九年级数学专题训练测题 (13)
- 格式:doc
- 大小:994.00 KB
- 文档页数:7
2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
2023年中考九年级数学高频考点专题训练--三角形综合1.如图,在△ABC中,AB=AC,DE垂直平分AC,CE△AB,AF△BC,(1)求证:CF=EF;(2)求△EFB的度数.2.如图,在△ABC中,∠B=60°,AB=8,BC=10,动点P从点A出发以每秒1个单位的速度沿AB匀速运动,同时动点Q从点B出发,以每秒2个单位的速度沿BC匀速运动,点Q到达点C后,立即以每秒4个单位的速度沿CB返回,当点Q返回到点B时,P、Q两点都停止运动,设点Q运动时间为t秒.(1)当t=3时,BQ=,当t=7时,BQ=.(2)如图,当点P运动到AB的中点时,猜想PQ与AB的位置关系,并证明你的结论.(3)在点P、Q运动过程中,若△BPQ是等边三角形时,求t的值.3.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.动点P以2cm/s的速度沿射线BC运动,同时,点Q从点C出发,以acm/s的速度向终点A运动,当Q点停止运动时,P点也随之停止运动,设点P的运动时间为t(s)(t>0).(1)用含t的代数式表示PC的长;(2)若点Q的运动速度为1cm/s,当△CQP是以△C为顶角的等腰三角形时,求t的值;(3)当点Q的运动速度为多少时,能使△BPD与△CQP在某一时刻全等.4.如图,在ΔABC中,∠C=90°,将ΔACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠CAE的度数;(2)当AC=6,AB=10时,求线段DE的长.5.如图,△ABC由两个全等的含45°的直角板拼成,其中,∠ACB=90°,AC=BC,AB= 8,点D是AB边长的中点,点E时AB边上一动点(点E不与点A、B重合),连接CE,过点B作BF⊥CE于F,交射线CD于点G.(1)当点E在点D的左侧运动时,(图).求证:△ACE≌△CBG;(2)当点E在点D的右侧运动时(图)(1)中的结论是否成立?请说明理由:(3)当点E运动到何处时,BG=5,试求出此时AE的长.6.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD= AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想:图1中,线段NM、NP的数量关系是,∠MNP的大小为;(2)探究证明:把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由.7.如图,△ABC 中,AB=AC,△BAC <60°,将线段AB 绕点A逆时针旋转60°得到点D,点 E 与点D 关于直线BC 对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE 的形状,并证明;(3)请问在直线CE上是否存在点P,使得PA - PB =CD 成立?若存在,请用文字描述出点P 的准确位置,并画图证明;若不存在,请说明理由.8.如图,点M是△ABC的边AB上一点,连接CM,过A作AD⊥CM于点D,过B作BE⊥CM于点E.(1)如图①,若点M为AB的中点时,连接AE,BD,求证:四边形ADBE是平行四边形;(2)如图②,若点M不是AB的中点,点O是AB上不与M重合的一点,连接DO,EO,已知点O在DE的垂直平分线上,求证:AO=BO.9.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围是(2)问题解决:如图②,在△ABC中D是BC边上的中点,DE△DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,△B+△D=180°,CB=CD,△BCD=140°,以C为顶点作一个70角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.10.在平面直角坐标系中,O为坐标原点,直线y=mx+m交x轴于点A,交y轴的正半轴于点B,点C在x轴的正半轴上,连接BC,tan∠BAO=3tan∠BCO.(1)求点A,C的坐标;(2)如图1,点P在第一象限内,横坐标为t.PD⊥y轴于点D,PA⊥BC于点E,AP= BC,求m与t之间的函数关系式(不必写出自变量t的取值范围)(3)如图2,在(2)的条件下,设BC交DP于点F,当BF=PE时,求m的值.11.综合与实践问题情境:在数学课上老师出了这样一道题:如图1,在△ABC中AB=AC=6,∠BAC=30°,求BC的长.(1)探究发现:如图2,勤奋小组经过思考后,发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质即可求解,请你根据勤奋小组的思路,求BC的长;(2)探究拓展:如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度在不断变化,直接写出AF的最大值和最小值.12.综合与实践.特例感知.两块三角板△ADB与△EFC全等,△ADB=△EFC=90°,△B=45°,AB=6.(1)将直角边AD和EF重合摆放.点P、Q分别为BE、AF的中点,连接PQ,如图1.则△APQ的形状为.(2)操作探究若将△EFC绕点C顺时针旋转45°,点P恰好落在AD上,BE与AC交于点G,连接PF,如图2.①FG:GA=▲ ;②PF与DC的位置关系为▲ ;③求PQ的长;(3)开放拓展若△EFC绕点C旋转一周,当AC△CF时,△AEC为.13.在Rt△ABC中,△ACB=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB 上,连接BD,过点D作DF△AC于点F.(1)如图1,当点F与点A重合时,求△ABC的度数;(2)若△DAF=△DBA,①如图2,当点F在线段CA上时,求△ABC的度数;②当点F在线段CA的延长线上,且BC=7时,请直接写出△ABD的面积.14.在△ABC中,AB=AC,△BAC=90,BD平分△ABC交AC于点D.(1)如图1,点F为BC上一点,连接AF交BD于点E.若AB=BF,求证:BD垂直平分AF.(2)如图2,CE△BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,点F为BC上一点,△EFC= 12△ABC,CE△EF,垂足为E,EF与AC交于点M.直接写出线段CE与线段FM的数量关系.15.如图,在菱形ABCD中,△ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE△BC,△EAF=△ABC时,①求证:AE=AF;②连结BD,EF,若EFBD=25,求S△AEFS菱形ABCD的值;(2)当△EAF=12△BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.16.已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.答案解析部分1.【答案】(1)证明:∵DE垂直平分AC,∴AE=CE,∵CE△AB,∴△ACE是等腰直角三角形,△BEC=90°,∵AB=AC,AF△BC,∴BF=CF,即F是BC的中点,∴Rt△BCE中,EF= 12BC=CF;(2)解:由(1)得:△ACE是等腰直角三角形,∴△BAC=△ACE=45°,又∵AB=AC,∴△ABC=△ACB= 12(180°−45°)=67.5°,∴△BCE=△ACB-△ACE=67.5°-45°=22.5°,∵CF=EF,∴△CEF=△BCE=22.5°,∵△EFB是△CEF的外角,∴△EFB=△CEF+△BCE=22.5°+22.5°=45°. 2.