高性能并行计算平台及并行计算环境概述
- 格式:ppt
- 大小:409.00 KB
- 文档页数:41
高性能计算技术平台的搭建和优化指南随着科技的不断发展,高性能计算(High Performance Computing, HPC)在科学、工程和商业领域中扮演着日益重要的角色。
高性能计算技术平台的搭建和优化对于提升计算效率、加快计算速度至关重要。
本文将为您介绍高性能计算技术平台的搭建和优化指南。
一、搭建高性能计算技术平台1.硬件选择与配置在搭建高性能计算技术平台时,首先需要选择适合自己需求的硬件设备。
关键硬件包括计算节点、网络设备、存储设备和作业调度器。
合理的硬件配置可以提高计算效率和可靠性。
另外,采用高速互联网络、高性能处理器以及大容量存储等设备也是提升计算性能的关键因素。
2.操作系统与软件环境选择合适的操作系统和软件环境对于高性能计算技术平台的搭建非常重要。
常见的操作系统包括Linux和Unix,它们稳定、可靠且具有较好的兼容性。
在软件环境方面,需要安装并配置所需的编译器、调试器、并行计算库等。
3.网络架构与配置高性能计算技术平台中网络的架构和配置直接影响计算节点之间的通信速度和数据传输效率。
建议采用高速互联网络(如InfiniBand)来提供低延迟和高带宽的通信能力。
合理的网络配置可以最大限度地减少通信延迟,提高计算效率。
4.数据存储与管理高性能计算技术平台产生的大量数据需要进行有效的存储和管理。
建议配置高性能的文件系统和磁盘阵列,以满足大规模数据的存储需求。
此外,备份方案也是必不可少的,可以确保数据的安全性和可靠性。
5.作业调度与管理作业调度器是高性能计算技术平台的重要组成部分,它可以管理和调度用户提交的计算任务。
合理的作业调度策略可以实现资源的高效利用,提高计算效率。
常用的作业调度器包括Slurm、PBS等,选择适合自己需求的调度器并进行合理配置能够提高系统的整体效率。
二、优化高性能计算技术平台1.并行计算与算法优化并行计算是高性能计算技术平台中的关键技术,可以充分利用多核处理器和分布式计算资源实现计算任务的加速。
高性能计算中的并行文件系统介绍引言:随着科学技术的快速发展,高性能计算已经成为许多领域中不可或缺的工具。
在高性能计算领域中,数据的存储和访问是关键问题之一。
为了满足海量数据的高速读写需求,并行文件系统应运而生。
本文将介绍并行文件系统的概念、工作原理以及应用场景,并探讨其对高性能计算的意义。
一、概念:并行文件系统是一种在并行计算环境中使用的高性能分布式文件系统。
与传统的文件系统不同,它能够将大规模数据分布在多个存储设备上,从而提供更高的存储容量和读写性能。
并行文件系统通常采用分布式存储架构,并结合并行I/O技术,将数据划分为多个块,分散存放在不同磁盘上。
二、工作原理:1. 数据分布与访问并行文件系统将数据划分为多个块,并将这些块分散到多个存储设备上。
在访问数据时,系统会将请求分发给多个存储节点,并并行地读取或写入数据。
这种并行化的数据访问方式可以显著提高文件系统的读写性能。
2. 元数据管理并行文件系统通过元数据管理来跟踪数据块的位置、属性等信息。
元数据通常分为全局元数据和本地元数据。
全局元数据存储在专门的元数据服务器上,负责管理整个文件系统的元数据信息,而本地元数据存储在每个存储节点上,负责管理本地数据块的元数据信息。
这种分布式的元数据管理方式允许并行文件系统具备较高的扩展性和可靠性。
三、应用场景:并行文件系统广泛应用于高性能计算领域,为各种科学计算、模拟和数据处理提供支持。
以下是几个常见的应用场景:1. 大规模数据处理在科学研究和工程数据处理中,常常需要处理海量数据。
并行文件系统能够提供高吞吐量的数据读写能力,帮助用户快速完成大规模数据的处理任务。
2. 并行计算高性能计算通常涉及大规模并行计算任务,其中包括分布式存储和访问数据。
并行文件系统能够提供高效可靠的存储服务,为并行计算提供良好的支持。
3. 科学模拟在科学模拟过程中,需要进行大规模的数值计算,并生成海量的模拟结果数据。
