ANSYS中单元类型介绍和单元的选择
- 格式:ppt
- 大小:77.00 KB
- 文档页数:34
ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择:初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
ANSYS是一款广泛使用的工程模拟软件,其中包含了许多质量单元,可以用于各种不同类型的分析。
在本文中,我们将详细介绍ANSYS中质量单元的用法。
1. 什么是质量单元质量单元是指在有限元分析中用于描述物体的元素,即物体被划分成多个小的单元来进行分析。
质量单元的质量决定了模拟结果的准确性和可靠性。
因此,选择适当的质量单元对于分析的准确性至关重要。
2. ANSYS提供的质量单元ANSYS提供了多种质量单元,这些质量单元适用于不同类型的分析。
下面列出了一些常用的质量单元:(1) 线性三角形单元(PLANE183):适用于二维静力学、稳态和动态分析。
(2) 线性四边形单元(PLANE42):适用于二维静力学、稳态和动态分析。
(3) 等参三角形单元(PLANE67):适用于二维静力学、稳态和动态分析,可以更好地描述曲线表面。
(4) 等参四边形单元(PLANE78):适用于二维静力学、稳态和动态分析,可以更好地描述曲面。
(5) 六面体单元(SOLID185):适用于三维静力学、稳态和动态分析。
(6) 四面体单元(SOLID187):适用于三维静力学、稳态和动态分析。
(7) 八节点全积分单元(SOLID45):适用于三维静力学、稳态和动态分析,可以更好地描述曲面。
3. 质量单元的选择选择适当的质量单元对于分析的准确性至关重要。
以下是一些选择质量单元的建议:(1) 如果模拟的问题是二维的,则应使用线性三角形单元或线性四边形单元。
(2) 如果模拟的问题涉及曲面,则应使用等参单元。
(3) 如果模拟的问题是三维的,则应使用六面体单元或四面体单元。
(4) 如果要考虑较大的变形,则应使用八节点全积分单元。
(5) 如果需要考虑材料非线性,则应使用具有较高阶位移函数的元素。
4. 质量单元的网格划分在进行分析之前,需要将物体划分成小的单元。
划分单元的密度对于分析的准确性非常重要。
如果单元的数量过少,则可能会导致结果不准确;如果单元的数量过多,则可能会导致计算时间过长。
Ansys 低阶四面体单元类型1. 介绍四面体单元在有限元分析中,四面体单元是一种常见的单元类型,它由四个三角形面组成,每个面上有三个顶点。
四面体单元通常用于对复杂几何形状的建模和分析。
在Ansys中,有多种低阶四面体单元类型可供选择,每种类型都有其特定的应用场景和优缺点。
2. Ansus低阶四面体单元类型的选择在Ansys中,一般而言,低阶四面体单元类型包括Tet4、Tet5和Tet10等。
其中,Tet4是最基本的四面体单元,具有较低的计算准确度;Tet10则是高阶的四面体单元,计算准确度相对较高。
在选择四面体单元类型时,需要综合考虑模型的几何特征、分析需求和计算效率,以及对计算准确度的要求。
3. Tet4的应用与局限Tet4是Ansys中最常用的低阶四面体单元类型之一。
它适用于简单的几何形状和结构分析,计算速度较快,但在处理复杂几何形状和边界条件时,其计算准确度可能不足。
在对几何形状变化较大、应力集中或变形较大的结构进行分析时,Tet4可能无法满足精度要求。
4. Tet10的优势与适用场景与Tet4相比,Tet10是一种高阶的四面体单元类型,具有更高的计算准确度。
它能够更好地应对复杂几何形状和边界条件,适用于对结构进行更精确的分析和计算。
然而,Tet10的计算速度较慢,对计算资源的要求也更高,因此在大型模型的分析中需要谨慎选择。
5. 个人观点与建议对于Ansys低阶四面体单元类型的选择,我认为需要综合考虑模型的特征、分析需求和计算资源,以平衡计算准确度和效率。
在实际应用中,可以根据具体情况灵活选择Tet4或Tet10,也可以结合多种单元类型进行分析,以获得更可靠和准确的结果。
也建议在进行四面体单元类型选择时,根据具体情况进行验证和调试,以确保分析结果的准确性。
6. 总结与回顾在本文中,我们对Ansys低阶四面体单元类型进行了介绍和讨论,包括Tet4和Tet10的特点、适用场景和计算准确度。
通过深入探讨不同类型的四面体单元,希望能够帮助读者更好地理解和应用Ansys在工程建模和分析中的选择与应用。
一、概述在有限元分析中,选择合适的单元类型对于模拟结果的准确性和可靠性至关重要。
在ANSYS软件中,三角形和四边形单元是常用的两种单元类型,它们在不同的工程问题中具有各自的特点和适用范围。
本文将对ANSYS中的三角形和四边形单元进行介绍和分析,以期帮助工程师和研究人员在实际工程中做出正确的选择。
二、三角形单元的特点和适用范围1. 三角形单元是由三个节点和三个自由度构成的平面单元,适用于对称轴或面对称加载条件的问题。
它具有较好的形状适应性,可以适应复杂的几何形状。
2. 三角形单元适用于轻负载和小变形条件下的结构分析,例如弹性力学问题和轻负载的非线性分析。
3. 由于三角形单元仅有三个节点,所以对于边界条件和加载较复杂的问题,可能需要引入大量的单元来进行建模,从而增加了计算量和求解时间。
