三电极体系
- 格式:docx
- 大小:127.63 KB
- 文档页数:8
三电极体系包括工作电极、对电极和参比电极1. 工作电极一般的工作电极需满足以下三个条件:①所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定。
②电极必须不与溶剂或电解液组分发生反应。
③电极面积不宜太大,电极表面最好是均一平滑,且能够通过简单的方法进行表面净化。
常见的“惰性”固体电极有玻碳、铂、金、银、铅、导电玻璃(FTO,ITO等)。
常用的液体电极有液态汞。
采用固体电极时,为了保证实验的重现性,需注意建立合适的电极预处理步骤。
2. 辅助电极(counter electrode)辅助电极也叫对电极,其作用是和工作电极组成一个串联回路,只起到导电的作用。
在电化学研究中经常选用性质比较稳定的材料,比如铂或者石墨。
(在需要长时间电化学实验的体系中最好选择石墨电极,因为最近的很多文献表明,当选用Pt做对电极时,长时间的测试往往会使Pt溶解,工作电极在扫描的过程中会沉积Pt,从而可能会影响工作电极的活性)为了减少辅助电极极化对工作电极的影响,辅助电极本身的电阻要小,并且不易极化,其面积通常要求大于工作电极。
其原因是在相同的电流下,如果电极面积大,那么电流密度小,根据B-V方程,其过电位小,极化小,因此电化学工作站的灵敏度高,干扰小。
反过来说,当工作电极的面积非常小时,极化电流引起的辅助电极的极化可以忽略不计,即辅助电极的电势在测量中始终稳定,此时辅助电极可以作为测量回路中的电势基准,即可作为参比电极。
例如,研究超微电极时,可用二电极体系就可以完成测量。
3. 参比电极(reference electrode)一般的工作电极需满足以下三个条件:①电极电势已知且稳定,重现性好的可逆电极。
即电极过程的交换电流密度相当高,是不极化或难极化电极,因此能迅速建立热力学平衡电位,其电极电势符合Nernst方程。
②参比电极内的电解液不与电解池中的电解液或相关物质反应。
③电极电位的温度系数小。
三电极体系参考电极:确定工作电极电位。
辅助电极有时也称为对电极。
三电极系统包含两个电路,一个电路由工作电极和参考电极组成,用于测试工作电极的电化学反应过程,另一个电路由工作电极和辅助电极组成,起着传输电子形成电路的作用。
电化学要求两个电极同时发生氧化还原反应,因此需要两个电极。
但是,对于要研究的工作电极,参考电极需要精确地控制工作电极的电极电势,因此需要额外的参考电极来构成三电极系统。
参比电极和工作电极构成测试电路,该系统可以视为开路。
工作电极和对电极构成另一个电路,该电路是电解池的电路,并满足电化学反应平衡。
研究工作电极。
只有准确地测量工作电极的电势,我们才能研究电势与电化学反应,吸附等之间的界面反应规律。
至于辅助电极与工作电极之间的连接,主要是建立电化学反应平衡,并确保辅助电极不影响工作电极。
要确定辅助电极和工作电极之间的电势,可以使用电压表。
不必与双参比电极分开确定两个电极的电势。
当然,未来的电化学工作站能否确定双参比并分别控制辅助电极和参比电极可能是一个新的想法。
三个电极是指工作电极,电导率电极和甘汞电极。
使用电化学工作站时,需要使用250ml 电解池,然后放置三个电极以形成自己的样式。
同时,请勿触摸三个电极,但应使它们尽可能靠近。
工作电极和对电极构成电流回路。
它们之间的电压称为槽齿,可以通过普通电压表进行测量。
工作电极和参比电极由具有高输入阻抗的电位差计测量。
与电位计方法类似,该设备用于监视工作电极电势。
上述情况之一是开路,不完全是。
应该有一个小电流流过。
