2022年全国普通高等学校运动训练、民族传统体育专业单招统一招生预测卷数学试卷
- 格式:doc
- 大小:508.42 KB
- 文档页数:5
2022年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学模拟卷一、单选题1.已知集合{}11A x x =-<<,(){}20B x x x =-<,则A B =( )A .{}10x x -<<B .{}01x x <<C .{}12x x <<D .{}12x x -<<2.已知向量1(2,0),(,1),2==-a b 则2a b +=( )A B C .D .5 3.点(1,2)到直线2y x =-的距离为( )A B C D .4.“()23x k k Z ππ=+∈”是“tan x =的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.若2x +5>14,则x 的取值范围为( )A 、(-7,+∞)B 、(7,+∞)C 、(-3,+∞)D 、(3,+∞)6.若一个圆锥的侧面展开图是半径为R 的半圆,则该圆锥的高为( )A B C R D 7.从1,2,3,4,5,6这6个数字中,不放回地任取两数,两数都是偶数的概率是 A .12 B .13 C .14 D .15 8.已知等差数列{}n a 的前n 项和为n S ,且满足25812a a a ++=,则9S =( ) A .18B .27C .36D .669.若方程22250x y mx y ++++=表示一个圆,则实数m 的取值范围是( ) A .()4,4-B .()3,3-C .()(),44,-∞-+∞D .()(),33,-∞-+∞10.函数()22sin cos 2cos f x x x x =+的最大值为( ).A .4B .3C 1 D二、填空题 11.()512x +的展开式中3x 项的系数为_____________.12.若双曲线2221(0)x y a a -=>_______. 13.等比数列{}n a 中,14a ,22a ,3a 成等差数列,若11a =,则公比q = __________.14.在ABC 中,角,,A B C 所对的边分别为,,a b c ,若a =5b =,c =C 的大小为__________.15.函数2()2(2)1f x x a x =---在区间(3)+∞上是增函数,则实数的取值范围为__________. 16.已知长方体1111ABCD A B C D -,体积为48,在棱1BA BC BB 、、分别取中点E F G 、、,则三棱锥B EFG -的体积为__________.三、解答题17.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,b =.(1)若3sin 4sin C A =,求c 的值;(2)求a c +的最大值.18.已知双曲线C :22221x y a b-=(a > 0,b > 0 2. (1)求双曲线的焦点到渐近线的距离;(2)若直线y =x +m 被双曲线CC 截得的弦长为m 的值.19.如图,在正四棱锥P ABCD -中,点E 是侧棱PA 的中点,PA ⊥平面BDE .PC平面BDE;(1)求证://(2)求直线PB与平面BDE所成的角之大小.。
全国普通高等学校运动训练、民族传统体育专业单招统一招生考试一、选择题:(本大题共10小题,每小题6分,共60分)(1)设集合{2,4,6,8}N 4}{1,2,3==,,M ,则N M =( )A .φB .}3,1{C .}4,2{D .}8,6,4,3,2,1{数的周期函数,且为偶函最小正周期为数的周期函数,且为偶函最小正周期为数的周期函数,且为奇函最小正周期为数的周期函数,且为奇函最小正周期为)是()函数(42422sin )(2D C B A xx f π=(3)下列函数中是增函数的是( )A.x e y --=B.x e y -=C.x e y -=D.x e y =46332633215cos 15sin 4D C B A )()(=︒+︒ ︒︒︒︒⊥+=1501206030)(33,15D C B A b a b b a b a 的夹角为与,则)满足(),单位向量,()已知平面向量( (6)已知a >b,甲:c >d ;乙:a+c >b+d ,则甲是乙的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3203203203221023722=-+=--=++=+--=+-+y x D y x C y x B y x A l y y x l 的方程为(),则的圆心,斜率为过圆)已知直线(4523249]1,1[1)(82D C B A m M x x x f m M )(的最大值和最小值,则在区间分别是函数与)设(=----=))(())(())(())(()其中正确的命题是(,则)若;(∥,则∥)若(,则)若;(∥,则∥)若(有下面四个命题:为两个平面,为两条直线,,)设(434231212321,9D C B A m m nm n n m n m n m βαββαβαααβα⊥⊥⊥⊥⊂(10)的解集为不等式21≤-xx ( ) A.),2[1+∞∞- ),( B.),1]32+∞-∞-(,( C.]2,1( D.)1,32[二、填空题(本大题共6小题,每小题6分,共36分)(11)在6名男运动员和5名女运动员种选男、女运动员各3名组成一个代表队,则不同的组队方案共有( )种。
2022年全国体育单招数学试题一、单选题1.若集合,,则A. B.C. D.2.不等式的解集为A. B.C. D.3.若,则等于A. B.C. D.4.函数的零点是A. B.C. D.5.若直线过圆的圆心,则的值为A. B.1C. D.6.设数列的前项和,则的值为A. B.C. D.7.设,用二分法求方程在近似解的过程中得,,,,则方程的根落在区间A. B.C. D.8.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.6B.12C.18D.249.设双曲线2213yx-=,22125x y-=,22127y x-=的离心率分别为1e,2e,3e,则()A.321e e e <<B.312e e e <<C.123e e e <<D.213e e e <<10.若函数()lg(f x x mx =+为偶函数,则m =()A.-1B.1C.-1或1D.0二、填空题11.不等式01xx ≤+的解集为___________________.12.已知椭圆的一个焦点为()1,0F ,离心率为12,则椭圆的标准方程为_______.13.已知向量a ,b 满足2a = ,||b = ,若()b a b ⊥- ,则a 与b 的夹角为______.14.在6212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为__________(用数字作答).15.不等式22lg lg 0x x -<的解集是_______.16.关于x 的不等式()()222log 1log 2x x ->-的解集为______.三、解答题17.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.18.过点()2,0P -的直线l 与抛物线2:4C y x =交于不同的两点A ,B.(Ⅰ)求直线l 斜率的取值范围;(Ⅱ)若F 为C 的焦点,且0FA FB ⋅=,求ABF 的面积.19.如图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.参考答案1.C2.A【解析】不等式可化为:,所以,所以,所以不等式的解集为.注:先保证x2前的系数为正,才有“大于取两边,小于取中间的规律”3.D4.A【解析】令得,或.5.B【解析】圆化为标准方程为,所以圆心为,代入直线得.6.C【解析】.(想想S4表示什么?前4项的和!所以S4=a1+a2+a3+a4,S3=a1+a2+a3)7.C8.D【解析】【分析】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A⋅种可能;再由分步计数原理的运算法则求得结果.【详解】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A⋅种可能;所以可以组成无重复数字的三位奇数有1212232224C C C A⋅⋅⋅=种.