并行文件系统能够有效存储和管理这些数据,保证科学模拟的进行顺利进行。
并行计算与高性能计算近年来,随着计算机技术的不断发展,人们对计算效率的要求也越来越高。
并行计算和高性能计算作为解决效率问题的重要手段,正在被广泛应用于科学研究、工程设计等领域。
本文将对并行计算与高性能计算进行探讨,并分析其在实际应用中的优势和挑战。
一、并行计算的概念和原理1.1 并行计算的定义并行计算是指将一个计算任务划分为多个子任务,并通过多个处理单元同时进行计算的一种计算模式。
它可以大幅提高计算效率。
1.2 并行计算的原理并行计算依赖于处理器的并行能力和通信机制。
多个处理单元可以同时执行不同的子任务,通过互联网络进行通信和数据交换。
二、高性能计算的概念和特点2.1 高性能计算的定义高性能计算是指利用最新的硬件和软件技术,通过提高计算机的运算速度和数据处理能力,实现大规模、复杂问题的高效求解。
2.2 高性能计算的特点高性能计算具有运算速度快、存储容量大、并行处理能力强等特点。
它能够应对复杂问题的计算需求,并提供准确、高效的计算结果。
三、并行计算与高性能计算的关系3.1 并行计算是高性能计算的重要手段并行计算是实现高性能计算的重要手段之一。
通过充分利用并行计算的特点,可以提高计算任务的并行度,从而提高计算效率和性能。
3.2 高性能计算与并行计算相辅相成高性能计算依赖于并行计算的技术支持。
并行计算可以通过划分任务、优化算法等方法,提高高性能计算的效率和性能。
四、并行计算与高性能计算的应用案例4.1 科学研究领域在物理学、化学、天文学等科学研究领域,通过并行计算和高性能计算,可以模拟和计算复杂的物理过程,加速科学研究的进程。
4.2 工程设计领域在航空航天、汽车制造等工程设计领域,通过并行计算和高性能计算,可以对复杂的结构和流体进行数值模拟,提高产品的性能和安全性。
五、并行计算与高性能计算面临的挑战5.1 算法设计与优化并行计算和高性能计算需要设计和优化适合并行计算环境的算法,以提高计算效率和性能。
5.2 数据分布与通信开销在并行计算过程中,数据的分布和通信开销是一个关键问题。
基于MPI并行编程环境简述MPI并行编程环境是一种并行编程解决方案,它被广泛应用于高性能计算领域。
本文将对MPI并行编程环境做一个简单的介绍,包括MPI的概念、MPI的基本编程模式、MPI的特点和应用场景等方面。
最后还将介绍一些MPI编程中要注意的问题。
一、MPI的概念MPI是Message Passing Interface的缩写,意思是“消息传递接口”,它是一种并行计算环境的标准化接口,并且被广泛应用于高性能计算领域。
MPI允许程序员编写MPI应用程序来在多个进程之间传递消息,并对应用程序进行并行化处理。
MPI定义了一套通信协议,使得单个进程可以通过网络连接与其他进程进行通信。
MPI支持多种编程语言,包括C、C++、Fortran等。
MPI的实现通常包括一个标准库和一个运行时系统,它们提供了一系列函数和工具,用于支持消息传递协议和进程管理。
二、MPI的基本编程模式MPI的基本编程模式是消息传递模型,它通过传递消息实现进程之间的通信和同步。
MPI提供了一套通信协议,包括点对点通信和集合通信两种方式,以及同步通信和异步通信两种方式。
在点对点通信中,发送方将消息传递给接收方;在集合通信中,一组进程相互交换数据。
同步通信要求发送方等待接收方的响应,而异步通信则可以在发送消息之后立即返回并继续执行。
三、MPI的特点MPI具有以下几个特点:1. 并行性:MPI可以同时在多个进程之间完成任务,并能够将运算分解成多个独立的计算单元来并行执行。
2. 可移植性:MPI的标准化接口使得程序员可以跨平台编写MPI应用程序,而无需考虑底层计算机架构和操作系统的区别。
3. 可扩展性:MPI支持将计算任务分配到大规模的计算资源上,能够有效地扩展计算能力。
4. 通信效率高:MPI的通信协议具有高效的性能,支持传输大量的数据,因此可以在高速网络上实现高速通信。
四、MPI的应用场景MPI主要应用于高性能计算领域,可以用于大规模数值模拟、数据挖掘、机器学习等任务。