参考电极应尽可能靠近研究电极,一般应使用甘汞电极。
辅助电极,即对电极,通常使用铂电极或其他电极,其面积通常比研究电极大5倍以上。
电化学三电极系统的工作原理可以概括为三个电极和两个电路。
三个电极是指工作电极,参比电极和对电极。
顾名思义,工作电极也称为研究电极,是我们要研究的电极。
参比电极用于测量工作电极的电位。
对电极也称为辅助电极,仅用于传递电流。
工作电极参比电极对电极研究对象工作电极参比电极:确定工作电极电位辅助电极有时也称对电极:传导电流三电极体系含两个回路,一个回路由工作电极和参比电极组成,用来测试工作电极的电化学反应过程,另一个回路由工作电极和辅助电极组成,起传输电子形成回路的作用。
电化学需要两个电极同时发生氧化还原反应,那么需要两个电极但是针对您要研究的工作电极,需要参比电极精确地控制工作电极的电极电位,那么就需要额外的参比电极,以三者成为三电极体系。
参比电极和工作电极构成测试回路,体系可当成断路。
工作电极和对电极构成另外的回路,是构成电解槽的回路,满足电化学反应平衡的。
研究的是工作电极,只有精确地测定工作电极的电位,才能够考察电位同电化学反应,吸附等界面反应的规律。
至于辅助电极和工作电极之间的联系,主要是在于构建电化学反应平衡,另外要保证辅助电极不要影响到工作电极。
而确定辅助电极和工作电极之间的电位,用电压表就ok了,不需要双参比电极分别确定两电极电位。
当然,是否以后的电化学工作站,可以确定双参比,分别控制辅助电极和参比电极,可能也算是个新思路吧三电极是指工作电极;电导电极;甘汞电极。
用上电化学工作站的时候需要用上250ml电解池再放上三电极做自己想要做的式样。
同时,三个电极不要接触上,但要尽可能的近工作电极与对电极构成电流的回路,它们之间的电压叫槽牙,可用普通的伏特计测量。
工作电极与参比电极之间通过高输入阻抗的电位差计测量,类似于电位法的装置,是用来监控工作电极电位的线路。
上面有位说是断路,不确切,应该有微小电流流过。
楼上的说得都差不多了,本人补充点:参比电极要尽可能地靠近研究电极,一般用甘汞电极;辅助电极也就是对电极一般用铂电极或者其他,面积一般比研究电极的大5倍或以上。
对于电化学三电极体系的工作原理,用一句话概括就是三电极两回路:三电极指的是工作电极、参比电极和对电极,工作电极又称为研究电极,顾名思义就是我们所要考察的电极;参比电极是用来测量工作电极电势的;对电极又称为辅助电极,只是用来通过电流的两回路指的是极化回路和测量回路电化学研究最常用的测试手段是电极极化曲线的测量,在三电极体系中,通过对工作电极施以不同的极化,测试电流密度与电势的对应关系曲线,了解工作电极的电化学性能。
三电极体系位置摘要:一、三电极体系概述二、三电极体系的位置分类1.平板电极体系2.圆柱电极体系3.球形电极体系三、各类电极体系的应用领域四、三电极体系在新能源领域的应用五、发展趋势与展望正文:一、三电极体系概述三电极体系,作为一种重要的电化学装置,广泛应用于电化学反应、电催化、电沉积、电分析等领域。
它由三个电极组成,分别为阳极、阴极和参比电极。
三电极体系在电化学研究中具有重要作用,能够提供不同的电位以满足各种研究需求。
二、三电极体系的位置分类1.平板电极体系:平板电极体系是指电极表面呈平板状的电极体系。
在这种体系中,阳极和阴极通常为平板电极,参比电极可以是平面电极或球形电极。
平板电极体系在研究电化学反应、电催化等方面具有广泛应用。
2.圆柱电极体系:圆柱电极体系是指电极表面呈圆柱状的电极体系。
在这种体系中,阳极和阴极通常为圆柱电极,参比电极可以是圆柱形电极或平板电极。
圆柱电极体系在电化学反应、电催化、电沉积等方面具有广泛应用。