故选:D【点睛】本题考查排列组合的综合应用,属于基础题.9.D【解析】【分析】已知双曲线标准方程,根据离心率的公式,直接分别算出1e ,2e ,3e ,即可得出结论.【详解】对于双曲线2213y x -=,可得222221,3,4a b c a b ===+=,则22124c e a==,对于双曲线22125x y -=,得222222,5,7a b c a b ===+=,则222272c e a ==,对于双曲线22271x y -=,得222222,7,9a b c a b ===+=,则223292c e a ==,可得出,221322e e e <<,所以213e e e <<.故选:D.【点睛】本题考查双曲线的标准方程和离心率,属于基础题.10.C 【解析】【分析】由f (x)为偶函数,得((lg lg x mx x mx --+=+,化简成xlg (x 2+1﹣m 2x 2)=0对x ∈R 恒成立,从而得到x 2+1﹣m 2x 2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即((lg lg x mx x mx --=;得((()222lg lg lg 10x mx x mx x x m x -+++=+-=对x ∈R 恒成立,∴x 2+1﹣m 2x 2=1,∴(1﹣m 2)x 2=0,∴1﹣m 2=0,∴m=±1.故选C.【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.11.(1,0]-【解析】由01xx ≤+得:(1)0(1)x x x +≤≠-,解得:10x -<≤,故填(]1,0-.12.22143x y +=【解析】【分析】根据焦点和离心率构造关于,,a b c 的方程组,求解得到,,a b c ,从而可得椭圆的标准方程.【详解】设椭圆的标准方程为:()222210x y a b a b +=>>.椭圆的一个焦点为()1,0F ,离心率12e =222112c c a a b c=⎧⎪⎪∴=⎨⎪=+⎪⎩,解得:223a b =⎧⎨=⎩∴椭圆的标准方程为:22143x y +=本题正确结果:22143x y +=【点睛】本题考查椭圆标准方程的求解问题,属于基础题.13.30°【解析】【分析】由已知可得()0b a b ⋅-=,利用向量的数量积即可求解.【详解】由已知()0b a b ⋅-= 知,20b a b -⋅= ,则3a b ⋅= ,所以3cos ,2a b = ,故夹角为30°.故答案为:30°【点睛】本题考查了向量的数量积,需掌握向量垂直数量积等于零,属于基础题.14.154【解析】【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.【详解】因为66316621122rrr r r r r T C x C x x --+⎛⎫⎛⎫=⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令630r -=,所以2r =,3154T =.故答案为:154.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.15.()1100,【解析】【分析】运用对数恒等式,将2lg x 转化成2lg x ,对lg x 进行因式分解,可求lg x 的范围,即可求出解集.【详解】22lg lg 0x x -< ,即()2lg 2lg 0x x -<()lg lg 20x x ∴-<0lg 2x ∴<<1100x ∴<<故答案为:()1100,【点睛】本题考查了对数恒等式log log na a M n M =,是常考题型.16.(,1-∞--.【解析】【分析】由对数函数的性质化对数不等式为一元二次不等式组求解.【详解】由()()222log 1log 2x x ->-,得21220x xx ⎧->-⎨->⎩,解得1x <-.∴不等式()()222log 1log 2x x ->-的解集为(,1-∞--.故答案为:(,1-∞--.【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题.17.(1)0.46.(2)0.2352.【解析】【分析】【详解】(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46.(2)P 2=[0.6(1-0.6)]·[(0.7)2(1-0.7)0]=0.2352.18.(Ⅰ)22,00,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.(Ⅱ)9【解析】【分析】(Ⅰ)利用点斜式写出直线l 的方程,将直线与抛物线联立消去y ,利用>0∆即可求解.(Ⅱ)设1122(,),(,)A x y B x y ,由(Ⅰ)知1212244,4x x x x k +=-=,(1,0)F ,利用向量数量积的坐标运算可得24170FA FB k⋅=-= ,从而1211(1)(1)22ABF S FA FB x x △=×=++,代入即可求解.【详解】(Ⅰ)由题意知直线斜率存在且不为0,设直线l 的方程为(2)y k x =+,将直线l 的方程和抛物线2:4C y x =联立,消去y 得2222(44)40k x k x k +-+=由题意知,2016(12)0k k ≠⎧⎨∆=->⎩解得2102k <<,所以直线l 的斜率的取值范围是22,00,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.(Ⅱ)设1122(,),(,)A x y B x y ,由(Ⅰ)知1212244,4x x x x k+=-=,又(1,0)F ,所以212121212(1)(1)(1)(1)(2)(2)FA FB x x y y x x k x x×=--+=--+++2221212(1)(21)()41k x x k x x k =++-+++2417k =-因为0FA FB ⋅= ,所以24170k -=,即2417k =.()121212211114(1)(1)144192222ABF S FA FB x x x x x x k△骣琪=×=++=+++=+-+=琪桫所以ABF 的面积为9.【点睛】本题考查了直线与抛物线的位置关系、焦点三角形的面积问题,考查了抛物线的焦半径公式,属于中档题.19.(1)证明见解析(2)5-【解析】【分析】(1)证明四边形EFBC 是平行四边形,可得CE BE ∥,进而得证.(2)首先取AB 的中点O ,连接PO ,根据题意易证PO ⊥底面ABCD ,再建立空间直角坐标系,求出两平面的法向量,利用向量的夹角公式即可求得余弦值.【详解】(1)取PA 的中点F ,连接FE ,FB ,∵E 是PD 的中点,∴1//2FE AD ,又1//2BC AD ,∴//FE BC ,∴四边形EFBC 是平行四边形,∴//CE BF ,又CE 不在平面PAB 内,BF 在平面PAB 内,∴//CE 平面PAB .(2)取AB 的中点O ,连接PO .因为PA PB =,所以PO AB⊥又因为平面PAB ⊥底面ABCD AB =,所以PO ⊥底面ABCD .分别以AB 、PO 所在的直线为x 轴和z 轴,以底面内AB 的中垂线为y 轴建立空间直角坐标系,令122AB BC AD ===,则4=AD ,因为PAB △是等边三角形,则2PA PB ==,O 为AB的中点,PO =,则(P ,()1,0,0B ,()1,2,0C ,()1,4,0D -∴(1,2,PC = ,()0,2,0BC =uu u r,()2,2,0CD =- ,设平面PBC 的法向量为(),,m x y z = ,平面PDC 的法向量为(),,n a b c =,则200200m PC x y m BC y ⎧⋅=+=⎪⎨⋅=++=⎪⎩,令x =)m =,202200n PC a b n CD a b ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令1a =,故可取(n = ,∴cos ,=5m n m n m n ⋅<>=,经检验,二面角B PC D --的余弦值的大小为5-.【点睛】本题第一问考查线面平行的证明,第二问考查向量法求二面角的余弦值,同时考查了学生的计算能力,属于中档题.答案第9页,总9页。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