高性能计算中的并行文件系统介绍引言随着科技的不断发展,计算机的性能越来越强大,大规模科学计算和数据处理变得越来越常见。
在这个过程中,高性能计算和并行计算变得尤为重要。
而在高性能计算中,文件系统的性能和效率至关重要。
本文将介绍高性能计算中的并行文件系统以及其在科学计算中的应用。
一、并行文件系统的概念并行文件系统是一种特殊的文件系统,它的设计目标是提供高性能和可扩展性。
与传统的文件系统相比,它采用了并行计算的思想和技术,可以同时处理多个文件的读写请求,从而提高了文件系统的整体性能。
并行文件系统通常由多个存储服务器和客户端组成,存储服务器用于存储数据,而客户端则用于访问数据。
二、并行文件系统的优点1. 高性能:并行文件系统可以提供更高的数据传输速度和更快的文件访问速度,特别适用于大规模的科学计算和数据处理任务。
2. 可扩展性:并行文件系统可以根据需要扩展存储容量和计算节点,以适应不断增长的数据和计算需求。
3. 高可靠性:并行文件系统通常采用冗余存储技术,可以在硬件故障时保护数据的完整性,提高系统的可靠性。
4. 并发访问:并行文件系统支持多个用户或进程同时访问文件,可以提高不同任务之间的并发性和效率。
三、并行文件系统的应用1. 科学计算:在高性能计算中,科学家和研究人员通常需要处理大规模的数据集,进行复杂的计算任务。
并行文件系统可以提供高速的数据传输和存储能力,大大缩短了计算时间。
2. 多媒体处理:随着数字媒体的广泛应用,对于多媒体数据的处理需求越来越高。
并行文件系统可以提供快速的数据读写能力,可以有效地支持多媒体的编码、解码、传输和存储。
3. 虚拟化环境:在云计算和虚拟化环境中,多个虚拟机需要同时访问文件系统,对文件系统的性能和并发性要求较高。
并行文件系统可以满足这些需求,提供高效的文件访问能力。
四、并行文件系统的挑战1. 数据一致性:由于并行文件系统的分布式特性,不同的存储服务器上可能存在数据一致性的问题。
高性能计算技术概述高性能计算(High Performance Computing,HPC)技术是指运用先进的硬件、软件以及网络技术来加快计算速度和提高计算效率的一种计算技术。
随着科学技术的不断发展,越来越多的领域需要处理大量的数据和复杂的计算任务,高性能计算技术应运而生。
本文将详细介绍高性能计算技术的概念、发展历程、应用领域、关键技术以及未来发展趋势。
概念:- 高性能计算技术是指通过提高计算速度和效率来解决大规模、复杂计算问题的技术。
- 高性能计算系统通常由多台计算机节点组成,节点之间通过高速网络相连,通过并行计算的方式来提高计算速度。
发展历程:1. 1950年代:高性能计算技术的诞生可以追溯到计算机诞生的早期。
2. 1970年代:出现了第一代大规模并行处理机。
3. 1990年代:高性能计算机的应用开始渗透到科学研究、工程设计等领域。
4. 2000年代:高性能计算机的应用领域进一步扩展,包括天气预报、基因组学、能源开发等。
应用领域:1. 科学研究:高性能计算技术在物理学、化学、天文学、地球科学等领域的模拟和计算中得到广泛应用。
2. 工程设计:高性能计算技术在航空航天、汽车制造、建筑设计等领域的计算和仿真中发挥着重要作用。
3. 金融领域:高性能计算技术在金融风险分析、交易模拟等方面的应用正在不断增加。
4. 医学研究:高性能计算技术在基因组学、蛋白质结构预测等方面的应用对医学研究有着重要的推动作用。
关键技术:1. 并行计算:高性能计算技术通过将计算任务分割成若干小任务,并在多个处理单元上同时进行计算,从而提高计算速度。
2. 分布式存储:高性能计算系统通常采用分布式存储技术,将大量数据分散存储在不同的节点上,通过网络进行访问和传输。
3. 高速网络:高性能计算系统中节点之间的通信需要通过高速网络来实现,以确保数据传输的效率。
4. 软件优化:针对高性能计算需求,需要对计算任务进行有效的算法设计和软件优化,以充分利用硬件资源。
云计算中的高性能计算和并行计算云计算是一种基于互联网的计算方式,通过将计算和存储资源部署在云端,方便用户快速获取和使用。
