中国石油大学《概率论与数理统计》复习题及答案
- 格式:doc
- 大小:1.93 MB
- 文档页数:12
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
2011—2012学年第一学期 《概率论与数理统计》试卷专业班级 姓 名 学 号 开课系室 基础数学系 考试日期 2012年1月3号页 码 一 二 三 四 五 六 七 总 分 满 分 20 15 10 20 12 13 10 100 得 分阅卷人备注:1.本试卷正文共7页;2.封面及题目所在页背面和附页为草稿纸;3.答案必须写在该题后的横线上或指定的括号,解的过程写在下方空白处,不得写在草稿纸中,否则答案无效;4.最后附页不得私自撕下,否则作废.5.可能用到的数值(1.645)0.95Φ=,(1.96)0.975Φ=A卷一、填空题(每空1分,共10分)1.设()0.4,()0.7P A P A B ==,那么若,A B 互不相容,则()P B = 0.3 ;若,A B 相互独立,则()P B =0.5 .2.设事件,A B 满足:1(|)(|)3P B A P B A ==,1()3P A =,则()P B =__5/9___.3.某盒中有10件产品,其中4件次品,今从盒中取三次产品,一次取一件,不放回,则第三次取得正品的概率为 0.6 ;第三次才取得正品的概率为 0.1 .4.设随机变量X 与Y 相互独立,且都服从区间[0,3]上的均匀分布,则{max(,)2}P X Y ≤= 4/9 .5.一批产品的次品率为0.1,从中任取5件产品,则所取产品中的次品数的数学期望为 0.5 ,均方差为6.设总体12~(),,,,n X P X X X λ为来自X 的一个简单随机样本,X 为样本均值,则EX = λ ,DX =nλ. 二、选择题(每题2分,共10分)1.设(),(),()P A a P B b P A B c ==⋃=,则()P AB 等于( B ).(A) a b - (B) c b - (C) (1)a b - (D) b a - 2.设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意实数a 有( B ).(A)0()1()aF a f x dx -=-⎰ (B)01()()2aF a f x dx -=-⎰(C)()()F a F a -= (D)()2()1F a F a -=-3.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( B ).(A) 14 (B) 6 (C) 12 (D) 44.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( C ). (A) 25.0≤ (B) 75.0≤ (C) 75.0≥ (D)25.0≥ 5.维纳过程是( A ).(A)连续型随机过程 (B)连续型随机序列 (C)离散型随机过程 (D)离散型随机序列三、计算题(共6个题目,共45分) 1.(10分)设有相同的甲、乙两箱装有同类产品.甲箱装50只其中10只正品;乙箱装20只,10只正品.今随机选一箱,从 中抽取1只产品,求:(1)取到的产品是次品的概率;(2)若已知取到的产品是正品,它来自甲箱的概率是多少? 解:设12;A A 分为来自甲乙箱;B 为正品(1)14113()()25220P B =+=(5分) (2)11251()2/77/20P A B ⨯== (10分) 2.(5分)已知某种电子元件的寿命X (以小时计)服从参数为1/1000的指数分布.某台电子仪器装有5只这种元件,这5只元件中任一只损坏时仪器即停止工作,则仪器能正常工作1000小时以上的概率为多少?解:110001110001000{1000}x P X e dx e +∞--≥==⎰ (4分)于是,由独立性仪器正常1000小时以上的概率为5e - (5分)3.(5分)设粒子按平均率为每分钟4个的泊松过程到达某计数数器,()N t表示在[0,]t到达计数器的粒子个数,试求:(1)()N t的均值、方差、自相关函数;(2)相邻的两个粒子到达计数器的平均时间间隔.解:()4;()4;()()164min{,}EN t t DN t t EN s N t st s t===+(各一分,共三分)(2)平均间隔为1/4分钟(5分)4.(5分)设总体2~(,)X Nμσ的方差为1,根据来自X的容量为100的样本,测得样本均值X为5,求μ的置信度为0.95的置信区间(写出过程).解:由题知~(0,1)N(2分)于是由0.9751.96U=知置信区间为(4.804,5.196)(5分)5.(10分)一质点在1、2、3三个点上做随机游动,其中1、 3是两个反射壁,当质点位于2时,下一时刻处于1、2、3是 等可能的.规定每个时刻质点只走一步,用,0n X n ≥表示第n个时刻质点所处的位置,初始分布为()1(0),1,2,33P X i i ===.求:(1)一步转移概率矩阵和二步转移概率矩阵; (2){}(0)1,(1)2,(2)3P X X X ===; (3){}(2)2P X =.解:(1)一步转移阵0101/31/31/3010⎛⎫ ⎪ ⎪ ⎪⎝⎭;二步转移阵1/31/31/31/97/91/11/31/31/3⎛⎫⎪⎪ ⎪⎝⎭ (4分)(2)原式=1133119⨯⨯=(7分) (3)原式=7111339313()27++= (10分)6.(10分)设随机变量X 的概率密度为⎩⎨⎧<<=,其他,02)(bx a x x f ,且12=EX .求:(1)b a ,的值;(2)}1{<X P .解:由2212b axdx b a ==-⎰;23441212()baEX x dx b a ===-⎰解得a b ==(6分)(2)原式=11/2xdx = (10分)四、(12分)设随机向量(,)X Y 的概率密度为 (2),0,0(,)0,x y Ae x y f x y -+⎧>>=⎨⎩其他求: (1)常数A ;(2)关于X Y 、的边缘概率密度,并判断X 与Y 是否相互独立; (3)2Z X Y =+的概率密度.解:(1)(2)01/2;2x y Ae A A +∞+∞-+==∴=⎰⎰(2分)(2)(2)2(2)00()20020()200x x y X yx y Y e x f x e dy x e y f y e dx y -+∞-+-+∞-+⎧≥==⎨<⎩⎧≥==⎨<⎩⎰⎰ (7分)显然,独立 (8分)(3)(2)210()2000()0z zx y Z x y zzZ e ze z F z edxdy z zez f z z ---++≤-⎧--≥==⎨<⎩⎧≥=⎨<⎩⎰⎰(12分)五、(13分)已知分子运动的速度X具有概率密度22(),0,0,()0,0.xxf xxαα-⎧>>=≤⎩123,,,,nX X X X为X的简单随机样本,求:(1)未知参数α的矩估计和极大似然估计;(2)验证所求得的矩估计是否为α的无偏估计.解:(1)23()xEX dx Xα+∞-===⎰ˆ2Xα∴=(5分)21211232()(,)(4)niiXn ni iL f x x eαααπα=---∑=∏=∏2211ln3ln ln(^^^niiL n Xααα==--+∑不含)23132ln/0niind L d Xααα==-+=∑ˆMLEα= (10分)(2)ˆE E X αα=== 无偏 (13分)六、(10分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都 是2/5. 设X 为途中遇到红灯的次数.求X 的分布律、分布函数、 数学期望和方差.解:由题知,25~(3,)X B 分布律332355{}()();;;;0,1,2,3k k kP X k C k -=== (4分) 分布函数2712581125117125001()122313x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≤⎪⎩ (6分)6/5;18/25EX np DX npq ==== (10分)。
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。
a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。
A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。
〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。
的置信度为的置信区间, 则应有()。
A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。
A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。
A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。