【答案】(1)6;2(2)解:PQ⊥AB,理由如下:在BQ上截取BE=BP,∵点P运动到AB的中点,∴AP=PB=4,∴t=41=4s,∴BQ=4×2=8,∵PB=BE=4,∠B=60°,∴△PEB是等边三角形,∴PE=BE=4,∠EPB=∠PEB=60°,∴QE=PE=4,∴∠EPQ=∠EQP,∵∠EPQ+∠EQP=∠PEB=60°,∴∠QPE=30°,∴∠QPE+∠EPB=90°=∠QPB,∴PQ⊥AB;(3)解:当0≤t≤5,BQ=2t,当5<t≤152,BQ=10−4(t−5)=30−4t,∵△BPQ是等边三角形,∴BP=BQ,∴8−t=2t或8−t=30−4t,∴t=83或t=223.3.【答案】(1)解:∵点P的运动速度为2cm/s,∴BP=2t,∴PC=10−2t;(2)解:△CQP以∠C为顶角的等腰三角形,则PC=CQ,PC=10−2t,CQ=t,即10−2t=t,解得:t=10 3,∴当t=103s时,△CQP是以∠C为顶角的等腰三角形;(3)解:①当BP=CQ时,BD=CP,此时△BPD≅△CQP,根据题意可得:BP=2t,CQ=at,BD=13AB=6,PC=10−2t,∴2t=at,6=10−2t,解得:a =2,t =2, ②当BP ≠CQ 时,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =CP =12BC =5,BD =CQ =6,∴t =52s ,∴a =CQ t =125cm/s , 综上可得:当Q 的速度为2cm/s 或125cm/s 时,△BPD 与△CQP 在某一时刻全等.4.【答案】(1)∵∠C =90° , ∠B =28°∴∠CAB =90−∠B =90°−28°=62°由折叠的性质可知 ∠CAE =∠EAB∴∠CAE =12∠CAB =31° (2)∵∠C =90° , AC =6 , AB =10 ∴BC =√AB 2−AC 2=√102−62=8由折叠的性质可知 AC =AD,CE =DE,∠EDA =∠C =90°∴∠EDB =180°−∠EDA =180°−90°=90°设 DE =x ,则 BE =8−x,DB =10−6=4 在 Rt △EDB 中, ED 2+DB 2=EB 2 ∴x 2+42=(8−x)2 解得 x =3 ∴DE =35.【答案】(1)证明:在 Rt △ABC 中,∵AC =BC ,∴∠A =∠ABC =45° .∵点 D 是 AB 的中点,∴∠BCG =12∠ACB =45° ,∴∠A =∠BCG .∵BF ⊥CE ,∴∠CBG +∠BCF =90° . ∵∠ACE +∠BCF =90° , ∴∠CBG =∠ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (2)解:结论仍然成立,即△ACE△△CBG . 理由如下:在Rt△ABC 中, ∵AC=BC ,∴△A=△ABC=45°.∵点D 是AB 的中点,∴△BCG= 12 △ACB=45°,∴△A=△BCG .∵BF△CE ,∴△CBG+△BCF=90°. ∵△ACE+△BCF=90°, ∴△CBG=△ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (3)解:在Rt△ABC 中, ∵AC=BC ,点D 是AB 的中点, ∴CD△AB ,CD=AD=BD= 12AB=4,在Rt△BDG 中, DG =√BG 2−BD 2=√52−42=3 , 点E 在运动的过程中,分两种情况讨论: ①当点E 在点D 的左侧运动时,CG=CD-DG=1, ∵△ACE△△CBG , ∴AE=CG=1;②当点E 在点D 的右侧运动时,CG=CD+DG=7, ∵△ACE△△CBG , ∴AE=CG=7. 故答案为:1或7.6.【答案】(1)NM =NP ;60°(2)解:△MNP 是等边三角形.理由如下:由旋转可得,△BAD =△CAE ,又∵AB =AC ,AD =AE ,∴△ABD△△ACE (SAS ),∴BD =CE ,△ABD =△ACE ,∵点M 、N 、P 分别为DE 、BE 、BC 的中点.∴MN =12BD ,PN =12CE ,MN△BD ,PN△CE ,∴MN =PN ,△ENM =△EBD ,△BPN =△BCE,∴△ENP=△NBP+△NPB=△NBP+△ECB,∵△EBD=△ABD+△ABE=△ACE+△ABE,∴△MNP=△MNE+△ENP=△ACE+△ABE+△EBC+△EBC+△ECB=180°−△BAC=60°,∴△MNP是等边三角形.7.【答案】(1)解:如图即为所求,(2)解:△CDE是等边三角形.如图,连接BD、CE,由点D与点E关于直线BC对称可知BF垂直平分DE,∴CD=CE,BD=BE由旋转可知AB=AD,∠BAD=60°,∴△ABD为等边三角形∴AB=BD=AD,∠BAD=∠ABD=60°∴∠CAD=60°−∠BAC∵AB=AC∴∠ABC=180°−∠BAC2=90°−∠BAC2,BE=BD=AB=AC∴∠FBD=∠ABC−∠ABD=90°−∠BAC2−60°=30°−∠BAC2∴∠EBD=2∠FBD=60°−∠BAC∴∠CAD=∠FBD在△ACD和△BED中,{AD=BD ∠CAD=∠EBD AC=BE∴△ACD≅△BED(SAS)∴CD=ED∴CD=ED=CE∴△CDE是等边三角形;(3)解:存在,如图,将△BCD绕点B逆时针旋转60°得到△ABC′,延长AC′交直线CE于点P,连接BP,由(2)得△CDE是等边三角形,∴∠DCE=60°∴∠DCF=∠ECF=30°∴∠BCD=150°由旋转可得CD=C′A,∠C′BC=60°,∠BC′A=∠BCD=150°,∴∠BC′P=30°∵PA−PB=CD,PA−PC′=C′A=CD∴PB=PC′∴∠C′BP=∠BC′P=30°∴∠PBC=30°∵∠BCP=∠ECF=30°∴∠PBC=∠BCP∴BP=CP所以直线CE上存在点P,使得PA - PB =CD 成立,点P在点C左边距离为CE长的位置. 8.【答案】(1)证明:证法一:∵AD⊥CM,BE⊥CM.∴AD∥BE,∴∠ADM=∠BEM=90°(或∠DAM=∠EBM)∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴AD=BE∴四边形ADBE是平行四边形证法二:∵AD⊥CM,BE⊥CM.∴∠ADM=∠BEM=90°∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴DM=EM∴四边形ADBE是平行四边形(2)证明:延长DO交BE于F,∵AD⊥CM,BE⊥CM.∴AD∥BE,∠BEM=90°∴∠DAO=∠EBO,∠ODE+∠OFE=∠DEO+∠FEO=90°∵点O在DE的垂直平分线上,∴DO=EO∴∠ODE=∠DEO∴∠OFE=∠FEO∴FO=EO∴DO=FO∵∠AOD=∠BOF∴△ADO≌△BFO∴AO=BO.9.【答案】(1)2<AD<6(2)解:如图2,延长FD至点M,使DM=DF,连接BM、EM同(1)得:△BMD≅△CFD(SAS)∴BM=CF∵DE⊥DF,DM=DF∴DE是MF的垂直平分线∴EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM∴BE+CF>EF;(3)解:BE+DF=EF;证明如下:如图3,延长AB至点N,使BN=DF,连接CN∵∠ABC+∠D=180°,∠NBC+∠ABC=180°∴∠NBC=∠D在△NBC和△FDC中,{BN=DF ∠NBC=∠D CB=CD∴△NBC≅△FDC(SAS)∴CN=CF,∠NCB=∠FCD ∵∠BCD=140°,∠ECF=70°∴∠BCE+∠FCD=70°∴∠BCE+∠NCB=70°∴∠ECN=70°=∠ECF在△NCE和△FCE中,{CN=CF ∠ECN=∠ECF CE=CE∴△NCE≌△FCE(SAS)∴EN=EF∵BE+BN=EN∴BE+DF=EF.10.