3.球形电极体系:球形电极体系是指电极表面呈球状的电极体系。
在这种体系中,阳极和阴极通常为球形电极,参比电极可以是球形电极或平板电极。
球形电极体系在电化学反应、电催化、电沉积、电分析等方面具有广泛应用。
三、各类电极体系的应用领域三电极体系在众多领域具有广泛应用,如能源、环保、化工、生物医学等。
其中,平板电极体系在电催化、电沉积、电分析等领域具有重要应用;圆柱电极体系在新能源、电动汽车、电催化等领域具有重要应用;球形电极体系在电化学反应、电催化、电沉积、电分析等领域具有重要应用。
四、三电极体系在新能源领域的应用在三电极体系中,新能源领域是其重要应用之一。
新能源领域包括太阳能、风能、电池等领域。
三电极体系在这些领域中发挥着关键作用,如电催化水分解、电催化制氢、锂离子电池、钠离子电池等。
新能源领域的发展对三电极体系提出了更高的要求,促使三电极体系不断优化和发展。
五、发展趋势与展望随着科技的进步和新能源领域的发展,三电极体系在新能源领域的应用将越来越广泛。
工作电极参比电极对电极研究对象工作电极参比电极:确定工作电极电位辅助电极有时也称对电极:传导电流三电极体系含两个回路,一个回路由工作电极和参比电极组成,用来测试工作电极的电化学反应过程,另一个回路由工作电极和辅助电极组成,起传输电子形成回路的作用。
电化学需要两个电极同时发生氧化还原反应,那么需要两个电极但是针对您要研究的工作电极,需要参比电极精确地控制工作电极的电极电位,那么就需要额外的参比电极,以三者成为三电极体系。
参比电极和工作电极构成测试回路,体系可当成断路。
工作电极和对电极构成另外的回路,是构成电解槽的回路,满足电化学反应平衡的。
研究的是工作电极,只有精确地测定工作电极的电位,才能够考察电位同电化学反应,吸附等界面反应的规律。
至于辅助电极和工作电极之间的联系,主要是在于构建电化学反应平衡,另外要保证辅助电极不要影响到工作电极。
而确定辅助电极和工作电极之间的电位,用电压表就ok了,不需要双参比电极分别确定两电极电位。
当然,是否以后的电化学工作站,可以确定双参比,分别控制辅助电极和参比电极,可能也算是个新思路吧三电极是指工作电极;电导电极;甘汞电极。
用上电化学工作站的时候需要用上250ml电解池再放上三电极做自己想要做的式样。
同时,三个电极不要接触上,但要尽可能的近工作电极与对电极构成电流的回路,它们之间的电压叫槽牙,可用普通的伏特计测量。
工作电极与参比电极之间通过高输入阻抗的电位差计测量,类似于电位法的装置,是用来监控工作电极电位的线路。
上面有位说是断路,不确切,应该有微小电流流过。
楼上的说得都差不多了,本人补充点:参比电极要尽可能地靠近研究电极,一般用甘汞电极;辅助电极也就是对电极一般用铂电极或者其他,面积一般比研究电极的大5倍或以上。
对于电化学三电极体系的工作原理,用一句话概括就是三电极两回路:三电极指的是工作电极、参比电极和对电极,工作电极又称为研究电极,顾名思义就是我们所要考察的电极;参比电极是用来测量工作电极电势的;对电极又称为辅助电极,只是用来通过电流的两回路指的是极化回路和测量回路电化学研究最常用的测试手段是电极极化曲线的测量,在三电极体系中,通过对工作电极施以不同的极化,测试电流密度与电势的对应关系曲线,了解工作电极的电化学性能。
三电极体系工作原理
三电极体系是一种常用于电子元件和电路中的工作电极结构。
它由三个电极组成,分别是阴极、阳极和网格(或栅极)。
以下是三电极体系的工作原理:
1. 阳极:阴极发射的电子通过电场加速,最终到达阳极,从而形成阴极电流。
2. 阴极:它是工作电极中的电子发射源,通过电子发射技术(如热发射、光电发射等),将电子注入电路中。
