。
当驾驶员踩下制动踏板时,主缸内的活塞会向前移动,从而通过液压传送给制动室内的活塞。
制动室内活塞的移动会将压力传递到制动盘或制动鼓上的制动蹄片,从而实现制动的功能。
液压制动阀的工作原理可以分为四个阶段:压力增加阶段、保持阶段、释放阶段和行程回收阶段。
在压力增加阶段,当驾驶员踩下制动踏板时,主缸内的活塞会向前移动,相应地将制动剂液体向制动室内压送,使制动室内的活塞移动。
通过液压力的传递,制动蹄片即可附着于制动盘或制动鼓上,从而产生制动力。
在保持阶段,当制动踏板被保持在一定位置时,制动阀会封闭输液腔,使压力得以保持。
这个阶段的目的是为了保持制动力和制动效果的稳定性。
在释放阶段,当驾驶员松开制动踏板时,主缸内部的压力会减小,从而导致制动室内的活塞向后移动。
这个过程中,制动室内的压力会由高压逐渐减小到零。
制动阀会逐渐打开输液腔和回油腔之间的连接通道,使制动室的压力得以释放,从而实现制动蹄片的分离,制动力逐渐减小。
在行程回收阶段,当制动力减小到一定程度时,制动阀会将压力传递给回油腔,从而驱使活塞回到初始位置。
这个过程中,制动盘或制动鼓上的制动蹄片完全分离,从而实现制动的解除。
液压制动阀会根据行程回收的力度和速度来调整回程速度,以确保制动的平稳性和可控性。
总结起来,液压制动阀的工作原理是通过主缸和制动室之间的液压传递以及换向阀的控制,实现对制动蹄片的压力调节和分离,从而实现汽车的制动功能。
它的优点是制动力大、制动效果稳定,但同时也需要保持液压系统的密封性和压力平衡性,以确保制动的可靠性和安全性。
液压制动系统的工作原理
液压制动系统是一种常见的汽车刹车系统,其工作原理是利用液压力来实现车辆的刹车功能。
以下是液压制动系统的工作原理的详细解释:
1.主缸:液压制动系统的主要组成部分是主缸,它通常位于汽车的驾驶座位附近。
主缸内部通过一个活塞将踏板施加的力量转化为液压力。
当踏板被踩下时,活塞就会向前移动,从而增加主缸内部的液体压力。
2.液压管道:主缸中的液压力被通过液压管道传输到车轮装置上。
在液压管道中,液压力将油液推动到系统的其他组件中。
3.制动器:液压力到达每个车轮上的制动器。
制动器主要有两种类型:鼓式制动器和盘式制动器。
无论哪种类型,制动器中都有一个活塞,它会在液压力的作用下向外推动,并通过刹车片或刹车鼓来实现刹车效果。
在鼓式制动器中,活塞将刹车鼓外壳的内表面推向鼓内的制动片。
而在盘式制动器中,活塞将制动片推向刹车盘的表面。
4.增力器(可选):有些汽车还配备了增力器,它的作用是增加主缸施加在液体上的压力。
增力器可以通过一个真空系统或液压系统来完成。
通过上述工作原理,液压制动系统可以将驾驶员施加在踏板上的力量转化为液体压力,并将其传输到车轮制动器上,从而实现汽车的刹车功能。
汽车制动液压传动汽车制动液压传动是一种重要的技术装置,它通过利用液体传递压力来实现汽车制动系统的正常工作。
本文将深入探讨汽车制动液压传动的原理、构造和维护等相关内容,旨在帮助读者更好地理解和运用这一技术。
一、原理介绍汽车制动液压传动的工作原理基于帕斯卡定律,即在一个封闭的液体系统中,一个施加在任何部分的力都会均匀地传递到其他各个部分上,且传递的压力大小与力的大小成正比。
利用这一原理,汽车制动液压传动通过主缸、制动液管路、制动钳等装置,将驾驶员踩下的制动踏板产生的力转化为制动力,从而使车辆减速甚至停止。
二、构造分析汽车制动液压传动系统主要由主缸、制动管路和制动钳等组成。
主缸是传动系统的重要组成部分,它通常安装在驾驶员踏板下方,并且与制动踏板通过连杆相连。
当驾驶员踩下制动踏板时,主缸内的活塞受到水压的作用向前移动,从而压缩制动液并将其推向制动管路。
制动管路连接主缸和制动钳,起着传递液压力的作用。
制动钳内有活塞,当制动液的压力传递到制动钳时,活塞向外推动制动片夹紧刹车盘,从而实现制动效果。