【答案】(1)解:∵直线y=mx+m交x轴于点A,交y轴的正半轴于点B,当x=0时,y=m,∴B(0,m)当y=0时,mx+m=0,解得x=-1∴A(-1,0)∴OA=1,OB=m∵tan∠BAO=OBOA=m1=m,tan∠BCO=OBOC=mOC又tan∠BAO=3tan∠BCO∴3mOC=m∴OC=3∴C(3,0)(2)解:过点P作PH△x轴于点H,则△PHA=90°=△BOC∴△PAH+△APH=90°∵AP△BC∴△AEC=90°∴△PAH+△BCO=90°∴△APH =△BCO∵AP=BC∴△APH△△BCO,∴PH=OC=3,AH=BO,∴t-(-1)=m,则m=t+1;(3)解:过点E作EM△x轴于点M,延长ME交BD于N,则△NMO=90°∵△APH△△BCO,PH=3=OC,BD=m-3∴△DBF =△PAH,∵PD△y轴∴△PDO =△PHO=△DOH =△NMO=90°∴△NPE =△PAH=△DBF∵BF=PE∴△BDF△△PNE,∴BD=NP= m-3=MH,∵OH=t∴OM=OH-MH=OH-MH=t-(m-3)=t-m+3又OC=3∴CM=OC-OM=3-(t-m+3)=m-t∵m=t+1∴CM=m-t=1∴AM=AH-MH=(1+t)- (m-3)=1+t-m+3=3∵△CEM =△EAM∴1EM=EM3故EM= √3∴tan△EAM= tan△CBO∴EM AM=√33=3m,∴m=3 √3.11.【答案】(1)解:如图4,延长CB、DE交于点H.∵△ABC绕点A顺时针旋转90°得到△ADE∴△ABC≌△ADE,∠CAE=∠BAD=90°,△H=90°,∴AB=AD=6,AC=AE=6,∠DAE=∠BAC,DE=BC ∵AB=AC=6,∠BAC=30°∴△ABC是等腰三角形,∠BAE=∠CAE−∠BAC=60°∴∠ABC=180°−∠BAC2=75°,∵AE=AB=6∴△AEB是等边三角形∴BE=AB=6,∠ABE=60°∴∠EBH=180°−∠ABE−∠ABC=45°∴△EBH是等腰直角三角形∴HE=HB.∵AD=AB,∠DAB=90°.∴△ABD是等腰直角三角形,∠BDA=45°.在Rt△EBH中,由勾股定理,得HE2+HB2=BE2.∴HE2+HB2=62=36.∴HE2=HB2=18∴HE=HB=√18=3√2.在△BDH中,∠H=90°,∠BDH=∠EDA−∠BDA=∠ABC−∠BDA=30°.在Rt△BDH中,BH=12BD=3√2.∴BD=6√2.在Rt△BDH中,tan∠BDH=BH DH,∴3√2 DH=√3 3,∴DH=3√6.∴DE=DH−EH=3√6−3√2.∵DE=BC,∴BC的长是3√6−3√2.(2)解:四边形ADFC是菱形.理由如下:∵△ABC绕点A顺时针旋转120°得到△ADE,AB=AC,∠BAC=30°,∴△ABC≌△ADE,∠BAD=∠CAE=120°.∴AC=AE,AB=AD,∠BAC=∠DAE=30°.∴AC=AE=AB=AD.∴△ACE是等腰三角形∴∠ACE=∠AEC=180°−∠CAE2=30°.同理可得:∠ABD=∠ADB=30°.∵∠ACB=180°−∠BAC2=75°.∴∠BCG=∠ACB−∠ACE=45°,∠FBC=∠ABC+∠ABF=105°.∴在△BFC中,∠BFG=180°−∠FBC−∠BCG=30°.∴∠BFG=∠ACF,∠BFG=∠ADB.∴DB∥AC,FC∥AD.∴四边形ADFC是平行四边形.∵AD=AC,∴四边形ADFC是菱形.(3)解:如图5,作AH△BD于点H,则∠AHB=90°∵△ABC绕点A顺时针旋转120°得到△ADE,∴△ABC≌△ADE,∠BAD=120°∴AB=AD=6∴△ABD是等腰三角形∴BH=DH=12BD∴∠ABD=∠ADB=180°−∠BAD2=30°.在Rt△ABH中,△AHB=90°,△ABH=30°,AB=6∵BHAB=cos∠ABH=cos30°∴BH=3√3∴BD=2 BH=6√3由(2)知四边形ADFC是菱形∴DF=AD=6∴BF=BD-DF=6√3-6当△BGF绕点B顺时针旋转,在旋转过程中,当旋转到A、B、F第一次三点共线时,如图6,△BGF≌△BG″F″,∴BF=BF″此时AF有最小值,此时AF=AF″=AB-BF″=AB-BF=6-(6√3-6)=12-6√3当旋转到A、B、F第二次三点共线时,如图7,△BGF≌△BG′F′,∴BF=BF′此时AF有最大值,此时AF=AB+BF′=AB+BF=6+6√3-6=6√3故AF的最大值是6√3,AF的最小值是12−6√3 12.【答案】(1)等腰直角三角形(2)①∵AB=6,△B=45°,△ADB=90°,∴√AD2+BD2=AB,∴AD=BD= 3√2,∴EF= 3√2,∵△BFC=△BAC=90°,∴△GFE=△BAG,∵△AGP=△EGF,∴△ABQ=△GBF,∴△EGF△△BGA,∴FGAG=EFAB,∴FGAG=EFAB=3√26=√22=1√2故答案为:1:√2;②如图,过P作PM//BC交CE与点M,∴EMCM=EPBP=11,∴EM=CM∴FM//BC,∴F在PM上,∴PF△CD,故答案为:平行;③∵BP=PE,BD=CD,∴DP为△BCE的中位线,∴PD//CE,∵CE△BC,∴PD△BC,又∵AD△BC,∴P在AD上,△APF=△ADC=90°,∵Q 为AF 的中点, ∴PQ= 12AF ,又∵△B=45°,△ADB=90°,∴EF =√22AB =3√2 ,∴FC=EF= 3√2 , ∴AF=AC-CF=6- 3√2 ,∴PQ= 12AF = 3−3√22;(3)22.5°或67.5°13.【答案】(1)解:由旋转的性质可得△ABC△△ADE∴△BAC=△DAE∵DF△AC ,点F 与点A 重合, ∴△CAD=90° ∴△BAC=△DAE=45° ∵△ACB=90°∴△ABC=90°-△CAB=45°;(2)①∵△ABC△△ADE ,则△BAC=△DAE=12△DAF∵△DAF=△DBA , ∴△DAE=12△DAF=12△DBA∵△ABC△△ADE ∴AB=AD∴△DBA=△BDA ,设△BAC=△BAD-x ,则△DBA=△BDA-2x ∵△BAD+△ABD+△ADB=180° ∴x+2x+2x=180°解得:x=36° ∴△BAC=36°∴△ABC=90°-△BAC=54°; ②493√3 14.【答案】(1)证明:∵BD 平分△ABC ,∵BA=BF,BE=BE,∴△ABE△△FBE(SAS),∴AE=FE,△AEB=△FEB= 12× 180°=90°,∴BD垂直平分AF.(2)解:BD=2CE,理由如下:延长CE,交BA的延长线于G,∵CE△BD,△ABE=△FBE,∴GE=2CE=2GE,∵△CED=90°=△BAD,△ADB=△EDC,∴△ABD=△GCA,又AB=AC,△BAD=△CAG,∴△BAD△△CAG(ASA),∴BD=CG=2CE,(3)解:FM=2 CE,理由如下:作FM的中垂线NH交CF于N,交FM于H,∴FN=MN,MH=FH= 12FM,∴△NMH=△NBH,∵△EFC= 12△ABC=22.5°,∴△MNC=2△NFH=2× 12△ABC=△ABC,∵AB=AC,△BAC=90,∴△ABC=△ACB=△MNC=45°,∵△EMC=△MFC+△MCF=22.5°+45°=67.5°,∴△ECM=90°-△EMC=22.5°,∴△NFH=△MCE,又∵△FHN=△E=90°,∴△FNH△△CME(AAS),∴FH=CE,∴FM=2FH=2CE.15.【答案】(1)解:①∵菱形ABCD,∴AB=AD,△ABC=△ADC,AD△BC,∵AE△BC,∴AE△AD,∴△EAF+△DAF=△BAE+△ABE=90°,∵△EAF=△ABC,∴△DAF=△BAE,在△ABE和△ADF中{∠ABC=∠ADC AB=AD ∠DAF=∠BAE∴△ABE△△ADF(ASA)∴AE=AF.②连接AC,∵菱形ABCD,∴AB=BC=CD,AC△BD,∵△ABE△△ADF,∴BE=CF , ∴CE=CF ∵AE=AF ∴AC△EF ∴BD△FE , ∴△CEF△△CBD , ∴EC BC =EF BD =25设EC=2a ,则AB=BC=5x ,BE=3a , ∴AE =√25a 2−9a 2=4a , ∵AE AB =AF BC ,△EAF=△ABC , ∴△AEF△△BAC ,S △AEF S △ABC =(AEAB)2=(4a 5a)2=1625S △AEFS 菱形ABCD=S △AEF 2S △ABC=12×1625=825.