机密★启用前2022年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本题共8小题,每小题8分,共64分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.若集合{|14,}A x x x Z =-<<∈,{|21,}B x x x Z =-<<∈,则A B 的元素共有( )A .1个B .2个C .3个D .4个2.函数2()log f x =( ) A .(1,3)-B .[1,3]-C .(3,1)-D .[3,1]-3.下列函数中,为增函数的是( ) A .ln(1)y x =-+B .21y x =-C .2xe y =D .|1|y x =-4.函数3sin 4cos 1y x x =++的最小值是( ) A .7-B .6-C .5-D .4-5.已知O 为坐标原点,点(2,2)A ,M 满足2AM OM =,则点M 的轨迹方程为( ) A .22334480x y x y +++-= B .22334480x y x y +---= C .224440x y x y +++-=D .224440x y x y +---=6.从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方式共有( ) A .6种B .9种C .12种D .15种7.ABC ∆中,已知60A =︒,2AC =,BC AB =( ) A .4B .3C .2D .18.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则( ) A .1AB CC =B .AB BC =C .145CBC ∠=︒D .145BDB ∠=︒二、填空题:本题共4小题,每小题8分,共32分.请将各题的答案写入答题卡上的相应位置. 9.若221sin cos 3θθ-=-,则cos2θ= .10.不等式|1|2x ->的解集是 .11.若向量a ,b 满足||2a =,||3b =,且a 与b 的夹角为120︒,则a b = . 12.设α,β,γ是三个平面,有下面四个命题: ①若αβ⊥,βγ⊥,则αγ⊥; ②若//αβ,//βγ,则//αγ; ③若αβ⊥,//βγ,则αγ⊥; ④若//αβ,βγ⊥,则//αγ. 其中所有真命题的序号是 .三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.请将各题的答案写在答题卡上的相应位置. 13.(18分)某射击运动员各次射击成绩相互独立,已知该运动员一次射击成绩为10环的概率为0.8,9环的概率为0.1,小于9环的概率为0.1,该运动员共射击3次. (1)求该运动员恰有2次成绩为9环的概率; (2)求该运动员3次成绩总和不小于29环的概率.已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.已知函数3()x x bf xx++=,{}na是等差数列,且2(1)a f=,3(2)a f=,4(3)a f=.(1)求{}na的前n项和;(2)求()f x的极值.2022年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学参考答案与试题解析【选择题&填空题答案速查】一、选择题:本题共8小题,每小题8分,共64分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.若集合{|14,}A x x x Z =-<<∈,{|21,}B x x x Z =-<<∈,则A B 的元素共有( )A .1个B .2个C .3个D .4个【解析】集合{|14,}{0,1,2,3}A x x x Z =-<<∈=,{|21,}{1,0}B x x x Z =-<<∈=-,{0}A B ∴=,所以AB 的元素共有1个元素,故选:A .【评注】此题考查了交集及其运算,比较简单,是一道基本题型.2.函数2()log f x =( ) A .(1,3)-B .[1,3]-C .(3,1)-D .[3,1]-以函数的定义域为(1,3)-,故选:A .【评注】本题考查函数的定义域及其求法,考查了一元二次不等式的解法,是基础题. 3.下列函数中,为增函数的是( ) A .ln(1)y x =-+B .21y x =-C .2xe y =D .|1|y x =-【解析】对于A :在(1,)-+∞上单调递减;对于B :在(,0)-∞上单调递减,在(0,)+∞上单调递增; 对于C :在(,)-∞+∞上单调递增;对于D :在(,1)-∞上单调递减,在(1,)+∞上单调递增.故选:C . 【评注】本题考查的知识点是函数单调性的性质,熟练掌握指数函数,对数函数,幂函数,一次函数,绝对值函数和复合函数单调性,是解答的关键. 4.函数3sin 4cos 1y x x =++的最小值是( ) A .7-B .6-C .5-D .4-故函数的最小值5(1)14⨯-+=-,故选:D .【评注】本题考查了辅助角公式化简能力、正弦函数的图象和性质和转化思想求解最小值问题.属于基础题.5.已知O 为坐标原点,点(2,2)A ,M 满足2AM OM =,则点M 的轨迹方程为( ) A .22334480x y x y +++-= B .22334480x y x y +---= C .224440x y x y +++-=D .224440x y x y +---=【评注】本题考查用直译法(直接法)求轨迹方程的方法,利用点点距公式建立等量关系,是解题的关键. 6.从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方式共有( ) A .6种B .9种C .12种D .15种【解析】男女各选1名队员的挑选方式为种11339C C =,故选:B . 【评注】本题考查排列组合知识点,运用分步计数原理,是解题的关键.7.ABC ∆中,已知60A =︒,2AC =,BC AB =( ) A .4B .3C .2D .1【解析】由题意可知,由余弦定理可得2222cos BC AC AB AC AB A =+-⋅⋅,即【评注】本题考查余弦定理的应用,熟练掌握余弦定理是基础,属于基础题. 8.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则( ) A .1AB CC = B .AB BC =C .145CBC ∠=︒D .145BDB ∠=︒【解析】如图所示,【评注】本题考查立体几何的空间位置关系,通过证明和定量计算求得答案,是中档题. 二、填空题:本题共4小题,每小题8分,共32分.请将各题的答案写入答题卡上的相应位置. 9.若221sin cos 3θθ-=-,则cos2θ= .【评注】本题考查了二倍角公式化简能力.属于基础题. 10.不等式|1|2x ->的解集是 .【解析】不等式|1|2x ->等价于|1|2x ->,解得1x <-或3x >,所以原不等式的解集为{|13}x x x <->或,故答案为:{|13}x x x <->或.或者填(,1)(3,)-∞-+∞ 【评注】考查了绝对值不等式的解法,是基础题.11.若向量a ,b 满足||2a =,||3b =,且a 与b 的夹角为120︒,则a b = .根据向量的数量积可得||||cos ,23a b a b a b =<>=⨯⨯【评注】本题考查了向量的数量积的定义式,是基础题. 12.设α,β,γ是三个平面,有下面四个命题: ①若αβ⊥,βγ⊥,则αγ⊥; ②若//αβ,//βγ,则//αγ; ③若αβ⊥,//βγ,则αγ⊥; ④若//αβ,βγ⊥,则//αγ. 其中所有真命题的序号是 .【解析】对于①:若αβ⊥,βγ⊥,则αγ⊥或//αγ,故①不正确;对于②:有面面平行的判定定理可知②正确;对于③正确;对于④:若//αβ,βγ⊥,则αγ⊥.故④不正确;综上②③正确,故答案为:②③. 【评注】本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.请将各题的答案写在答题卡上的相应位置. 13.(18分)某射击运动员各次射击成绩相互独立,已知该运动员一次射击成绩为10环的概率为0.8,9环的概率为0.1,小于9环的概率为0.1,该运动员共射击3次. (1)求该运动员恰有2次成绩为9环的概率; (2)求该运动员3次成绩总和不小于29环的概率.【解析】(1)该运动员恰有2次成绩为9环的概率为22130.10.90.027P C =⨯⨯=;(2)该运动员3次成绩总和不小于29环的概率为2233330.80.10.80.1920.5120.704P C C =⨯⨯+⨯=+=. 【评注】本题以实际问题为载体,考查概率知识的运用,考查独立重复试验的概率,正确分类是关键. 14.(18分)已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.2300012442y y y =2,∴双曲线8)t ,则1(3PF =--,2(3PF =-∴212577(3)(34,864PF PF t t ⋅=----,又2[0,t ∈12min ()(9PF PF ⋅==-,即当时,12PF PF ⋅取得最小值,且最小值为【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出A ,B 两点的坐标,列出三角形的面积关系也是本题的解题关键,运算量并不算太大. 15.(18分)已知函数3()x x bf x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.233 ()()1 x x+ --n 性较强,属于中档题.。