三、维护注意事项为了保障汽车制动液压传动系统的正常工作,我们需要注意以下几点维护事项。
1. 定期检查制动液的液位并及时更换。
制动液在长时间使用后会逐渐变质,容易吸湿并引起腐蚀,降低传动系统的性能。
因此,定期检查制动液的液位,并按照车辆制造商的要求进行更换是非常重要的。
2. 定期检查制动管路的密封性。
制动管路的密封性对于传递液压力至关重要,任何漏油现象都需要及时修复,以免影响制动效果。
3. 定期检查制动钳的工作状态。
制动钳是制动力的输出装置,其工作状态的好坏直接影响制动效果。
应定期检查制动钳的活塞、活塞密封圈等部件是否磨损或老化,并及时更换。
4. 注意使用制动液的规范。
不同车型的制动液可能有所不同,使用时应注意选择适合车辆的制动液,并遵循制造商的建议和规范进行添加和更换。
综上所述,汽车制动液压传动是一种重要的技术装置,它通过液体传递压力来实现汽车的制动功能。
第四部分全液压制动系统制动系统(1)液压原理图本机采用全液压双回路湿式制动系统,原理如上图所示。
1.行车制动系统:行车制动采用全液压双回路湿式制动。
具有制动平稳、反应灵敏、操作轻便、安全可靠、制动性能不受作业环境影响等优点。
2.紧急和停车制动系统:用于停车后的制动,或者在行车制动失效时的应急制动,由紧急制动电磁阀控制。
另外,当系统出现故障,行车制动回路中的蓄能器内油压低于5.5MPa时,能自动切断紧急制动电磁阀电源,并使变速箱挂空档,装载机紧急停车,以确保行车安全。
本机行车制动系统由泵(与液压系统共用)、双路充液阀、蓄能器、双路制动阀、压力开关及管路组成。
系统压力油由泵提供,进入充液阀,当系统压力低于11.4 MPa时,双路充液阀开启,对系统充液;当压力高于13.8 MPa时,双路充液阀关闭,停止对系统充液,泵出油用于液压系统散热。
双路充液阀设有低压报警开关,系统压力低于9 MPa时,系统报警,表示双路充液阀出现故障,应停车予以排除。
当系统充液时,压力油分两路进入前后回路的蓄能器,两回路是相互独立的,一路出现泄漏等故障时,另一回路压力不会因此而降低,提高系统的相对可靠性。
踩下制动踏板,行车制动回路中的蓄能器内储存的高压油经双路制动阀进入前后驱动桥的轮边制动器,制动车轮。
放松制动踏板解除制动后,桥轮边制动器内的液压油经双路制动阀流回油箱。
双路制动阀的输出油压和作用在制动踏板上的操纵力成正比。
◆ 动力切断功能(刹车脱档功能)当行车时变速操纵手柄处于前进或后退Ⅰ、Ⅱ档位,且动力切断选择开关闭合(即按钮灯亮) 时,在实施脚制动的同时, 电控盒向变速操纵 阀发出指令,使变速箱挂空档,切断动力输出。
当行车时变速操纵手柄处于前进或后退Ⅰ、 Ⅱ档位,且动力切断选择开关断开(即按钮灯灭) 时,在制动的同时将不切断变速箱动力输出。
1. 紧急制动按钮 2. 动力切断选择开关注意:行车中,当变速操纵手柄处于前进或后退Ⅰ、Ⅱ档位时,不要轻易使动力切断选择开关断开,否则可能会损坏制动器及传动系统。
当处在崎岖路段上或下坡作业时实施制动,为保证行车安全,可选择使用此功能。
才发动机子的短时间内,行车制动的低压报警灯可能会亮,报警蜂鸣器可能会响。
这是由于此时行车制动回路中的蓄能器内油压还低于报警压力(9MPa ),待蓄能器内油压高于报警压力后报警会自动停止。
在作业过程中,如果系统出现故障,使得行车制动回路中的蓄能器内油压低于9Mpa 时,行车制动低压报警灯会亮,同时报警蜂鸣器会响。
这时,就应停止作业,停车检查。
检查机子时,应把机子停在平地上,并将紧急制动按钮拉起。
将紧急制动按钮按下,紧急制动电磁阀通电,阀口开启,停车制动回路中的蓄能器内储存的高压油经紧急制动电磁阀进入停车制动器,解除停车制动。
将紧急制动按钮按下的瞬间,停车制动低压报警灯会亮。