(2)解:∵菱形ABCD , ∴△BAC=12△BAD ,∵△EAF=12△BAD ,∴△BAC=△EAF , ∴△BAE=△CAM , ∵AB△CD , ∴△BAE=△ANC ,同理可知:△AMC=△NAC , ∴△MAC△△ANC , ∴AC CN =AM NA; 当△AMN 时等腰三角形, 当AM=AN 时,在△ANC和△MAC中{∠ANC=∠CAM AM=AN ∠AMC=∠NAC∴△ANC△△MAC(ASA)∴CN=AC=2,∵AB△CN,∴△CEN△△BEA,∴CEBE=CNAB=24=12∵AB=BC=4∴CE4−CE=12解之:CE=43;当NA=MN时△NMA=△NAM,∵AB=BC,∴△BAC=△BCA,∵△BAC=△EAF,∴△NMA=△NAM=△BAC=△BCA,∴△ANM△△ABC,∴AMAN=ACAB=12∴AC CN =AM NA =12 ∴CN=2AC=4=AB 解之:AC=2∵△CEN△△BEA (AAS ) ∴CE=BE=2; 当MA=MN 时,易证△MNA=△MAN=△BAC=△BCA , ∴△AMN△△ABC ∴AM AN =AB AC =42=2 ∴CN=12AC=1∵△CEN△△BEA , ∴CE BE =CN AB =14 ∴CE 4−CE =14 解之:CE =45;∴当CE 为43或2或45时,△AMN 是等腰三角形.16.【答案】(1)OC =OD(2)解:数量关系依然成立.证明(方法一):过点O 作直线 EF//CD ,交BD 于点F ,延长AC 交EF 于点E .∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.证明(方法二):延长CO交BD于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠A=∠B,∵点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(ASA),∴OC=OE,∵∠CDE=90°,∴OD=OC.(3)解:①数量关系依然成立.证明(方法一):过点O作直线EF//CD,交BD于点F,延长CA交EF于点E.∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.10分证明(方法二):延长CO交DB的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠ACO=∠E,∴点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(AAS),∴OC=OE,∵∠CDE=90°,∴OD=OC.②AC+BD=√3OC。
北师大版九年级下册数学13章单元测试卷第一章检测卷时间:120分钟满分:150分班级:__________姓名:__________得分:__________ 一、选择题(每小题3分,共45分) 1.sin30°的值为()A. B. C. D.2.如图,Rt△ABC中,∠C=90°,AC=8,BC=15,则tanA的值为()A. B. C. D.第2题图第3题图3.如图,在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 4.在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A.sinA=B.tanA=C.cosB =D.tanB=5.若tan(α+10°)=1,则锐角α的度数是A()A.20° B.30° C.40° D.50° 6.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于()A.3 B.300 C. D.150 7.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D =55°,使A,C,E在一条直线上,那么开挖点E与D的距离是()A.500sin55°米B.500cos35°米C.500cos55°米D.500tan55°米第7题图第8题图第9题图8.如图,点P在第二象限,OP与x轴负半轴的夹角是α,且OP=5,cosα=,则点P的坐标是()A.(3,4) B.(-3,4) C.(-4,3) D.(-3,5) 9.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1∶2,则斜坡AB的长为()A.4米B.6米C.12米D.24米10.如图,直线y=x+3与x,y轴分别交于A,B两点,则cos∠BAO的值是()A. B. C. D.第10题图第11题图11.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C =45°,tan∠B=3,则BD等于()A.2 B.3 C.3 D.2 12.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45° B.45°<α<60° C.60°<α<90° D.30°<α<60° 13.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm 第13题图14.如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是()A.(+8)m B.(8+8)m C.m D.m 第14题图第15题图15.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测到灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)()A.22.48海里B.41.68海里C.43.16海里D.55.63海里二、填空题(每小题5分,共25分) 16.在Rt△ABC中,∠C=90°,∠A=60°.若AB=2,则cosB =,BC= .17.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB= .第17题图第18题图18.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).19.齐河路路通电动车厂新开发的一种电动车如图,它的大灯A射出的光线AB,AC与地面MN所夹的锐角分别为8°和10°,大灯A与地面的距离为1m,则该车大灯照亮地面的宽度BC是m(不考虑其他因素,参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈).第19题图第20题图20.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.三、解答题(共80分) 21.(8分)计算:(1)3tan30°+cos245°-2sin60°;(2)tan260°-2sin45°+cos60°. 22.(8分)如图,在△ABC中,∠C=90°,AB=13,BC=5,求sinB和tanB的值.23.(10分)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C,D,B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号).24.(12分)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°.若定义cotA==,则称它为锐角A的余切,根据这个定义解答下列问题:(1)cot30°=;(2)已知tanA=,其中∠A为锐角,求cotA的值.25.(12分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B 两个凉亭之间的距离.如图,现测得∠ABC=30°,∠BAC=15°,AC =200米,请计算A,B两个凉亭之间的距离(结果精确到1米,参考数据:≈1.414,≈1.732).26.(14分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.27.