3. 网格(或栅极):它位于阴极和阳极之间,可以通过外部电压进行控制。
网格电压的变化可以调节电子的通道宽度,从而影响阴极电流和电路的工作状态。
三电极体系的工作原理可以通过控制网格电压来调节阴极电流。
当网格电压为负时,电子从阴极向阳极加速,形成较大的电子流。
当网格电压偏正时,电子受到网格的吸引,减少了电子流的通道宽度,因此减小了阴极电流。
通过调节网格电压,我们可以在电路中实现信号放大、开关控制、频率调制等功能。
因此,三电极体系被广泛应用于放大器、开关、振荡器和调制器等电子设备和电路中。
三电极体系三电极体系是一种由三电极组成的电路结构,是一种结构相对稳定、功能较为强大的电路体系。
由于它具有许多高级特性,因此在很多领域都有广泛的应用,如诊断测量、控制和信号处理等。
三电极体系可以指定为模拟电路也可以指定为数字电路,但它在诊断测量领域占据着最重要的地位。
它可以通过高精度的模拟电路和高精度数字电路来模拟物理过程,也可以作为一种控制输出。
三电极体系由三个电极构成:电极A,电极B和电极C。
电极A 的输入信号会先被电极B放大,然后经过电极C的反馈电路,放大信号有效功率,最后输出到电极A,形成一个无级调节电路。
它可以利用外部调节电路,调节信号的幅度和相位,以达到恒定电压和恒流的效果。
常见的三电极系统有测试放大器、反馈放大器、运放等。
测试放大器是一种高精度的电路,用于测量非常微小的电压和电流,这种电路具有良好的抑制失真能力,测量精度高,同时可以控制输出电流的大小。
反馈放大器由一个基础放大器和一个反馈电路组成,主要用于放大模拟和数字信号,可以改善信号幅度和相位,并且可以有效地控制输出信号的大小。
运放也是一种三电极体系,它具有测试放大器和反馈放大器的特点,它可以通过一个可调反馈电路来控制电压,这种电路可以有效地放大非常低的信号,并保持恒定的输出电压和电流。
三电极体系的应用比较广泛,它可以用于电力调节、音频控制、视频控制、功率放大器、电话系统等等。
在电力调节领域,三电极体系可以实现低噪声的稳定放大,用于调节发电机的输出功率,以及稳定电压和电流的变化。
在音频控制领域,它可以实现多路音频信号的放大和多路音频信号的混合,这样可以制作出非常丰富多彩的音频效果。
在视频控制领域,它可以实现对复杂的视频画面的高精度控制。
三电极体系的应用范围极其广泛,它甚至可以用于自动化设备中,如机器人,遥控飞行器等。
它可以用于控制机器人的运动轨迹,实现自动化操作,遥控飞行器也可以利用它来控制姿态,实现自主飞行。
三电极体系因其多样的功能和广泛的应用,受到了广大技术人员的热烈欢迎,并被广泛应用于各个行业,可以说是电子技术领域必不可少的一部分。
三电极系统组成:对应的三个电极是工作电极,参比电极和辅助电极。
工作电极:也称为研究电极,它是指在电极上发生的反应。
一般来说,工作电极的基本要求是:工作电极可以是固体或液体,并且可以使用各种导电固体材料作为电极。
(1)所研究的电化学反应不受电极本身反应的影响,并且可以在较大的电位区域中进行测量;(2)电极不得与溶剂或电解质成分发生反应;(3)电极面积不应太大,电极表面应均匀光滑,并可用简单方法清洗。
工作电极的选择:电极材料通常根据研究的性质预先确定,但是最常见的“惰性”固体电极材料是玻璃碳(铂,金,银,铅和导电玻璃)等。
固态电极,为了确保实验的可重复性,有必要建立适当的电极预处理步骤,以确保氧化还原,表面形态和可再现状态而不会吸附杂质。
在液体电极中,汞和汞齐是最常用的工作电极。
它们既是液体,又具有可重现的均匀表面,因此易于制备和保持清洁。