2022年单独考试招生考试数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.ABC ∆中,已知60A =︒,AC=2,BC =,则AB=____()A.5B.3C.2D.62.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则()A.1AB CC =B.AB=BC C.145CBC ∠=︒D.145BDB ∠=︒3.已知集合{}{}0,2,1,1,0,1,2A B ==-,则A B ⋂=()A.{0,2}B.{-1,2}C.{0}D.{-2,-1,2}4、下列各式成立的是()A.()52522n m n m +=+B.(b a)2=12a 12b C.()()316255-=- D.31339=5、设2a=5b=m ,且1a +1b=3,则m 等于()A.310B.6C.18D.106.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A、6B、12C、18D、247.设双曲线2213y x -=,22125x y -=,22127y x -=的离心率分别为1e ,2e ,3e ,则()A.321e e e <<B.312e e e <<C.123e e e <<D.213e e e <<8.若函数()lg(f x x mx =+为偶函数,则m =()A.-1B.1C.-1或1D.09.已知集合M={a,b,c,d},则含有元素a 的所有真子集个数有()A.5个B.6个C.7个D.8个10.已知函数f(x+1)=2x-1,则f(2)=()A.-1B.1C.2D.3二、填空题:(本题共2小题,每小题10分,共20分.)1.直线210x y +-=与两坐标轴所围成的三角形面积S =_______2.在闭区间[0,2]π上,满足等式sin cos1x =,则x =_______三、解答题:(本题共2小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1、科幻小说中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):2.由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.参考答案:一、选择题1-5题答案:BCADA 6-10题答案:DDCCB 部分选择题解析:1.【解析】由题意可知,由余弦定理可得2222cos BC AC AB AC AB A =+-⋅⋅,22222cos 60AB AB =+-⋅⋅⋅︒,解得3AB =.故选:B .2.【解析】如图所示,可根据三角形全等(HL ),证明1Rt AOD Rt BOB ∆≅∆,可证1AD BB =,1CB CC =,145CBC ∠=︒.故选:C .3.【评注】本题考查立体几何的空间位置关系,通过证明和定量计算求得答案,是中档题.答案.A 【解析】【分析】直接利用集合的交集运算,找出公共元素,即可得到结果.【详解】{}{}0,2,1,1,0,1,2A B ==- {0,2}A B ∴= .故选:A.6、答案.D 【解析】【分析】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C ⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A ⋅种可能;再由分步计数原理的运算法则求得结果.【详解】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C ⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A ⋅种可能;所以可以组成无重复数字的三位奇数有1212232224C C C A ⋅⋅⋅=种.故选:D 【点睛】本题考查排列组合的综合应用,属于基础题.7、答案.D 【解析】【分析】已知双曲线标准方程,根据离心率的公式,直接分别算出1e ,2e ,3e ,即可得出结论.【详解】对于双曲线2213y x -=,可得222221,3,4a b c a b ===+=,则22124c e a ==,对于双曲线22125x y -=,得222222,5,7a b c a b ===+=,则222272c e a ==,对于双曲线22271x y -=,得222222,7,9a b c a b ===+=,则223292c e a ==,可得出,221322e e e <<,所以213e e e <<.故选:D.【点睛】本题考查双曲线的标准方程和离心率,属于基础题.8、答案.C 【解析】【分析】由f (x)为偶函数,得((lg lg x mx x mx --+=,化简成xlg (x2+1﹣m2x2)=0对x ∈R恒成立,从而得到x2+1﹣m2x2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即((lg lg x mx x mx --=;得((()222lg lg lg 10x mx x mx x x m x -++=+-=对x ∈R 恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故选C.【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.9、答案.C 【解析】含有元素a 的所有真子集为:{a}、{a,b}、{a,c}、{a,d}、{a,b,c}、{a,b,d}、{a,c,d},共7个.10、答案.B【解析】f(2)=f(1+1)=12-1=1.二、填空题1.答案:14【解析】直线210x y +-=与两坐标轴交点为1(0,)2,(1,0),直线与两坐标轴所围成的三角形面积1111224S =⨯⨯=.2.答案:12π+或12π-【解析】012π<<,在闭区间[0,2]π上,sin(1)sin(1)cos122ππ+=-=.三、解答题1.解析:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a ∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大.(3)46<<-x .2.解析:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a ∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1),得4922+--=x xy ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大.(4)46<<-x .单招数学考试范围及试题难度高中数学一定要注意的一点就是时效性,一定要在课后及时复习,这样做的原因就是如果你隔几天在看,你会发现你的知识点已经忘记的差不多了,这个时候你在复习,就产不多相当于又重新在学一次,所以一定要趁热打铁".一、单招相对于普通高考来说:单招考试题比较简单,单招文化考试主要注重基础,同时面试得分相对容易.二、组织出题不一样:单招考试是由省考试院统一组织,各试点单招学校独立命题、自主组织测试;三、考试范围不同:单招考试普高学生只考4科,即语文、数学、外语和综合科,三校生职高、中专、技校考填报专业的专业考试,而普通高考考试科目虽然为4科,但需要考文综或理综.。