(16分)南海是我国的南大门,某天我国一艘海监执法船在南海海域正在进行常态化巡航,如图所示,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数,参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)? 下册第一章检测卷1.A2.D3.C4.D5.A6.D7.C8.B 9.B10.A11.A12.B13.A14.D 15.B解析:如图,过点P作PA⊥MN 于点A.由题意,得MN=30×2=60(海里).∵∠MNC=90°,∠CNP =46°,∴∠MNP=∠MNC+∠CNP=136°.∵∠BMP=68°,∴∠PMN =90°-∠BMP=22°,∴∠MPN=180°-∠PMN-∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60海里.∵∠CNP=46°,∴∠PNA =44°,∴PA=PN·sin∠PNA≈60×0.6947≈41.68(海里).故选B.16.17.18.(10+1)19.1.4 20.解析:过点E作EF⊥BC于点F.设DE=CE=a.∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°.∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a.∴BF=BC+CF=a+a =a.在Rt△BEF中,tan∠EBF==,即tan∠EBC=.21.解:(1)原式=3×+-2×=+-=;(4分) (2)原式=()2-2×+=3-+=-.(8分) 22.解:∵在△ABC 中,∠C=90°,∴AC===12.(4分)∴sinB==,(6分)tanB==.(8分) 23.解:由题意可得CD=16米.∵AB=CB·tan30°,AB=BD·tan45°,∴CB·tan30°=BD·tan45°,(4分)∴(CD+DB)×=BD×1,∴BD=(8+8)米.(7分)∴AB=BD·tan45°=(8+8)米.(9分) 答:旗杆AB的高度是(8+8)米.(10分) 24.解:(1)(4分) (2)在Rt△ABC 中,∠C=90°,∵tanA==,∴可设BC=3k,则AC=4k,(8分)∴cotA ===.(12分) 25.解:如图,过点A作AD⊥BC,交BC延长线于点D.(2分)∵∠B=30°,∴∠BAD=60°.又∵∠BAC=15°,∴∠CAD=45°.(5分)在Rt△ACD中,∵AC=200米,∴AD=AC·cos∠CAD=200×=100(米),(8分)∴AB===200≈283(米).(11分) 答:A,B两个凉亭之间的距离约为283米.(12分) 26.解:(1)如图,过点A作AE⊥BC于点E.∵cosC=,∴∠C=45°.(2分)在Rt△ACE中,∵CE=AC·cosC=×=1,∴AE=CE=1.(4分)在Rt△ABE中,∵tanB =,∴=,∴BE=3AE=3,∴BC=BE+CE=4;(7分) (2)由(1)可知BC=4,CE=1.∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.(9分)∵AE⊥BC,DE=AE=1,∴∠ADC =45°,(12分)∴sin∠ADC=.(14分) 27.解:如图,过点B作BD⊥AC,垂足为D.由题意得∠BAC=75°-30°=45°,AB=20海里.(3分)在Rt△ABD中,∵∠BAD=∠ABD=45°,∴BD=AD=AB=×20=10(海里).(7分)在Rt△BCD中,∵∠C=90°-75°=15°,∠CBD=90°-∠C=75°,tan∠CBD=,∴CD=BD·tan75°≈10×3.732≈52.8(海里),(11分)∴AC=AD+DC=10+52.8≈67(海里).(15分) 答:我国海监执法船在前往监视巡查点的过程中约行驶了约67海里.(16分) 第二章单元检测卷一、选择题(每小题3分;共33分)1.二次函数,当y②9a+3b+c<0;③若点A(﹣3,y1),点B(﹣,y2),点C(5,y3)在该函数图象上,则y1<y3<y2;④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<5<x2 . A. 1个 B. 2个 C. 3个 D. 4个9.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是() A. 1月,2月 B. 1月,2月,3月 C. 3月,12月 D. 1月,2月,3月,12月10.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为() A. y=(x+1)2﹣13 B. y=(x﹣5)2﹣3 C. y=(x﹣5)2﹣13 D. y=(x+1)2﹣3 11.如图所示,抛物线的对称轴是直线,且图像经过点(3,0),则的值为()A. 0B. -1 C. 1 D. 2二、填空题(共10题;共30分)12.已知二次函数y=﹣x2﹣2x+1,当x________时,y随x的增大而增大.13.(20xx•扬州)如图,抛物线y=ax2+bx+c (a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________.14.农机厂第一个月水泵的产量为50(台),第三个月的产量y(台)与月平均增长率x之间的关系表示为________ .15.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=________.16.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x 的取值范围是________ x 0.4 0.5 0.6 0.7 ax2+bx+c ﹣0.64 ﹣0.25 0.16 0.59 17.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△________ 0(填:“>”或“=”或“<”).18.如图,抛物线与轴的一个交点A在点(-2,0)和(1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则的取值范围是________.19.形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________.20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当2<y<5时,x的取值范围是________ x … ﹣1 0 1 2 3 … y … 10 5 2 1 2 … 21.若二次函数y=2x2﹣x﹣m与x轴有两个交点,则m的取值范围是________ . 三、解答题(共4题;共37分)22.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.23.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?24.已知二次函数图象顶点坐标(﹣3,)且图象过点(2,),求二次函数解析式及图象与y轴的交点坐标.25.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B(1)求抛物线的解析式;(2)点D是第二象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD= S四边形ACBD时,求D点坐标;(3)在(2)的条件下,连接BC,过点D作DE⊥BC,交CB 的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长.参考答案一、选择题A C D B B A B C D D B 二、填空题12.<﹣2 13.0 14. 15.3 16.0.5<x<0.6 17.>18.