而随着计算需求的不断增长和发展,高性能计算(HPC)和并行计算在云计算中发挥着越来越重要的作用。
本文将探讨云计算中的高性能计算和并行计算的定义、应用、挑战以及未来发展趋势。
一、高性能计算和并行计算的定义高性能计算是一种能够以非常高的速度执行大规模计算任务的计算方式。
与传统计算方式相比,高性能计算利用了更多的计算资源和更高效的算法,能够在较短的时间内解决复杂的科学、工程和商业计算问题。
并行计算是一种通过将计算任务划分成多个部分,由多个处理器同时执行的计算方式。
通过充分利用多个处理器的计算能力和存储资源,可以提高计算效率,加快任务完成速度。
二、高性能计算和并行计算在云计算中的应用1. 科学研究:高性能计算和并行计算在基因组学、气象学、物理学等领域中发挥着重要作用。
科学家可以通过云计算平台,将复杂的科学计算任务分解成多个子任务,并行执行,从而加速科学研究进程。
2. 工程仿真:在汽车、飞机、船舶等工程领域,高性能计算和并行计算可以帮助工程师进行复杂系统的仿真和优化。
通过云计算平台,工程师可以快速使用高性能计算资源,提高仿真计算速度和精度,并减少产品开发时间。
3. 金融建模:金融行业需要处理大量的数据和进行复杂的计算,如风险管理、投资组合优化等。
通过云计算平台提供的高性能计算和并行计算能力,金融机构可以更快地进行风险评估和决策分析,提高业务效率和决策准确性。
三、高性能计算和并行计算面临的挑战1. 数据传输和通信开销:高性能计算和并行计算所需要的大量数据传输和通信开销是云计算中的一大挑战。
大规模计算任务在分布式计算环境中的数据传输,可能会导致数据延迟和网络瓶颈。
2. 资源管理和调度:云计算平台需要精确管理和调度大规模的计算任务和资源。
对于高性能计算和并行计算来说,如何合理地分配计算资源、调度任务,以满足用户的性能需求,是一个较为复杂的问题。
魔方-2高性能计算平台应用环境1.简介魔方-2高性能计算平台是基于集群概念设计的大型计算机系统,由416台双路刀片式服务器组成,其整体计算能力理论峰值为399.36T flops (1Tflops即为每秒1012浮点计算)。
魔方-2系统每台服务器包含2颗英特尔志强E5-2680 v3处理器,每颗处理器包含12个处理器核心,计算主频2.50GHz,全系统合计9986颗处理器核心。
全系统包含三套内部互联网络,一套线速互联的Infiniband网络,一套千兆管理网络和一套IPMI网络。
2015年9月在上海超级计算中心完成安装后投入试运行。
本文主要介绍在魔方-2高性能计算平台上部署的应用软件和机器的使用方法及环境。
2.硬件环境计算节点的硬件配置如下:两路十二核Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz Haswell处理器(每节点合计24核)每节点合计128GB内存Mellanox InfiniBand光纤网络魔方-2系统的存储分为两种:每个计算节点配备的本地硬盘和由存储节点建立的高速并行文件系统。
其中本地硬盘用于计算节点操作系统使用,用户的所有操作都应该在帐号所对应$HOME(该$HOME所在的位置为高速并行文件系统)下进行,用户登录时,会自动被引导到自己帐号的$HOME下面。
鉴于存储空间有限和数据安全的考虑,请用户务必做到及时下载计算结果文件并清理空间。
3.软件环境3.1.操作系统魔方-2系统的计算节点和前端接入节点的操作系统均为CentOS release 6.6 (Final),提供了一个标准的64位Linux操作环境(内核:2.6.32-504.el6.x86_64),用户需要事先适当熟悉命令行方式的基本Linux操作,特别是文件目录操作,并应该会熟练使用一种编辑器(vi或者emacs等)。
3.2.作业调度系统对于大规模超级计算机系统,为了有效利用众多处理器核心所提供的计算能力,必须有一个统一的作业管理系统,统一地跟用户交互,接收提交的各类计算任务,统一地分配计算资源,将各种各样的用户作业具体指派到节点上执行。
基于云计算的大规模并行计算环境构建与优化云计算的发展成果在各个行业中已经日益显现,越来越多的企业采用云计算技术来构建和优化大规模并行计算环境。