全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷1一、单选题1.若集合{}2,1,0,1,2M =--,211,R 2N y y x x ⎧⎫==-+∈⎨⎬⎩⎭,则M N ⋂=()A .{}2,1,0,1--B .{}2,1,0--C .{}1,2D .{}22.函数()f x )A .1,3⎛⎫-+∞ ⎪⎝⎭B .1,13⎛⎫- ⎪⎝⎭C .1,13⎡⎫-⎪⎢⎣⎭D .1,3⎛⎫-∞- ⎪⎝⎭3.已知70.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系为()A .a c b <<B .a b c<<C .c b a <<D .c<a<b4.“cos 2α=是“5,12k k Z παπ=+∈”的A .必要非充分条件B .充分非必要条件C .充要条件D .既非充分又非必要条件5.设计用232m 的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m ,则车厢的最大容积是()A .(38-m 3B .16m 3C .m 3D .14m 36.在ABC 中,若2AB =,3BC =,7cos 12B =,则AC =()A .6BC .D7.排球比赛的规则是5局3胜制(5局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都为23,且各局之间互不影响,前两局中乙队以2:0领先,则最后乙队获胜的概率是()A .49B .1927C .1127D .40818.已知四棱锥P ABCD -的顶点都在球O 的球面上,PA ⊥底面ABCD ,1AB AD ==,2BC CD ==,若球O 的表面积为9π,则四棱锥P ABCD -的体积为()A .4B .43C .D .3二、填空题9.已知tan 3α=,tan()2αβ-=-,则tan β=___________.10.在ABC 中,1,2,||AB AC AB AC ==+= M 满足2BM MC =,则AM BC ⋅=______.11.设数列{}n a 的前n 项和为n S ,若13a =,且1112n n S a +=+,则{}n a 的通项公式n a =_______.12.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的上、下顶点分别为A ,B ,右顶点为D ,右焦点为F ,直线BF 与直线AD 交于点P ,若2AB OP =,则椭圆C 的离心率为________.三、解答题13.如图,在多面体ABCDE 中,AEB △为等边三角形,AD BC ∥,BC AB ⊥,CE =,22AB BC AD ===,F 为EB 的中点.(1)证明:AF ∥平面DEC ;(2)求多面体ABCDE 的体积.14.设抛物线2:2C y x =的焦点为F ,点(2,0),(2,0)A B -,直线l 过A 点且与抛物线C 交于,M N 两点.(1)当l x ⊥轴(M 在x BM 的方程;(2)设直线,BM BN 的斜率分别为12,k k ,证明:120k k +=.15.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为12,23,34,且两队各人回答问题正确与否相互之间没有影响.(1)求甲队总得分为1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.参考答案:1.A【分析】求出二次函数2112y x =-+的值域即为集合N ,两集合取交集即可.【详解】{}2,1,0,1,2M =-- ,{}211,R 12N y y x x y y ⎧⎫==-+∈=≤⎨⎬⎩⎭,M N ∴⋂={}2,1,0,1--.故选:A【点睛】本题考查集合的交集运算,涉及二次函数的值域,属于基础题.2.B【分析】根据二次根式以及对数函数的性质求出函数的定义域即可.【详解】解:由题意得31010x x +>⎧⎨->⎩,解得:113-<<x ,故选B .【点睛】本题考查了求函数的定义域问题,考查对数函数的性质以及二次根式的性质,是一道基础题.3.D【分析】结合指数函数和对数函数性质,分别与中间值0和1比较.【详解】700.61<<,0.671>,0.6log 70<,∴c<a<b .故选:D.【点睛】本题考查比较幂与对数的大小.在比较不同类型的数的大小时可与中间值0或1等比较.4.A【分析】由cos 22α=,可得5522,,612k k k z ππαπαπ=±=±∈,利用充分条件与必要条件的定义可得结果.【详解】因为cos 22α=-,所以5522,,612k k k z ππαπαπ=±=±∈,即cos 22α=不能推出5,12k k Z παπ=+∈,反之,由5,12k k Z παπ=+∈可推出cos 2α=故“cos 2α=”是“5,12k k Z παπ=+∈”的必要不充分条件,故选A .【点睛】本题主要考查充要条件的概念,二倍角公式,属于简答题.充要条件的判断问题,是高考不可少的内容,特别是充要条件可以和任何知识点相结合,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法.5.B【详解】设长方体车厢的长为xm ,高为hm ,则222232x h xh +⨯=+,即216x h xh +=+,∴162x h xh xh =++≥,即160xh +≤,解得0<≤,∴08xh <≤.∴车厢的容积为3216()V xh m =≤.当且仅当2x h =且216x h xh +=+,即4,2x h ==时等号成立.∴车厢容积的最大值为316m .选B .6.D【分析】利用余弦定理可求AC .【详解】由余弦定理可得22272cos 1326612AC AB BC AB BC B =+-⨯⨯=-⨯⨯=,故AC =故选:D.7.B【分析】由题意可知,事件“最后乙队获胜”的对立事件为:A 最后3局均为甲队获胜,利用独立事件和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,事件“最后乙队获胜”的对立事件为:A 最后3局均为甲队获胜,由独立事件的概率公式可得()328327P A ⎛⎫== ⎪⎝⎭,因此,则最后乙队获胜的概率是()19127P A -=.故选:B.8.B【分析】推导出90ABC ADC ∠=∠= ,可得出四边形ABCD 的外接圆直径为AC =球直径为26PC R ==,结合PA ⊥底面ABCD 可得答案.【详解】AB AD = ,BC BD =,AC AC =,ABC ∴ 与ADC △全等,ABC ADC ∠=∠∴,易知A 、B 、C 、D 四点共圆,则180ABC ADC ∠+∠= ,90ABC ADC ∴∠=∠= ,所以,四边形ABCD 的外接圆直径为AC 设四棱锥P ABCD -的外接球半径为R ,则249R ππ=,解得32R =,由PA ⊥底面ABCD ,BC ⊂底面ABCD ,所以PA BC⊥又AB BC ⊥,且AP AB A = ,所以BC ⊥平面PAB ,又PB ⊂面PAB ,所以BC PB ⊥同理可证:CD PD⊥设为O 为PC 的中点,则由直角三角形的性质可得:OA OB OD OC ===所以O 四棱锥P ABCD -外接球的球心,即PC 为其直径,即23PC R ==2PA ∴===,1112122ABC S AB BC =⨯⨯=⨯⨯= 所以1142212333P ABCD ABC V S AP -=⨯⨯=⨯⨯⨯=故选:B【点睛】关键点睛:本题考查了四棱锥外接球问题的处理,考查推理能力与计算能力,解答本题的关键是由条件得出90ABC ADC ∠=∠= ,从而求出AC ,进一步得出PC 为球的直径,属于中等题.9.1-【分析】根据()a βαβ=--可知()tan tan a βαβ=--⎡⎤⎣⎦,结合两角差的正切公式进行计算即可.【详解】由已知可得,tan tan()3(2)tan tan[()]11tan tan()13(2)ααββααβααβ----=--===-+-+⨯-.故答案为:1-.10.83【解析】||AB AC += 1AB AC ⋅=- ,AM ,BC 分别用AB ,AC表示,利用数量运算即可求值.