- ≤a≤- 19.y=﹣2x2﹣5 20.0<x<1或3<x<4 21.m≥﹣三、解答题22.1)解:当m=0时,令y=0,则x2﹣6=0,解得x=±,所以,m=0时,该函数的零点为±;(2)证明:令y=0,则x2﹣2mx﹣2(m+3)=0,△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3),=4m2+8m+24,=4(m+1)2+20,∵无论m为何值时,4(m+1)2≥0,∴△=4(m+1)2+20>0,∴关于x的方程总有不相等的两个实数根,即,无论m取何值,该函数总有两个零点.23.解:(1)∵y=﹣x2+x =﹣(x﹣4)2+,∴当x=4时,y有最大值为.所以当球水平飞行距离为4米时,球的高度达到最大,最大高度为米;(2)令y=0,则﹣x2+x=0,解得x1=0,x2=8.所以这次击球,球飞行的最大水平距离是8米.24.解:设二次函数的解析式为y=a(x﹣h)2+k,把h=﹣3,k= ,和点(2,)代入y=a (x﹣h)2+k,得a(2+3)2+ = ,解得a= ,所以二次函数的解析式为y= (x+3)2+ ,当x=0时,y= ×9+ = ,所以函数图象与y轴的交点坐标(0,)25.(1)解:∵令x=0得:y=﹣3,∴C(0,﹣3).令y=0得:﹣x﹣3=0,解得x=﹣3,∴A(﹣3,0).将A、C两点的坐标代入抛物线的解析式的:,解得:.∴抛物线的解析式为y=x2+2x﹣3 (2)解:如图1所示:令y=0得:x2+2x﹣3=0,解得x=﹣3或x=1.∴AB=4.∵S△ACD= S四边形ACBD ,∴S△ADC:S△DCB=3:5.∴AE:EB=3:5.∴AE=4× = .∴点E的坐标为(﹣,0).设EC的解析式为y=kx+b,将点C和点E的坐标代入得:,解得:k=﹣2,b=﹣3.∴直线CE的解析式为y=﹣2x﹣3.将y=﹣2x﹣3与y=x2+2x﹣3联立,解得:x=﹣4或x=0(舍去),将x=﹣4代入y=﹣2x﹣3得:y=5.∴点D的坐标为(﹣4,5)(3)解:如图2所示:过点D作DN⊥x轴,垂足为N,过点P作PM⊥x 轴,垂足为M.设直线BC的解析式为y=kx+b,将点C和点B 的坐标代入得:,解得:k=3,b=﹣3.∴直线BC的解析式为y=3x﹣3.设直线DE的解析式为y=﹣x+n,将点D的坐标代入得:﹣×(﹣4)+n=5,解得n=5﹣= .∴直线DE的解析式为y=﹣x+ .将y=3x﹣3与y=﹣x+ 联立解得:x=2,y=3.∴点E坐标为(2,3).依据两点间的距离公式可知:BC=CE= .∵点P与点Q关于点B对称,∴PB=BQ.在△PCB和△QEB中,∴△PCB≌△QEB.∴∠BPC=∠Q.又∵∠DEF+∠BPC=∠DBE,∠DEF=∠QEG,∠EGB=∠Q+∠QEG ∴∠DBE=∠DGB.又∵∠DBE+∠BDE=90°,∴∠DGB+∠BDG=90°,即∠PBD=90°.∵D (﹣4,5),B(1,0),∴DM=NB.∴∠DBN=45°.∴∠PBM=45°.∴PM=MB 设点P 的坐标为(a,a2+2a﹣3),则BM=1﹣a,PM=﹣a2﹣2a+3.∴1﹣a=﹣a2﹣2a+3,解得:a=﹣2或a=1(舍去).∴点P的坐标为(﹣2,3).∴PC∥x轴.∵∠Q=∠BPC,∴EQ∥PC.∴点E与点F的纵坐标相同.将y=3代入抛物线的解析式得:x2+2x﹣3=3,解得:x=﹣1﹣或x=﹣1+ (舍去).∴点F的坐标为(﹣1 ,3).∴EF=2﹣(﹣1﹣)=3+ 第三章单元检测卷满分:120分时间:90分钟一、选择题(每题3分,共30分) 1.下列命题为真命题的是() A.两点确定一个圆B.度数相等的弧相等C.垂直于弦的直径平分弦D.相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P 与⊙O的位置关系是() A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.无法确定3.如图,⊙O是△ABC的外接圆,∠BOC =120°,则∠BAC的度数是() A.70° B.60° C.50° D.30°4.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD =OB,连接AD.如果∠DAC=78°,那么∠ADO等于() A.70° B.64° C.62° D.51° 5.秋千拉绳长3 m,静止时踩板离地面0.5 m,某小朋友荡秋千时,秋千在最高处踩板离地面2 m(左右对称),如图,则该秋千所荡过的圆弧长为() A.π m B.2π m C.π m D.m 6.如图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于点E,F,OE=8,OF=6,则圆的直径长为() A.12 B.10 C.14 D.15 (第6题)(第7题) 7.如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为() A.(2,-1) B.(2,2) C.(2,1) D.(3,1) 8.如图,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于() A.55° B.90° C.110° D.120° 9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB 的长为4,则a的值是() A.4 B.3+C.3 D.3+(第8题)(第9题)(第10题) 10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为() A. B. C. D. 二、填空题(每题3分,共24分) 11.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).(第11题)(第12题)(第13题) 12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF =32°,那么∠A=________.13.如图,DB切⊙O于点A,∠AOM =66°,则∠DAM=________.14.如图,在⊙O的内接四边形ABCD 中,AB=CD,则图中与∠1相等的角有__________________.(第14题) (第15题) (第16题) 15.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________.16.如图,在扇形OAB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB 于点D.若OA=2,则阴影部分的面积为________.17.如图,AB 是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F 分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径是7,则GE+FH的最大值是________.(第17题)(第18题) 18.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,N在⊙O上.下列结论:①MC=ND;②==;③四边形MCDN是正方形;④MN=AB,其中正确的结论是________(填序号).三、解答题(19题6分,20~24题每题12分,共66分) 19.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.试判断直线AC与半圆O的位置关系,并说明理由.(第19题) 20.在直径为20 cm的圆中,有一条弦长为16 cm,求它所对的弓形的高.21.如图,点P在y轴上,⊙P交x 轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.(第21题) 22.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第22题) 23.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.(第23题) 24.