4. 三角形单元在非线性分析和大变形条件下的模拟效果较差,容易产生“锯齿”效应和收敛性问题。
三、四边形单元的特点和适用范围1. 四边形单元是由四个节点和四个自由度构成的平面单元,适用于矩形和正交结构的问题。
它具有简单的几何形状和稳定的性能。
2. 四边形单元适用于大变形和非线性条件下的结构分析,例如接触问题、塑性问题和大变形的非线性弹性力学问题。
3. 四边形单元相对于三角形单元具有更好的计算稳定性和收敛性,适用于对称和非对称加载条件的问题。
4. 由于四边形单元具有较好的几何适应性和稳定性,所以在建模过程中可以减少单元数量,从而降低了计算量和求解时间。
5. 在一些规则的结构问题中,四边形单元可能出现局部变形的问题,需要适当处理。
四、结论和建议在实际工程中,选择合适的单元类型是非常重要的。
根据上述分析,对于对称轴或面对称加载条件的问题可以选择三角形单元,而对于大变形和非线性条件下的问题可以选择四边形单元。
根据实际的工程需求和计算资源,也可以选择合适的单元类型,进行合理的建模和分析。
希望本文能够为工程师和研究人员在使用ANSYS软件进行有限元分析时提供一定的参考和帮助,使得模拟结果更加准确和可靠。
Ansys单元类型设置一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad8node 82 Quad 8node 183前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。
Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。
ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。
link10用来模拟拉索,注意要加初应变,一根索可多分单元。
link180是link10的加强版,一般用来模拟拉索。
(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。
注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。
该单元需要手工在实常数中输入Iyy和Izz,注意方向。
beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。
beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。
缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。
8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。
可见188单元已经很完善,建议使用。
beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。
(3)shell(板壳)系列shell41一般用来模拟膜。
shell63可针对一般的板壳,注意仅限弹性分析。
它的塑性版本是shell43。
加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。
2.2. 选择线性或高次单元ANSYS程序的单元库包括两种基本类型的面和体单元:线性单元(有或无特殊形状的)和二次单元。
这些基本单元类型如图2.1所示,下面来探讨这两种基本类型单元的选择。
可用于ANSYS程序中的基本面和体类型(a)线性等参元(b)特殊形状的线性等参元(c)二次单元2.2.1. 线性单元(无中间节点)对结构分析,带有附加形函数的角点单元会在合理的计算时间内通常能得到准确的结果。
当使用这些单元时,要注意防止在关键区域的退化形式。
即避免在结果梯度很大或其它关注的区域使用二维三角形单元和楔形或四面体形的三维线单元。
还应避免使用过于扭曲的线性单元,对于非线性结构分析,如果使用线性单元细致地而不是用二次单元相对粗糙的进行网格划分,那么将以很少的花费获得很好的精度。
(a)线性单元和(b)二次单元的例子如图2.2所示。
当对弯曲壳体建模时,必须选用弯曲的(二次的)或平面(线性)的壳单元,每种选择都有其优缺点,对于多数的实际情况,主要问题利用平面单元以很少的计算时间,即可获得很高精度的结果。
但是,必须保证使用足够多的平面单元来创建曲面。
明显地,单元越小,准确性越好。
推荐三维平面壳单元延伸不要超过 15 度的弧,圆锥壳(轴对称线)单元应限制在 10 度的弧以内(或5度如果离Y轴较近)。
对多数非结构分析(热、电磁等),线性单元几乎与高次单元有同样好的结果,而且求解费用较低。
退化单元(三角形和四面体)通常在非结构分析中产生准确结果。
2.2.2. 二次单元(带中间节点)对于用退化的单元形式进行的线性结构分析(即二维三角形单元和楔形或三维四面体单元),二次单元通常会以比线性单元的求解费用更低且产生良好的结果。
可是,为正确地使用这些单元,需要注意它们的特殊的性质:●对于分布载荷和边压力不象线性单元按“一般意义上”分配到单元节点上(见图2.3所示),单元的中间节点对反力也表现出相同的非直观的解释。
●三维带中间节点的热流单元在承受对流载荷时按固定模式分配热流,在中间节点沿一个方向流动而在角点又沿另外方向的流动。