同时,电极上的高氢放出超电势改善了负电势下的工作窗口,这在电化学分析中得到了广泛的应用。
辅助电极:也称为对电极,辅助电极和工作电极形成一个环路,以使工作电极上的电流畅通无阻,以确保研究的反应在工作电极上发生,但是电池观察到的响应一定不能以任何方式受到限制。
由于工作电极的氧化或还原反应,可以将辅助电极布置为气体沉淀反应或工作电极反应的逆反应,以保持电解质成分不变,即保持辅助电极的性能。
电极通常不会显着影响研究电极上的反应。
但是,减少反应在辅助电
极上对工作电极的干扰的最佳方法可能是使用烧结玻璃,多孔陶瓷或离子交换膜将溶液隔离在两个电极区域中。
三电极由工作电极,参比电极,辅助电极(或对电极)组成。
三电极体系含两个回路,一个回路由工作电极和参比电极组成,用来测试工作电极的电化学反应过程,另一个回路由工作电极和辅助电极组成,起传输电子形成回路的作用。
也就是说,工作电极的电位是相对于参比电极,而对电极与工作电极是组成一个电路的闭合回路。
辅助电极的面积一般比研究电极大,这样就降低了辅助电极上的电流密度,使其在测量过程中基本上不被极化,因而常用铂黑电极作辅助电极,也可以使用在研究介质中保持惰性的金属材料如Ag、Ni、W、Pb等;在特定情况下有时使用特定电极。
有时为了测量简便,辅助电极也可以用与研究电极相同的金属制作。
铂常用作辅助电极,但有各种形式:铂片电极,铂丝电极,铂网电极,铂黑电极……一般怎么选择啊,根据是什么?玻璃碳就可以的,至于什么形状不重要,重要的你的辅助电极面积必须远大于你的工作电极面积,至少是5倍吧尽可能的大,一般工作电极0.07 cm2,辅助电极我们用1 cm2,至于为什么要大,这个三电极构造有关,具体最好自己查查或者其他站友解释下,我印象中是防止辅助电极与电解质界面电容的影响,因为电容与面积呈正比。
我半道出家电化学,现炒现卖型.辅助电极为理想可极化电极,即在无论加多大电压,电极表面不发生电荷转移,即没有电流产生。
另外电极面积要大于工作电极面积是使测量时候的电流尽量加在工作电极上,减少误差。
鲁金毛细管作用---抛砖引玉最近做电化学测试时,对鲁金毛细管的作用又有了一点新的认识。
在此粗略整理了下,希望高人能指出其中不当之处!鲁金毛细管的主要作用是减小IR’(溶液欧姆电位降)从而较为精确地测定或控制工作电极的电极电位,同时不影响工作电极表面的电场分布。
为了实现这两个目的,鲁金毛细管在保证机械强度的基础上越细越好,其和电极表面的最佳距离为0.5~1(鲁金毛细管外径)。
具体原理可以这么理解:一个测试体系工作电极和辅助电极之间的电位差称为电压U,U= I {R1(工作电极电化学电阻,其随着I的变化而变化的)+R2(溶液电阻)+R3(辅助电极电化学电阻,其随着I的变化而变化的)}。
三电极体系
三电极体系是一种电化学实验常用的方法,它包括三个电极:工作电极,参比电极和标准电极。
工作电极是用来检测电化学反应中电子传递过程的电极。
参比电极是用来检测电化学反应中电子传递过程的电极。
标准电极是用来确定电位的电极。
这种电极系统可以用来研究电化学反应的电位,电流和电动势差的关系,以及电化学反应的速率和机理。
常见的三电极实验包括阳极氧化还原反应,电催化反应和电极过程等。
三电极体系是一种高灵敏度的电化学检测方法,可以用于各种领域,如电池,氧化还原催化剂,生物电化学和环境监测等。
工作电极和参比电极之间的电动势差叫做电极电动势差(E), 标准电极和工作电极之间的电动势差叫做标准电动势差(E0)。
通过测量这些电动势差,就可以得到电化学反应的电位。
三电极体系可以用于研究电化学反应的电动势,电流和电动势差之间的关系,
以及电化学反应的速率和机理。
