高二数学秦九邵算法
- 格式:pdf
- 大小:1.11 MB
- 文档页数:10
§75秦九韶算法§75秦九韶算法──求多项式的值一、泰勒定理简介二、求多项式值的求法三、秦九韶算法1.直接法2.累乘法3.秦九韶算法1.步骤2.编程复杂函数多项式函数泰勒定理先改后算两大步降幂提因○补缺由内到外逐层算人工递推系数表4.其他法递推公式法人工系数表法三大语言三结构五种语句三案例高考主流是框图循环结构是重点辗转相除法与更相减损术进位制秦九韶算法注4:注1:自然语言框图程序设计语言注2:顺序结构条件结构循环结构输入语句注3:赋值语句输出语句条件语句循环语句───求最大公约数───求多项式的值框图的画法是次要的重点是要能看懂框图2.辗转相除法1.短除法求最大公约数的方法3.更相减损术数字较小短除法公质因数连续除除到所有商互质除数连乘是答案大除小余换大辗转除何时停0或11互质0除数即答案大减小差换大连续减何时停两相等即答案若可半可省功注:辗转相除法与更相减损术的异同点1.辗转相除法以除法运算为主3.两法本质上都是递推,都可用循环结构编程更相减损术以减法运算为主2.辗转相除法当除法运算余数为O或1时终止运算更相减损术当减法运算差为O时终止运算§75秦九韶算法──求多项式的值一、泰勒定理简介二、求多项式值的求法三、秦九韶算法1.直接法2.累乘法3.秦九韶算法1.步骤2.编程复杂函数多项式函数泰勒定理先改后算两大步降幂提因○补缺由内到外逐层算人工递推系数表4.其他法递推公式法人工系数表法常见的多项式(整式)函数我省的大压轴题,每年都是以三次函数来说事2013年的全国Ⅰ卷的小压轴题,是四次函数泰勒中值定理一、泰勒定理简介复杂函数多项式函数泰勒定理②n越大越精确①阶乘的概念:参课本P:32练习2麦克劳林公式一、泰勒定理简介复杂函数多项式函数泰勒定理1.直接法2.累乘法3.秦九韶算法最多n(n+1)/2次乘法,n次加法最多n次乘法,n次加法xn=(xn-1)xxn-1=(xn-2)xxn-2=(xn-3)x…二、求多项式值的求法4.其他法例如当n=10时……引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值直接法f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906累乘法f(5)=55+54+53+52+5+1+5+1□=+□+□+□251253125625=3906引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值秦九韶算法f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1=5×(5×(5×(5×6+1)+1)+1)+1=5×(5×(5×31+1)+1)+1=5×(5×156+1)+1=5×781+1=3906先改后算迭代法降幂提因○补缺由内到外逐层算人工递推系数表后算先改可以看出,该算法是:将求一个5次多项式f(x)的值转化成了求5个一次多项式的值的方法引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值1.直接法2.累乘法f(5)=55+54+53+52+5+13.秦九韶算法4.其他法55,54,53,52,5,1应用等比数列的求和公式最简洁吧秦九韶算法:设是一个n次的多项式先对该多项式按下面的方式进行改写:先改后算两大步降幂提因○补缺由内到外逐层算如何求该多项式的值呢?最后一项Vn是所求值秦九韶算法是将求一个n次多项式f(x)的值转化成了,求n个一次多项式的值的方法。
算法案例中国数学名家-秦九韶秦九韶(1202~1261年),字道古,南宋普州安岳(今四川省安岳县)人。
,有记载则说秦九韶自称鲁郡(现山东滋阳、曲阜一带)人,幼年时随父亲在四川巴州居住。
青少年时饱受战乱,成年后离开四川,在湖北、安徽、江苏、浙江、广东等地做官,任过县尉、通判、州守等职,死于梅州(今广东梅县)。
秦九韶的突出数学成就表现为四个方面:(1)“大衍求一术”。
即为一次同余式组解法。
西方解决同类问题的理论是高斯于1801年建立的,比秦九韶晚了554年。
他还把这种理论用于解决商功、利息、粟米、建筑等问题。
(2)线性方程组解法。
他在《数书九章》中解决了许多相当于线性方程组的问题,其中数字相当大,计算也很复杂。
他在“均货推本”题草中,井然有序地写出厂解题过程,这种解法与高斯消元法本质相当,但比高斯早约600年。
(3)高次方程数值解法。
他集秦汉以来“开方术”之大成,运用贾宪的“增乘开方法”,解决于数字高次方程有理数根和无理数根的近似值计算问题。
他所设计的演算程序被称为“秦九韶方法”。
西方同类问题的探究始于19世纪,他比意大利的鲁菲尼、英国的霍纳要早五、六百年。
(4)“三斜求积”。
他在《数书九章》中,依据分别为12、14、15的三边求出了相应的三角形面积,其方法具有一般性。
这与西方的海伦公式是等价的。
中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
高二数学度末复习秦九韶算法与排序知识点高二数学关于知识点的把握的要求是比较高的。
小编预备了秦九韶算法与排序知识点,期望能关心到大伙儿。