【详解】如图,1,2,||AB AC AB AC ==+=222()2AB AC AB AC AB AC ∴+=++⋅ ,1+4+23AB AC =⋅=1AB AC ∴⋅=-,又2BM MC = ,22()33BM BC AC AB ∴==- ,212()333AM AB BM AB AC AB AB AC=+=+-=+ 2212121()()33333AM BC AB AC AC AB AB AC AB AC ∴⋅=+⋅-=-+-⋅ 1818.3333=-++=故答案为:8311.23,143,2n n n -=⎧⎨⋅≥⎩.【分析】由题意,根据1n n n S S a --=计算写出13(2)n n a a n +=≥,再代入12112a a =+,计算2a ,从而验证213a a ≠,写出2n ≥时等比数列的通项公式,从而写出{}n a 的通项公式.【详解】∵1112n n S a +=+,∴()11122n n S a n -=+≥,∴111122n n n n n S S a a a -+-==-,即13(2)n n a a n +=≥.又13a =,112112S a a ==+,解得24a =.故213a a ≠.∴数列{}n a 从第二项起是公比为3的等比数列,故当2n ≥时,22243n n n a a q --==⋅.∴23,143,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:23,143,2n n n -=⎧⎨⋅≥⎩12【分析】首先根据几何关系确定AD BF ⊥,再根据斜率关系建立关于,,a b c 的等式,即可求解斜率.【详解】因为2AB OP =,所以AD BF ⊥,所以1AD BF k b bk a c=-⋅=-⋅,即2b ac =,所以22a c ac -=,即210e e +-=,解得12e =(负值舍去).13.(1)证明见详解【分析】(1)作出辅助线,构造平行四边形,由线线平行得到线面平行;(2)先证明出面面垂直,进而作出四棱锥的高,求出底面积和高,利用锥体体积公式进行求解.【详解】(1)取EC 中点M ,连结DM ,MF ,因为F 是EB 的中点,所以MF ∥BC ,∵AD BC FM ∥∥,12AD BC MF ==,∴四边形AFMD 为平行四边形∴AF ∥DM .又AF ⊄平面DEC ,DM ⊂平面DEC ,AF ∥平面DEC .(2)∵222EB CB EC +=,∴CB BE ⊥,又∵CB AB ⊥,AB BE B = ,∴CB ⊥平面ABE ,BC ⊂平面ABCD ∴平面ABCD ⊥平面ABE ,过E 作AB 的垂线,垂足为H ,则EH 为四棱锥E ABCD -的高.由题知EH =底面四边形ABCD 为直角梯形,其面积()12232S +⨯==,∴11333E ABCD V S EH -=⋅=⨯=.14.(1)220x y -+=;(2)证明见解析.【解析】(1)由l x ⊥轴(M 在x 轴上方),可得直线l 的方程,代入抛物线方程可求出点M 的坐标,进而可求出直线BM 的方程;(2)分直线l x ⊥轴和l 与x 轴不垂直两种情况讨论,联立直线与抛物线方程,结合韦达定理分别表示出12,k k ,即可证明出120k k +=.【详解】(1)直线l 的方程为2x =,代入抛物线方程得(2,2)M ,而(2,0)B -,可得直线:220BM x y -+=(2)当直线l x ⊥轴时,(2,2),(2,2),(2,0)M N B --,易得120k k +=;当直线l 与x 轴不垂直时,设直线1122:(2),(,),(,)l y k x M x y N x y =-,则22222222(2)2(42)40(0)(2)y xk x x k x k x k k y k x ⎧=⇒-=⇒-++=≠⎨=-⎩得21212242,4k x x x x k ++==所以121212121212(2)(2)28248022(2)(2)(2)(2)k x k x kx x k k kk k x x x x x x ---⋅-+=+==++++++综上知,120k k +=.【点睛】思路点睛:一般解决直线与抛物线的综合问题时:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.15.(1)29(2)19【分析】由对立事件的概率求法,结合独立事件的乘法公式、互斥事件的加法公式求甲队总得分为1分的概率、甲队总得分为2分且乙队总得分为1分的概率即可.【详解】(1)记“甲队总得分为1分”为事件B :甲队得1分,即三人中只有1人答对,其余两人都答错,其概率()22222222221111113333333339P B ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.∴甲队总得分为1分的概率为29.(2)记“甲队总得分为2分”为事件C ,记“乙队总得分为1分”为事件D .事件C即甲队三人中有2人答对,剩余1人答错,∴()2222222224 111 3333333339P C⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯=⎪ ⎪⎝⎭⎝⎭⎝⎭事件D即乙队3人中只有1人答对,其余2人答错,∴()1231231231 111111 2342342344P D⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.由题意,事件C与事件D相互独立,∴甲队总得分为2分且乙队总得分为1分的概率()()()411949 P CD P C P D==⨯=。
全国体育单招数学测试题一、 选择题(6×10=60分)1. 已知集合{}5,4,3,2,1=A ,{}023B 2=+-=x x x ,则A ∩B 等于( ) A. {1,3} B. {1,2} C. {1} D. {2,3} 2. 函数x x f πsin )(=的最小正周期是( )A. 1B. 2C. πD.π2 3. 已知平面内单位向量a ,b 的夹角为90°,则=-b a 34( )A. 5B. 4C. 3D.2 4. 函数1log 1)(2-=x x f 的定义域为( ))2,0.(A ]2,0.(B ),2.(+∞C ),2.[+∞D 5. 在ABC ∆中,已知,︒=45A 2,2==a c ,则=C ( )A. ︒30B. ︒60C. ︒120D. ︒150 6. 已知α是第二象限角,且53)(cos =-απ,则=αsin ( ) 53.A -54.B - 53.C 54.D 7. 焦距为8,离心率54=e ,焦点在x 轴上的椭圆标准方程是( ) 12516.22=+y x A 1259.22=+y x B 11625.22=+y x C 1925.22=+y x D 8.︒-︒+15tan 115tan 1的值是( )A .3B .23C .-3D . -239. 2019是等差数列 ,11,7的第( )项A. 503B. 504C. 505D. 50610. 函数)6sin(x y -=π的一个单调减区间是( )A.]32,3[ππ-B.]35,3[ππC.]35,3[ππ-D.]3,32[ππ-二、填空题(6×6=36分)11. 等比数列{}n a 中,0841=+a a ,则公比=q . 12. 双曲线1222=-y x 的离心率为 .13. 已知)53,3(),5,1(B A -,以AB 为直径的圆的方程为 . 14. 函数1)12()(23---=ax x a x f 为偶函数,则=-)2(f .15. 已知正△ABC 边长为1,AB =a ,BC =b ,AC =c ,则|a +2b -c |等于 . 16. 设12=+b a ,且0,0>>b a ,则使得t ba >+11恒成立的t 的取值范围是 .选择题答案填写处三、解答题(18分×3=54分)17.(本小题18分)已知n S 为等差数列{}n a 的前n 项和,且33=a ,14S 7=.(1)求n a 和n S ; (2)若nn a b 2=,求{}n b 的前n 项和n T .18. (本小题18分) 已知直线l :023=-+y x 的倾斜角为角α.(1)求αtan ; (2)求αsin ,α2cos 的值.19. (本小题18分)已知抛物线)0(22>=p px y 的焦点与双曲线1322=-y x 的一个焦点重合.(1)求抛物线方程;(2)若直线l :02=--kx y 与抛物线只有一个交点,求直线l 方程.参考答案一、选择BBACA DDABA 二、填空:11.2- 12. 26 13.9)52()1(22=-+-y x 14. -3 15. 1 16.)223,(+-∞三、17.(1)6-n ;2)11(n n -;(2)n--6264. 18(1)31-;(2)1010;5419.(1)x y 82= ; (2)02,02-=+-=y x y 或。