如图①,AB是⊙O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D. (1)求证:∠DAC=∠BAC;(2)若AD和⊙O相切于点A,求AD的长;(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并说明理由.(第24题) 答案一、1.C2.A3.B4.B5.B6.B 7.C8.C9.B 10.D点拨:∵正六边形A1B1C1D1E1F1的边长为2=,∴正六边形A2B2C2D2E2F2的外接圆的半径为,则正六边形A2B2C2D2E2F2的边长为=,同理,正六边形A3B3C3D3E3F3的边长为=,…,正六边形AnBnCnDnEnFn的边长为,则当n=10时,正六边形A10B10C10D10E10F10的边长为===,故选D.二、11.∠BAE=∠C 或∠CAF=∠B 12.99°点拨:易知EB=EC.又∠E=46°,所以∠ECB =67°.从而∠BCD=180°-67°-32°=81°.在⊙O中,∠BCD与∠A 互补,所以∠A=180°-81°=99°.13.147°点拨:因为DB是⊙O 的切线,所以OA⊥DB.由∠AOM=66°,得∠OAM=(180°-66°)=57°.所以∠DAM=90°+57°=147°.14.∠6,∠2,∠5点拨:本题中由弦AB=CD可知=,因为同弧或等弧所对的圆周角相等,所以∠1=∠6=∠2=∠5. 16.+点拨:连接OE.∵点C是OA的中点,∴OC=OA=1.∵OE=OA=2,∴OC=OE.∵CE⊥OA,∴∠OEC=30°.∴∠COE =60°.在Rt△OCE中,CE==,∴S△OCE=OC·CE=.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°.∴S扇形BOE==.又S扇形COD==.因此S阴影=S扇形BOE+S△OCE-S扇形COD=+-=+.17.10.5 18.①②④点拨:连接OM,ON,易证Rt△OMC≌Rt△OND,可得MC=ND,故①正确.在Rt△MOC中,CO=MO.得∠CMO=30°,所以∠MOC=60°.易得∠MOC=∠NOD =∠MON=60°,所以==,故②正确.易得CD=AB=OA=OM,∵MC<OM,∴四边形MCDN是矩形,故③错误.易得MN=CD=AB,故④正确.三、19.解:AC与半圆O相切.理由如下:∵是∠BED 与∠BAD所对的弧,∴∠BAD=∠BED.∵OC⊥AD,∴∠AOC+∠BAD =90°.∴∠BED+∠AOC=90°.即∠C+∠AOC=90°.∴∠OAC=90°.∴AB⊥AC,即AC与半圆O相切.20.解:∵这条小于直径的弦所对的弧有两条:劣弧与优弧,∴对应的弓形也有两个.如图,HG为⊙O的直径,且HG⊥AB,AB=16 cm,HG=20 cm,连接BO.∴OB=OH=OG=10 cm,BC=AB=8 cm.∴OC===6(cm).∴CH=OH-OC=10-6=4(cm),CG=OC+OG=6+10=16(cm).故所求弓形的高为4 cm或16 cm.(第20题) 21.(1)解:如图,连接CA.(第21题) ∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1.∵BC是⊙P的直径,∴∠CAB=90°.∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).(2)证明:∵直线y=2x+b过C点,∴b=6.∴y=2x+6.∵当y=0时,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切线.22.解:(1)如图,点E是桥拱所在圆的圆心.(第22题) 过点E作EF⊥AB于点F,延长EF交于点C,连接AE,则CF=20 m.由垂径定理知,F是AB的中点,∴AF=FB=AB=40 m.设半径是r m,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50 m.(2)这艘轮船能顺利通过.理由如下:当宽60 m的轮船刚好可通过拱桥时,如图,MN为轮船顶部的位置.连接EM,设EC与MN的交点为D,则DE⊥MN,∴DM =30 m,∴DE===40(m).∵EF=EC-CF=50-20=30(m),∴DF=DE-EF=40-30=10(m).∵10 m>9 m,∴这艘轮船能顺利通过.23.(1)证明:如图,连接CD,∵AD是⊙O的直径.∴∠ACD =90°.∴∠CAD+∠ADC=90°.又∵∠PAC=∠PBA,∠ADC=∠PBA,∴∠PAC=∠ADC.∴∠CAD+∠PAC=90°.∴PA⊥DA.而AD是⊙O的直径,∴PA是⊙O的切线.(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA.∴∠GCA=∠PAC.又∵∠PAC=∠PBA,∴∠GCA=∠PBA.而∠CAG=∠BAC,∴△CAG∽△BAC.∴=,即AC2=AG·AB.∵AG·AB =12,∴AC2=12.∴AC=2.(3)解:设AF=x,∵AF∶FD=1∶2,∴FD =2x.∴AD=AF+FD=3x.在Rt△ACD中,∵CF⊥AD,∴AC2=AF·AD,即3x2=12,解得x=2或x=-2(舍去).∴AF=2,AD =6.∴⊙O的半径为3.在Rt△AFG中,AF=2,GF=1,根据勾股定理得AG===,由(2)知AG·AB=12,∴AB==.连接BD,如图.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,∵sin∠ADB =,AD=6,AB=,∴sin∠ADB=.∵∠ACE=∠ADB,∴sin∠ACE=.(第23题) 24.(1)证明:如图①,连接OC.∵直线EF和⊙O相切于点C,∴OC⊥EF.∵AD⊥EF,∴OC∥AD.∴∠DAC=∠OCA.∵OA=OC,∴∠BAC=∠OCA.∴∠DAC=∠BAC.(2)解:∵AD和⊙O相切于点A,∴OA⊥AD.∵AD⊥EF,OC⊥EF,∴∠OAD=∠ADC=∠OCD=90°.∴四边形OADC是矩形.∵OA=OC,∴矩形OADC是正方形.∴AD =OA.∵AB=2OA=10,∴AD=OA=5.(第24题) (3)解:存在,∠BAG=∠DAC.理由如下:如图②,连接BC.∵AB是⊙O的直径,∴∠BCA=90°.∴∠ACD+∠BCG=90°.∵∠ADC=90°,∴∠ACD+∠DAC=90°.∴∠DAC=∠BCG.∵∠BCG=∠BAG,∴∠BAG=∠DAC.七年级思品(北师大版下册)单元测试卷二班级____________ 姓名___________ 得分_________ __________________________________________________________________ ___________人生是长长的跋涉,汗水、泪水伴着欢笑与悲伤洒满了征程。
<1.3正方形》一、选择题1. 正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等2. 将五个边长都为2cm 的正方形按如图所示摆放,点A 、B 、C 、D 分别是四个正方形的中心,3.有3个正方形如图所示放置,阴影部分的面积依次记为S 2,则S“ S?等于( )4.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP 二BC,则ZACP 度数是(5. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边正方形EFGH 的周长为 ( )C. 2: 3D. 4:9C. 67.5°D. 75°22.5°HA. V2B. 2V2C. A/2 +1D. 2阿16. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE: EC=2: 1,则线段CH的长是()A, ____________ DB E CA. 3B. 4 C・ 5 D. 67.如图,在正方形ABCD中,AABE和Z\CDF为直角三角形,ZAEB二ZCFD二90° , AE二CF二5, BE=DF=12,则EF 的长是()A. 7B. 8 C・ 7V2D. 7^38.