1、秦九韶算法概念:f(x)=anxn+an-1xn-1+.+a1x+a0求值问题f(x)=anxn+an-1xn-1+.+a1x+a0=( anxn-1+an-1xn-2+.+a1)x+a0 =(( anxn-2+an-1xn-3+.+a2)x+a1)x+a0=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0求多项式的值时,第一运算最内层括号内依次多项式的值,即v1=anx +an-1 然后由内向外逐层运算一次多项式的值,即v2=v1x+an-2 v3=v2x+a n-3 ...... vn=vn-1x+a0如此,把n次多项式的求值问题转化成求n个一次多项式的值的问题。
2、两种排序方法:直截了当插入排序和冒泡排序1、直截了当插入排序观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观看过程中指导。
我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。
有的小孩说“乌云跑得飞速。
”我加以确信说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。
秦九韶算法 一、三维目标(a )知识与技能了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
(b )过程与方法 模仿秦九韶计算方法,体会古人计算构思的巧妙。
(c )情态与价值观通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
充分认识信息技术对数学的促进。
二、教学重难点重点:1.秦九韶算法的特点难点:1.秦九韶算法的先进性理解三、教学设计 (一)创设情景,揭示课题1.辗转相除法和更相减损术,是求两个正整数的最大公约数的优秀算法,我们将算法转化为程序后,就可以由计算机来执行运算,实现了古代数学与现代信息技术的完美结合.2.对于求n 次多项式的值,在我国古代数学中有一个优秀算法,即秦九韶算法,我们将对这个算法作些了解和探究.(二)研探新知思考1 ).5(,12345)(2345f x x x x x x f 求已知+++++= 21325算法1:需要(5+4+3+2)=14次乘法,5次加法算法2:需要5次乘法,5次加法 秦九韶算法思考2 ).3(,1234567)(234567f x x x x x x x x f 求已知+++++++= 18556 思考3:利用后一种算法求多项式f(x)=a n x n +a n-1x n-1+…+a 1x+a 0的值,这个多项式应写成哪种形式?f(x)=a n x n +a n-1x n-1+…+a 1x+a 0=(a n x n-1+a n-1x n-2+…+a 2x+a 1)x+a 0=((a n x n-2+a n-1x n-3+…+a 2)x+a 1)x+a 0=…=(…((a n x+a n-1)x+a n-2)x+…+a 1)x+a 0.思考4:对于f(x)=(…((a n x+a n-1)x+a n-2)x+…+a 1)x+a 0,由内向外逐层计算一次多项式的值,其算法步骤如何?第一步,计算v 1=a n x+a n-1.第二步,计算v 2=v 1x+a n-2.第三步,计算v 3=v 2x+a n-3.…第n 步,计算v n =v n-1x+a 0.思考5:上述求多项式f(x)=a n x n +a n-1x n-1+…+a 1x+a 0的值的方法称为秦九韶算法,利用该算法求f(x 0)的值,一共需要多少次乘法运算,多少次加法运算?思考6:在秦九韶算法中,记v 0=a n ,那么第k 步的算式是什么?v k =v k-1x+a n-k (k=1,2,…,n)例1 阅读下列程序,说明它解决的实际问题是什么?求多项式43254321)(x x x x x f ++++=,在x=a 时的值.评价一个算法好坏的一个重要标志是运算的次数,如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论算法.在多项式求值的各种算法中,秦九韶算法是一个优秀算法.作业:《习案》作业九 INPUT “x=”;a n=0y=0WHILE n <5y=y+(n+1)*a ∧n n=n+1WEND PRINT y END。
秦九韶算法高中数学
秦九韶算法是一种快速求解多项式值的算法,常用于计算机科学和工程学。
该算法可以将一个n次多项式表示为n-1次多项式的递归形式,从而快速计算多项式的值。
具体来说,假设要求P(x)=a0+a1*x+a2*x^2+⋯+an*x^n,秦九韶算法的递推公式为:
P(x) = a0 + x * (a1 + x * (a2 + x * (a3 + ⋯ + x * (an-1 + x * an))))
也就是说,从最高次项开始逐次将x乘进去,直到乘到最低次项为止。
这样一来,算法的复杂度为O(n)(即线性),比暴力计算的O(n^2)(即平方)要快得多。
在高中数学中,秦九韶算法主要作为多项式函数的计算工具。
例如,假设给定多项式f(x)=2x^3+4x^2+3x+1和x=2,要求计算f(x),可以使用秦九韶算法:
f(2) = 2 * 2^3 + 4 * 2^2 + 3 * 2 + 1
= 16 + 16 + 6 + 1
= 39
因此,f(2)=39。
秦九韶算法的应用范围很广,可以用于求解各种多项式函数的值,包括指数函数、对数函数等。