这是由于此时停车制动回路中油压还低于报警压力(10MPa )。
要等停车制动低压报警灯熄灭后才能开动机子。
将紧急制动按钮拉起,紧急制动电磁阀断电,停车制动器的液压油经紧急制动电磁阀流回油箱,进行停车制动。
在作业过程中,如果停车制动回路出现故障,使得蓄能器Ⅰ内油压低于10MPa 时,停车制动低压报警灯会亮。
这时,也应停止作业,停车检查。
如果系统出现故障,使得行车制动回路中的蓄能器内油压低于5.5MPa 时,系统中的紧急制动控制开关会使紧急制动电磁阀断电,停车制动器的液压油经紧急制动电磁阀流回油箱,同时变速箱挂空档,在弹簧力作用下使装载机紧急停车。
注意:除非有紧急情况,不要在机子行驶时使用停车/紧急制动。
在正常的工作中使用停车/紧急制动会对制动器及传动系统造成严重损坏。
(3) 元件结构图整个制动系统的元件组成主要有:液压油箱(带 回油过滤器)、转向+先导泵、双路充液阀、双路 制动阀、囊式蓄能器、制动阀块 ◆ 液压油箱产品图号:21C0042油箱加油容积:…………………...230 L 回油油滤:产品图号:89A0035产品型号:RG160×400E10CFP-1 数量:…………………………….1 个① ②加油后油箱内部清洁度要求:……NAS 9 级1.液压回油过滤器2.液压油污报警传感器3.液压系统冷却器回油口4.液压系统加油口5.液压油箱6.液压系统吸油口使用地区普通地区北方寒区或高原油品牌号HM46抗磨液压油HV46低温抗磨液压油液压油箱用于向整个液压系统供油,也为整车制动系统供油。
油箱中设置了回油过滤器,用于清除液压系统油路中的杂质,以保证液压油液的清洁度。
◆转向+先导双联齿轮泵产品图号:11C0079产品型号:P5100—F100NP367 6/P124—G25G排量(转向):……………….……….100 ml/r排量(先导):………………………....25 ml/r转向液压系统调定压力:…………19.5 MPa制动系统调定压力:………………13.8 MPa先导液压系统调定压力:………...…3.5 MPa额定转速:……………………….2100 r/min旋向:…………………………………...右旋轴伸形式:EXT14Z×12/24D.P×30R×6f,SAE“C”轴伸长度:………………………….55.6 mm 有效花键长度:…..…………………...35 mm注:制动系统所用的泵型号为P124-G25G,与先导液压系统共用。
◆双路充液阀产品图号:13C0077产品型号:06-463-2041.杆2.弹簧3.密封圈4.阀芯5.阀体6.螺母7.弹簧8.杆9.钢球10.密封圈11.阀芯12.密封圈13. 钢球14.杆15.螺母16.螺杆17.弹簧18.阀芯19.阀座20.滤芯21.弹簧22.弹簧23.阀芯24.密封圈25.阀座26. 密封圈27. 阀座28.阀芯29.弹簧双路充液阀位于驾驶室下面,后车架右内侧。
双路充液阀主要组成如上图所示。
P口接泵,A1、A2口接行车制动用蓄能器,SW口接制动阀块P口,T口接油箱,O口至液压散热系统。
当系统中任何一个蓄能器压力小于11.4MPa时,弹簧(21)推动杆(14)上移,关闭T 口,W腔与H腔相通;阀芯(4)在弹簧(2)的作用下,向下移动,减小P口与O口的开口,从泵来的油一路经过小孔进入至G腔,另一路经过滤芯(20)顶开单向阀芯(18)进入W腔,推动阀芯(23)和阀芯(28),单向阀F1和F2打开,开始向蓄能器充液。
当蓄能器压力大于13.8MPa时,W腔油压及弹簧7的共同作用力大于弹簧(21)的作用力,阀芯(11)向下移动顶开阀芯(11)下方的阀门,H腔油液流回油箱,压力下降,此时G腔的压力大于弹簧(2)和H腔油液的共同作用力,阀芯(4)向上移动,P口与O口全接通,充液停止,从泵来的油液全部用于液压系统散热。