2023年全国体育单招数学真题、参考答案与解析1.已知集合A={-2,0,1},集合B={w|-2<x<1,x∈Z},则A U B中元素的个数为A.D.41B.2C.3【参考答案】D【解析】B={w|-2<x<1,x∈Z},B是c的集合,x满足比-2大、比1小,而且z属于Z、整数,所以B是-1和0的集合,A U B ={-2,-1,0,1},共4个元素。
2.已知函娄则C.√3D.3A.-B.11【参考答案】B【解析】本题考查分段函数,,代入下面的关系式,,),-1小于0,代入上面的关系式,,(-1)²=13.记Sn为等差数列{am}的前n项和.若ag=5,S=36,则ao=A.17C.2B.191D.23【参考答案】B【解析】S g=a j+a z+a a+a q+a s+a c,a n+a g=+a z+a s=a3+a,S ₆=3×(a g+a)=36,a g+a4=12,a g=5,a4=7,d=2,a n=a₃+7d=5+7×2=19提示:当算出ag=5,a4=7,也可以把数列的每个数一个一个列出来,即a g=5,a q=7,a s=9,a g=11,a r=13,a g=15,a g=17,a10 =19所以展开式中α7的系数为1807.已知向量a =(1,1),b=(-2,0),则a与b的夹角为A . 30°B . 45°C .120°【参考答案】D【解析】本题考查数量积公D . 135°式a =(1,1),|a l =√I ²+I ²=√2b =(-2,0),|b l =√(-2)²+O ²=2a ·b =(1,1)(-2,0)=1×(-2)+1×0=-28.正三棱柱ABC -A,BiC底面三角形的边长为1,点P为AB的中点,P C =P A i ,则A . AA i =1B .D .△A B I C 的面积为【参考答案】C . t a m P A i C =1C【解析】根据题意作图,如图勾股定理得:A ,A ²+A P ²=A ,P 2,A 错勾股定理得:A 1C ²=A C ²+A 1A ²。
2023年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学试卷一、单选题1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}2.不等式23180x x -++<的解集为()A .{6x x >或3}x <-B .{}36x x -<<C .{3x x >或6}x <-D .{}63x x -<<3.已知角α终边上一点P 的坐标为()512-,,则sin α的值是A .1213-B .1213C .513D .513-4.函数2y x=在区间[2,4]上的最大值、最小值分别是()A .14,12B .12,1C .12,14D .1,125.函数11y x =+的定义域为()A .[)4,1--B .[)()4,11,---+∞ C .()1,-+∞D .[)4,-+∞6.在ABC 中,已知120B =︒,2AB =,则BC =()A .1BC D .37.若0a >、0b >,且411a b+=,则ab 的最小值为().A .16B .4C .116D .148.直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为()A .B .4C .D .二、填空题9.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是______.10.已知向量()3,2a = ,()1,b λ= ,若a b ⊥,则λ=_____.11.已知函数()sin2f x x x =-,则它的单调递增区间是_________12.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.三、解答题13.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c cos sin B b A =,π4A =,b .(1)求角B ;(2)求ABC 的面积.14.若数列{}n a 的前n 项和22n n S a =-,N*n ∈.(1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T .15.已知圆C 过点(M -,(N ,且圆心在x 轴上.(1)求圆C 的方程;(2)设直线:10l mx y -+=与圆C 相交于A ,B 两点,若MA MB ⊥,求实数m 的值.参考答案:1.B【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.2.A【分析】根据二次不等式的解法求解即可.【详解】23180x x -++<可化为23180x x -->,即()()630x x -+>,即6x >或3x <-.所以不等式的解集为{6x x >或3}x <-.故选:A 3.A【解析】根据三角函数定义,sin yx r=,即可求解【详解】由题意,13r ==∴12sin 13y x r ==-故选:A【点睛】本题考查三角函数定义,属于基本题.4.D【分析】根据反比例函数的单调性即可解得最值.【详解】易知函数2y x=在区间[2,4]是单调递减函数,因此当2x =时,函数2y x=的最大值为1,当4x =时,函数2y x=的最小值为12.故选D .【点睛】本题考查函数单调性的应用,对于反比例函数ky x=当0k >时为减函数,当0k <时为增函数,是基础题.5.B【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞ .故选:B .6.D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯ ,即:22150a a +-=,解得:3a =(5a =-舍去),故3BC =.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.7.A【分析】根据基本不等式计算求解.【详解】因为0a >、0b >,所以41+≥a b 1≥4,即16ab ≥,当仅当41a b=,即82a b ==,时,等号成立.故选:A.8.A【分析】直接利用直线被圆截得的弦长公式求解即可.【详解】由题意圆心()1,2C ,圆C 的半径为3,故C 到:3410l x y +-=2=,故所求弦长为=故选:A.9.32n a n =+【分析】根据给定条件,判定数列{}n a 是等差数列,再求出通项公式作答.【详解】数列{}n a 中,因13n n a a +=+,即13n n a a +-=,因此,数列{}n a 是等差数列,公差d =3,所以数列{}n a 的通项公式是1(1)32n a a n d n =+-=+.故答案为:32n a n =+10.32-【分析】根据向量的垂直的坐标表示求解即可.【详解】解:因为a b ⊥ ,()3,2a =,()1,b λ= ,所以320a b λ⋅=+=,解得32λ=-故答案为:32-11.7[,)1212k k k Z ππππ-+-∈【分析】先把函数化简变形成余弦型函数,利用余弦型函数的性质求出结果.【详解】函数()sin 2cos 22cos(2)6f x x x x π=-=+,令222()6k x k k Z ππππ-++∈,整理得:7()1212k x k k Z ππππ-+-∈,所以函数的单调递增区间为:7[,)1212k k k Z ππππ-+-∈.故答案为:7[,)1212k k k Z ππππ-+-∈.12.【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得;【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴214n si F PF ∠=,则12181224PF F S =⨯⨯⨯△.故答案为:13.(1)π3B =;【分析】(1)根据正弦定理结合特殊角的三角函数即得;(2)根据正弦定理,三角形面积公式进行求解即可.(1)cos sin B b A =,cos sin sin A B B A =,又sin 0A ≠,所以tan B =()0,πB ∈,所以π3B =;(2)由正弦定理可知:sin sin 22a b a A B =⇒又5ππ12C A B =--=,所以5πππππ1sin sinsin cos cos sin 12464622224C ==⨯+⨯=,所以113sin 22346ABC S ab C +==⨯=.14.