本文将讨论基于云计算的大规模并行计算环境的构建与优化的重要性和方法。
一、云计算的定义和特点云计算是一种基于互联网的计算模式,它通过将计算资源和服务提供给用户,以满足其需求。
云计算具有以下几个特点:1. 可扩展性:云计算可以根据需求,随时增加或减少计算资源,以适应不同规模的并行计算需求。
2. 虚拟化:云计算环境中的计算资源都以虚拟化的方式呈现给用户,用户可以根据自己的需要来使用这些资源。
3. 弹性:云计算环境可以根据需要自动调整计算资源的分配,以实现更高的效率和更好的资源利用率。
二、构建大规模并行计算环境的需求随着科学技术的发展和数据规模的扩大,许多科学研究和工程应用都面临着大规模并行计算的需求。
而基于云计算的大规模并行计算环境可以为这些应用提供良好的解决方案。
1. 高性能计算需求:有些科学和工程计算需要在有限的时间内处理海量的数据,这就需要有高性能计算资源的支持。
2. 灵活的资源调度:大规模并行计算环境需要能够根据不同的任务需求来合理地调度和分配计算资源,以提高任务的执行效率。
3. 数据存储和管理:大规模并行计算环境中产生的数据量巨大,需要有高效的存储和管理方案来保证数据的安全和可靠性。
三、构建和优化大规模并行计算环境的方法1. 架构设计:构建大规模并行计算环境需要从架构层面进行设计,合理划分计算节点和存储节点,并设计高带宽、低延迟的网络互连结构,以实现节点之间的快速通信和数据传输。
2. 资源调度算法:为了提高大规模并行计算环境的资源利用率,需要使用高效的资源调度算法来合理地管理和分配计算资源。
这些算法可以基于任务的优先级、资源的可用性和负载平衡等方面进行调度。
3. 数据管理和存储优化:在大规模并行计算环境中,数据的管理和存储是一个非常重要的问题。
可以使用分布式文件系统、数据分区、数据冗余备份等技术来提高数据的存储效率和可靠性。
高性能计算与并行计算研究毕业论文摘要:本文通过对高性能计算与并行计算的研究,旨在探讨如何利用并行计算技术来提高计算机的性能。
首先,本文介绍了高性能计算和并行计算的基本概念和背景知识。
然后,结合实际案例,分析了并行计算的核心思想和常用算法。
接着,讨论了并行计算在不同领域的应用,包括科学计算、工程领域以及金融等行业。
最后,对当前高性能计算与并行计算的发展趋势和未来研究方向进行了展望。
关键词:高性能计算;并行计算;科学计算;工程领域;发展趋势1. 引言高性能计算和并行计算作为现代计算机领域的重要研究方向,对于提高计算机系统的性能具有极大的意义。
随着科学技术的不断进步和计算需求的增加,单个处理器已经无法满足大规模复杂计算的需求,因此,并行计算技术应运而生。
本章将介绍本文的研究背景、目的和结构。
2. 高性能计算与并行计算的基本概念2.1 高性能计算的定义与特点高性能计算是指通过使用一组高速计算机和丰富的并行计算资源,以及先进的计算方法和工具,来解决科学计算、工程计算和大规模数据处理等复杂问题的一种计算方法。
其特点主要包括计算速度快、计算规模大和计算精度高等。
2.2 并行计算的基本概念并行计算是指在多个处理器或计算机上同时进行计算的一种计算方式。
并行计算可以分为共享内存并行计算和分布式内存并行计算。
共享内存并行计算是指多个处理器通过共享同一块内存进行计算,而分布式内存并行计算是指多个计算机通过网络进行通信并共享数据进行计算。
3. 并行计算的核心思想和常用算法3.1 并行计算的核心思想并行计算的核心思想是将一个大问题划分为多个小问题,然后分配给多个处理器或计算节点进行计算,并最终将计算结果进行合并。
通过合理的任务划分和负载均衡,可以提高计算的效率和性能。
3.2 常用的并行计算算法常用的并行计算算法包括并行排序算法、并行搜索算法、并行图算法等。
这些算法可以通过任务划分和消息传递等方式来提高计算的效率。
4. 并行计算在不同领域的应用4.1 科学计算领域在科学计算领域,大规模的数值模拟和计算模型需要进行高性能的并行计算。