还可以用于研究电极的类型,材料,表面结构对电化学反应的影响。
总之,三电极体系是一种常用的电化学检测方法,可以用于研究电化学反应的电动势,电流和电动势差之间的关系,以及电化学反应的速率和机理。
它是电化学研究和应用中不可缺少的工具之一。
工作电极:又称研究电极,是指所研究的反应在该电极上发生。
一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。
(1 )所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定;(2)电极必须不与溶剂或电解液组分发生反应;(3)电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。
工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。
采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。
在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。
辅助电极:又称对电极,辅助电极和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。
由于工作电极发生氧化或还原反应时,辅助电极上可以安排为气体的析出反应或工作电极反应的逆反应,以使电解液组分不变,即辅助电极的性能一般不显著影响研究电
极上的反应。
但减少辅助电极上的反应对工作电极干扰的最好办法可能是用烧结玻璃、多孔陶瓷或离子交换膜等来隔离两电极区的溶液。
三电极体系结构及电路图
电化学测试的方法很多,根据测试的特质,可以分为以下几大类:1.稳态测试方法;2.暂态测试方法;3.伏安法;4.交流阻抗法等。
这里小编只给大家简单介绍一些使用最普遍,功能最强大的电化学测试方法。
在此之前,先对电化学测试最常用的三电极测试体系进行简单介绍。
所谓的三电极体系,是为了排除电极电势因极化电流而产生的较大误差而设计的。
它在普通的两电极体系(工作电极与对电极)的基础上引入了用以稳定工作电极的参比电极,如图2 示。
如左图,电解池由三个电极组成:工作电极(W),对电极(C)以及参比电极(R)。
W 是主要的电极研究和操作对象,R 是电势电极的比较标准,而C 主要用以通过极化电流,实现对电极的极化。
右图中,我们可以看到,三电极体系在电路中时,P 代表极化电源,为研究电极提供极化电流。
mA 和V 分别为电流表和电压表,用以测试电流和电势。
P ,mA,C,W 构成的左侧回路,称为极化回路,在极化回路中有极化电流通过,可对参比电极进行测量和控制。
V,R,W 构成了右侧回
路,称为测量控制回路。
在此回路中,对研究电极的电势进行测量和控制,由于回路中无极化电流流过,仅有极小的测量电流,所以不会
研究电极的极化状态和参比电极的稳定性造成干扰。
由此可见,三电 极体系可使研究电极表面通过极化电流, 又不会妨碍研究的电极电势 的控制和测量,可同时实现电势和电流的控制和测量。
所以,大部分 电化学研究测试均在三电极体系完成。
mA 0
图2三电极体系结构图及电路图
接下来,小编就把最常用的几种电化学测试手段进行简单介绍。
1.稳态测试:恒电流法及恒电势法
所谓的稳态,即电化学参量(电极电势,电流密度,电极界面状 态等)变化甚微或基本不变的状态。
最常用的稳态测试方法,当然就 是恒电流法及恒电势法,故名思意,就是给电化学体系一个恒定不变 的电流或者电极电势的条件。
通常我们可以利用恒电位仪或者电化学 工作站来实现这种条件。