当蓄能器压力小于11.4MPa时,又开始向蓄能器充液。
双单向阀F1和F2的作用是保证两个制动回路互不干扰。
当其中一个回路失效,压力下降,压力大的口对应的阀门(F1或F2)在液压力的作用下关闭。
保证未失效的制动回路仍可实施制动功能。
此时失效回路则与充液阀相通,SW口压力下降,行车制动低压报警开关动作,报警蜂鸣器响,此时应立即停车检查。
◆双路制动阀产品图号:13C0072产品型号:06—466—240允许最高系统压力……….…….....20.7MPa最大制动压力……………....5.3±0.35MPa最大压力下的踏板力(约)……..…250N踏板行程(约)……………..…….….15°1.弹簧2.阀体3.下阀芯4.阀体5.上阀芯6.钢球7.弹簧座8.平衡弹簧9.星形圈10.Y形圈11.复位弹簧12.调整垫片13. 平衡弹簧14.活塞15.滚轮16.踏板双路制动阀主要组成如右图所示,P2、P1口分别接蓄能器Ⅱ、Ⅲ,A2、A1口分别接前后桥轮边制动器。
当制动阀踏板放松时,阀芯(5)和(3)在弹簧(1)作用下被推至最高位置,P1、P2口分别与A1、A2口切断,A1、A2口与T口相通,处于非制动状态。
踩下制动阀踏板,通过活塞(14)对平衡弹簧(8)、(13)施加一定的压力,从而推动阀芯(5)和(3)向下移动,A1口、A2口与T口关闭,继而P1口与A1口相通,P2口与A2口相通,两个蓄能器(Ⅱ、Ⅲ)内储存的高压油分别进入前后桥轮边制动器,产生制动,同时制动灯开关动作,制动灯亮。
双路制动阀的两个回路相互独立,当一制动回路发生故障时,另一个回路仍能正常工作。
在制动状态下,双路制动阀的输出油压和作用在制动踏板上的操纵力成正比例是通过平衡弹簧(8)和(13)来实现的。
当踏板作用力一定时,施加于平衡弹簧的压力也为某一定值,P1、P2口打开后,压力油也通过小孔进入到阀芯下腔C腔和D腔,当阀芯下腔油压作用于阀芯的力超过了平衡弹簧的张力时,则平衡弹簧被压缩,阀芯上移,直至P1、P2关闭,此时油压作用于芯上的力与踏板施加于平衡弹簧的压力处于平衡状态,制动阀输出的油压为某一定值。
当踏板施加于平衡弹簧的压力增加时,阀芯又开始下移,重新打开P1、P2口。
当阀芯下腔的油压增至某一数值,作用于阀芯上的力与踏板施加于平衡弹簧的压力相平衡时,P1、P2口又复关阀,而输出的油压又保持某一不变而又比原先高的油压。
也就是说,制动阀输出的油压与平衡弹簧的压缩变形量成比例,即也与制动踏板的行程成比例。
●最大制动压力的调整如果双路制动阀的最大制动压力值为5.3±0.35MPa,如果不对,可通过增加或减少调整垫片(12)来调整。
◆囊式蓄能器产品图号:13C0076产品型号:NXQ1-L1.6/20-H1. 蓄能器Ⅰ2. 蓄能器Ⅱ3. 蓄能器Ⅲ(1)公称容积…………………………….(2)公称压力………………………………(3)胶囊充入气体………….……………....(4)工作介质……………………….石油基液压油(5)工作温度…………………….…-10°C~70°C(6)蓄能器Ⅱ、Ⅲ的充气压力..…20°C时,5.2MPa(7)蓄能器Ⅰ的充气压力……….20°C时,9MPa(8)蓄能器Ⅱ、Ⅲ工作压力………11.4~13.8 MPa(9)蓄能器Ⅰ工作压力……………….….13.8 MPa●蓄能器结构及原理:行车制动、停车制动回路中的蓄能器均为囊式蓄能器,如图11所示。
囊式蓄能器的作用是储存压力油,以供制动时应用。
其作用原理是把压力状态下的液体和一个在其内部预置压力的胶囊共同储存在一个密封的壳体之中,由于其中压力的不同变化,吸收或释放出液体以供制动时应用。
制动泵运作时,把受压液体通过充液阀输入蓄能器而储存能量,这时,胶囊中的气体被压缩,从而液体的压力与胶囊的气压相同,使其获得能量储备。