高性能计算平台(HPC)简介SHPC概念简介HPC技术架构HPC应用分析123HPC案例实践4HPC面临挑战5普通计算—传统列车高性能计算—高铁列车 高性能计算好比“高铁列车”,除了车头,每节车厢都有动力,所以算得快。
普通计算好比“传统列车”,只有车头有动力,所以算得慢。
高性能计算(High Performance Computing),通过软件和网络将多台独立的计算机组建成为一个统一系统,通过将一个大规模计算任务进行分割并分发至内部各个计算节点上来实现对中大规模计算任务的支持。
目标:提高大规模应用问题的求解速度,包括但不限于工程仿真、材料科学、生命医药等领域。
l 计算性能强大l 具有海量级存储空间l 高速数据通讯l 完整的软件基础平台软件部分:集群管理软件、作业调度软件、并行存储软件,并行环境,操作系统,行业应用软件硬件部分:服务器、网络、存储数据中心服务部分:专业售后服务,专业应用调优、开发服务,专业设计咨询服务生命科学气象预报数值计算石油勘探生物物理汽车设计药物设计航空航天国防军事云计算中心/省市计算中心异构集群芯片设计基因信息影视渲染船舶制造高性能计算机是一个国家综合实力的体现HPC行业应用HPC超级计算快速发展我国超级计算系统研制过去十年,我国在顶尖超算系统研制处于国际领先行列我国超级计算系统部署情况2023.062022.11过去十年,我国超算系统部署数量处于国际领先行列我国应用情况(以入围ACM Gordon Bell Prize为例)2014地震模拟2016大气动力框架相场模拟海浪模拟地震模拟气候模拟20172018图计算框架量子模拟人造太阳第一性原理过去十年,依托我国顶尖超算系统,大规模并行应用设计和研制方面取得显著进步2021获得国际超算最高奖ACM Gordon Bell奖CPU计算节点硬件平台软件平台应用场景GPU计算节点整机柜产品并行文件存储高性能计算管理平台基础设施管理平台高性能计算行业应用大内存服务器通用服务器气象海洋生命科学物理化学材料科学工业仿真高能物理石油勘探动漫渲染天文遥感基础设施数据中心高密服务器HGX机型PCIe机型整机柜服务器高速网络InfiniBand网络RoCE网络全闪存储混闪存储集群管理集群调度作业提交精细计费应用特征分析平台系统环境微模块数据中心(MDC)液冷MDC 风液式解决方案操作系统编译器并行环境数学库HPC全栈方案架构HPC集群软硬件层次架构SAAS 并行环境PAAS 节点X86机架异构节点X86刀片Gauss Fluent Vasp Wien2k 基础设施供电系统(UPS&PDU)机房机柜系统(水冷/风冷)空调系统(精密空调)……Material studio Matlab 异构开发并行开发集群管理平台网络IB/OPA 千/万兆以太网络KVM IPMIIAAS 存储存储服务器IB/FC 存储阵列集群软件操作系统Linux(RedHat,CentOS…)Windows Server 编译环境环境工具并行文件系统调试工具应用软件应用开发……并行化应用模式应用结点间通讯系统与控制内部互连计算单元处理器,物理层设计,硬件管理Linux, Windows 操作系统与配置管理 操作系统中间件通讯函数库 (MPI, DVSM, PVM, etc) 集群控制与管理编译器,函数库,性能分析与调试工具开发工具作业管理批作业序列与调度,集群监控,系统扩展工具用户, ISV’s 软件工具 HPC 增值供应商 平台与网络供应商供电系统,制冷系统,机房环境基础架构机房方HPC集群硬件拓扑图通用计算——双路计算机架(高密度)、刀片通用计算——胖节点异构节点虚拟工作站区满足所有应用的可视化需求管理登陆机架高速计算网络并行存储区:满足所有应用的共享存储需求KVM、机柜、供电等附属设施CPU Memory I/O Channel ...CPU Memory I/O Channel CPU Memory I/O Channel CPUMemoryI/O Channel CPU Memory I/O Channel 网 络集群(Cluster):将多台计算机组织起来,通过网络连接在一起,进行协同工作,来模拟一台功能更强大的计算机,叫做集群。