通过在电化学工作站简单地设置电流或电势 以及时间这几个参数,就可以有效地使用这两种方法啦。
该方法用的 比较多的地方主要有:活性材料的电化学沉积以及金属稳态极化曲线 的测定(如图3)等等。
君比电摄r.jfT
〔凿帕音隶.fl OAtfCl 标灌 R
曇电IS ) 〜彳厂电承 241
Iff
电
1ft
+10
+0.8
*06
+04
+02
0,0
*02
—0.4
图3不同扫速下金属
的稳态极化曲线 2•暂态测试:控制电流阶跃及控制电势阶跃法
所谓的暂态,当然是相对于稳态而言的。
在一个稳态向另一个稳 态的
转变过程中,任意一个电极还未达到稳态时,都处于暂态过程, 如双电层充电过程,电化学反应过程以及扩散传质过程等。
最常见的 方法要数控制电流阶跃法以及控制电势阶跃法这两种。
控制电流阶跃 法,也叫计时电位法,即在某一时间点,电流发生突变,而在其他时 间段,电流保持相应的恒定状态。
10 心 !05 10*
和 A
丿
图4计时电位法电流阶跃(左图)及相应的电势变化(右图)
同理,控制电势阶跃法也就是计时电流法,即在某一时间点,电
势发生突变,而在其他时间段,电势保持相应的恒定状态。
图5计时电位法电势阶跃(左图)及相应的电流变化(右图)。
利用这种暂态的控制方法,一般可以探究一些电化学变化过程的性质,如能源存储设备充电过程的快慢,界面的吸附或扩散作用的判断等。
计时电流法还可以用以探究电致变色材料变色性能的优劣。
3•伏安法:线性伏安法,循环伏安法
伏安法应该算是电化学测试中最为常用的方法,因为电流、电压 均保持动态的过程,才是最常见的电化学反应过程。
一般而言,伏安 法主要有线性伏安法以及循环伏安法, 两者的区别在于,线性伏安法 “有去无回”,而循环伏安法“从哪里出发就回哪去”。
线性伏安法 即在一定的电压变化速率下,观察电流相应的响应状态。
同理,循环 伏安法也是一样,只不过电压的变化是循环的,从起点到终点再回到 起点。
线性伏安法使用的领域较广,主要包括太阳能电池光电性能的测 试,燃料电池等氧还原曲线的测试以及电催化中催化曲线的测试等。
而循环伏安法,主要用以探究超级电容器的储能大小及电容行为、 材 料的氧化还原特性等等。
图6伏安法电化学测试:左图为线性伏安测试太阳能电池的开路
电压及短路电流;中间为循环伏安法测试电容行为较强的碳材料;
右
图为含有氧化还原行为的电极材料的循环伏安测试 4.交流阻抗法
交流阻抗法的主要实现方法是,控制电化学系统的电流在小幅度 的条件下随时间变化, 同时测量电势随时间的变化获取阻抗或导纳的 性能,进而—HJ1
—umu^hj —址
TUTiT 聲 14 rv]
it-
一
§ Yul)rMluBPI puulna
-Ifl *0 弋弔 3 -02 O.Q
厂 m --CFSC- FEd - -5-
进行电化学系统的反应机理分析及计算系统的相关参数等。
交流阻抗谱可以分为电化学阻抗谱(EIS)和交流伏安法。
EIS 探究的是某一极化状态下,不同频率下的电化学阻抗性能;而交流伏安法是在某一特定频率下,研究交流电流的振幅和相位随时间的变化。
这里我们重点介绍一下EIS。
由于采用小幅度的正弦电势信号对系统进行微扰,电极上交替出现阳极和阴极过程,二者作用相反,因此,即使扰动信号长时间作用于电极,也不会导致极化现象的积累性发展和电极表面状态的积累性变化。
因此EIS是一种“准稳态方法”(通过EIS,我们一般可以分析出一些表面吸附作用以及离子扩散作用的贡献分配,电化学系统的阻抗大小、频谱特性以及电荷电子传输的能力强弱等等。
传荷控制扩散控制
Rg
心+Rq - 2(7 C& .2八! 111 . ;UIH。