(1)2n n a =;(2)2n T n =.【分析】(1)根据公式11(2,),(1)n n n S S n n N a a n *-⎧-≥∈=⎨=⎩,结合等比数列的定义、通项公式进行求解即可;(2)根据对数的运算性质,结合等差数列的定义、等差数列前n 项和公式进行求解即可.【详解】(1)数列{}n a 的前n 项和22n n S a =-,N*n ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2.2n n a ∴=.(2)221log 21n n b a n -==-.因为12n n b b +-=,∴数列{}n b 是等差数列,首项为1,公差为2,所以21()(1+21)22n n n a a n n T n +-∴===.15.(1)()2229x y ++=(2)12m =【分析】(1)设圆C 的半径为r ,圆心(),0C a ,由距离公式得出圆C 的方程;(2)由MA MB ⊥得出直线l 过圆心()2,0C -,从而得出m 的值.(1)设圆C 的半径为r ,圆心(),0C a ,由题意得()2222224,,r a r a ⎧=++⎪⎨⎪=+⎩解得2,3,a r =-⎧⎨=⎩∴圆C 的方程为()2229x y ++=.(2)∵点M 在圆上,且MA MB ⊥,∴直线l 过圆心()2,0C -,∴2010m --+=,解得12m =.。
2022年全国普通高等学校运动训练、民族传统体育专业单招统
一招生
数 学 预 测 卷
一、单选题
1.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )
A .{}01x x ≤<
B .{}23x x -<≤
C .{}13x x <≤
D .{}01x x << 【答案】B
2.已知向量(1,3),(2,1)a b →→==-,则23a b →→-=( )
A .(8,3)-
B .(8,3)--
C .(8,3)
D .(8,3)- 【答案】C
3.在等差数列{}n a 中,已知3412a a +=,则数列{}n a 的前6项之和为( ) A .12
B .32
C .36
D .37 【答案】C
4.已知()1,3P 为角α终边上一点,则
2sin cos sin 2cos αααα-=+( ) A .17- B .1 C .2 D .3
【答案】B
5.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是( )
A .910
B .45
C .25
D .1
2 【答案】A
6.()1sin π3α-=
,则cos2=α( ) A .89 B .79 C .79- D .8
9
- 【答案】B
7.圆222610x y x y ++-+=的圆心到直线20x y ++=的距离为( )
A B .C .1 D .2
【答案】B
8.椭圆22
1169
x y +=的左、右焦点为1F 、2F ,一直线过1F 交椭圆于A 、B ,则2ABF 的周长为( )
A .32
B .16
C .8
D .4 【答案】B
9.不等式
122+≤-x x 的解集是( ) A .[)(,2)
5,-∞+∞ B .(][),25,-∞+∞ C .(]2,5 D .(2,5) 【答案】A
10.若m ,n ,l 为空间三条不同的直线,,,αβγ为空间三个不同的平面,则下列为真命题的是( )
A .若,m l n l ⊥⊥,则m n ∥
B .若,m m αβ∥∥,则αβ∥
C .若,αγβγ⊥⊥,则αβ∥
D .若,,m n m n αβ⊥⊥∥,则αβ∥ 【答案】D
二、填空题
11.从4男2女六名航天员中选出三名作为神舟十四号乘组,则恰好有一名女航天员被选中的选法有______种.(用数字作答)
【答案】12
12.函数y =___.
【答案】(]0,e
13.在ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,若222a c b ac +=+,则B =___________. 【答案】3
π 14.如果()72370123713x a a x a x a x a x -=++++⋅⋅⋅+,则1237a a a a +++⋅⋅⋅+=________
【答案】129-
15
,其侧面展开图是一个半圆,则底面圆的半径为____cm.
16.O 为坐标原点,F 为抛物线C :24y x =的焦点,P 为C 上一点,若4=PF ,则△POF
的面积为______.
三、解答题
17.记n S 为等差数列{}n a 的前n 项和,已知15a =-,520S =-.
(1)求{}n a 的通项公式;
(2)求n S ,并求n S 的最小值.
【答案】(1)11122
n a n =-; (2)212144
n S n n =-;最小值为552-. 【分析】
(1)利用等差数列求和公式可求得公差d ,由等差数列通项公式可求得通项;
(2)利用等差数列求和公式可求得n S ,利用n S 的二次函数性可求得最小值.
(1)
设等差数列公差为d ,则515452510202
S a d d ⨯=+
=-+=-,解得:12d =, 11115222n n a n -∴=-+=-; (2)
由(1)得:()2
1211112112144152222444216n n n a a n S n n n n +⎛⎫⎛⎫==-+-=-=-- ⎪ ⎪⎝⎭⎝⎭, n N *∈,∴当10n =或11时,()min 552n S =-
; 则212144
n S n n =-,n S 的最小值为552-.
18.已知椭圆M 的短轴长为()2,0-和()2,0.
(1)求椭圆M 的标准方程.
(2)直线l 与椭圆M 交于,A B 两点,若线段AB 的中点()1,1P ,求直线l 的方程.
【答案】(1)22
173
x y +=; (2)37100x y +-=.
【解析】
(1)假设椭圆方程,根据短轴长、焦点坐标和椭圆,,a b c 关系可构造方程组求得,a b ,由此可得椭圆方程;
(2)利用点差法可求得直线l 斜率,由此可得直线l 方程.
(1)
由题意可设椭圆M 方程为:()222210x y a b a b +=>>, 则222234b a b ⎧=⎪⎨=+⎪⎩,解得:73
a b ⎧=⎪⎨=⎪⎩,∴椭圆M 的标准方程为:22
173x y +=. (2)
设()11,A x y ,()22,B x y ,则2211222217317
3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式作差得:()()()()1212121273
x x x x y y y y +-+-=-, ∴直线l 斜率12121212
37y y x x k x x y y -+==-⋅-+, 又AB 中点为()1,1P ,122x x ∴+=,122y y +=,37
k ∴=-, ∴直线l 方程为:()3117
y x -=--,即37100x y +-=. 19.如图,在四棱锥S ABCD -中,底面ABCD 满足,,AB AD AB BC SA ⊥⊥⊥平面ABCD ,且=2,1SA AB BC AD ===.
(1)证明:BC ⊥平面SAB ;
(2)求平面SAD 与平面SBC 夹角的余弦值.
【答案】(1)证明见解析
2
【分析】
(1)结合线面垂直的判定定理来证得BC ⊥平面SAB .
(2)判断出平面SAD 与平面SBC 所成的角,进而可求得平面SAD 与平面SBC 夹角的余弦值.
(1)
由于SA ⊥平面ABCD ,所以SA BC ⊥,SA AD ⊥,SA AB ⊥,
由于,BC AB AB SA A ⊥⋂=,
所以BC ⊥平面SAB .
(2)
由(1)得BC ⊥平面SAB ,所以BC SB ⊥,BC SA ⊥
由于,AB AD AB BC ⊥⊥,所以//AD BC ,则AD ⊥平面SAB ,则,AD SA AD SB ⊥⊥, 由于AD ⊂平面,SBC BC ⊂平面SBC ,所以//AD 平面SBC ,
同理可以证得//BC 平面SAD .
设平面SAD 与平面SBC 的交线为l ,
根据线面平行的性质定理可知://,//AD l BC l ,
所以,l SA l SB ⊥⊥,所以ASB ∠是平面SAD 与平面SBC 的夹角,
在Rt SAB 中,SA AB =,所以三角形SAB 是等腰直角三角形,所以45ASB ∠=︒,
所以cos ASB ∠=.。