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF〃AD,与AC、DC分别交于点G, F, H为CG的中点,连接DE, EH, DH, FH.下列结论:AF 9①EG二DF;②ZAEH+ZADH=180°;③△EHF9ADHC;④若詈二吕,则3S AEDH=13S AWC,其中结论A D 0正确的有()9.如图,在正方形ABCD中,连接BD,点0是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点W、N z,则图中的全等三角形共有()A.2对乩3对C・4对D・5对10.已知:如图,ZM0N二45° , 0人二1,作正方形A^CA,面积记作S(;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点人、他、他、A4…在射线ON上,点&、B2、B3X B4…在射线0M上,…依此类推,则第6个正方形的面积S6是()A. 256B. 900C. 1024D. 4096二、填空题剑.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则ZCME 二 .12. QABCD的对角线AC与BD相交于点0,且AC丄BD,请添加一个条件:____ ,使得EJABCD 为正方形.13. 如图,在正方形ABCD中,对角线AC与BD相交于点0, E为BC上一点,CE=5, F为DE的中点.若ACEF的周长为18,则0F的长为 ______ ・14.如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC±,且BD二BE.若AC二18, GF=6,则F点到AC的距离为___ .15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为16. 有一面积为5貞的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为•17. 如图,在平面直角坐标系中,边长为1的正方形0人BG的两边在坐标轴上,以它的对角线0B.为边作正方形OBdCz,再以正方形0BDC2的对角线0B2为边作正方形OB2B3C3,以此类三、解答题18.如图,四边形ABCD是正方形,点E是BC的中点,ZAEF二90° , EF交正方形外角的平分线CF于F.求证:AE=EF.月 ------------- D备用图19.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE二AF.连接20.如图,在正方形ABCD中,点E (与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:Z\ABE竺Z\EGF;(2)右AB-2, S^ABE二2S AECf,求BE.B EC G21・已知:如图,在正方形ABCD中,点E在边CD±, AQ丄BE于点Q, DP丄AQ于点P・(1) 求证:AP=BQ;(2) 在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.B C22.如图,点E正方形ABCD外一点,点F是线段AE上一点,AEBF是等腰直角三角形,其中ZEBF=90°,连接CE、CF.(1) 求证:Z\ABF竺Z\CBE;(2) 判断ACEF的形状,并说明理由.D C<1.3正方形》参考答案与试题解析一、选择题1. 正方形具有而菱形不一定具有的性质是()A. 对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【考点】正方形的性质;菱形的性质.【分析】先回顾一下菱形和正方形的性质,知道矩形的特殊性质是正方形具有而菱形不具有的性质,根据矩形的特殊性质逐个判断即可.【解答】解:菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角,正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A、菱形和正方形的对角线都互相垂直,故本选项错误;B、菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C、菱形和正方形的对角线互相平分,故本选项错误;D、菱形和正方形的对角都相等,故本选项错误;故选B.【点评】本题考查了矩形的性质,正方形的性质,菱形的性质的应用,主要考查学生的理解能力和辨析能力,能熟练地运用性质进行判断是解此题的关键.2. 将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为()A. 2cmB. 4cm C・ 6cm D・ 8cm【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】连接AP、AN,点A是正方形的对角线的交点,则AP二AN, ZAPF二ZANE二45°,易得PAF^ANAE,进而可得四边形AENF的面积等于ANAP的面积,同理可得答案.【解答】解:如图,连接AP, AN,点A是正方形的对角线的交则AP二AN, ZAPF=ZANE=45° ,•・• Z PAF+ Z FAN= Z FAN+ Z NAE二90 ° ,・・・ ZPAF=ZNAE,AAPAF^ANAE,・•・四边形AENF的面积等于ANAP的面积,而ANAP的面积是正方形的面积的+,而正方形的面积为4,・■•四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选B.B【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.3. 有3个正方形如图所示放置,阴影部分的面积依次记为S2,则S2等于()A. 1: V2B. 1: 2 【考C. 2: 3D. 4: 9点】正方形的性质.【分析】设小正方形的边长为X,再根据相似的性质求出S 、S2与正方形面积的关系,然后进 行计算即可得出答案.【解答】解:设小正方形的边长为X,根据图形可得:EF_1 AC"?1【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方 形的面积公式,关键是根据题意求出S 八S2与正方形面积的关系.4.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP 二BC,则ZACP 度数是( )正方形ABCDiS 2 1—51正方形ABCD 8ABCD9]2 18X 1 2 § xM : 9; S A DAC 9S 正方形ABCD 18• •S[S 2 =1'△ABC 4••吨s 正方形 • • S[ :s?故选D.A. 45°B. 22.5°C. 67.5°D. 75°【考点】正方形的性质;等腰三角形的性质.【专题】数形结合.【分析】根据正方形的性质可得到ZDBC 二ZBCA 二45°又知BP 二BC,从而可求得ZBCP 的度数, 从而就可求得ZACP 的度数.【解答】解:TABCD 是正方形,ZDBC=ZBCA=45° ,•••BP=BC,・・・ZBCP 二ZBPC 二67. 5° ,ZACP=ZBCP- ZBCA=67. 5° -45° =22. 5° ・故选B.【点评】此题主要考查了正方形的性质,解答本题的关键是掌握正方形的对角线平分对角的性 质,及等腰三角形的性质,难度一般.5.如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边正方形EFGH 的周长为 【分析】由正方形的性质和已知条件得出BC 二CD 二{!=,ZBCD 二90° , CE 二CF 二寺,得出Z\CEF 是等腰直角三角形,由等腰直角三角形的性质得出EF 的长,即可得出正方形EFGH 的周长.【解答】解:•・•正方形ABCD 的面积为1,【考点】正方形的性质./.BC=CD=VT=1, z BCD二90° ,•・・E、F分别是BC、CD的中点/.CE=CF,•••△CEF是等腰直角三角形,/.EF=V2CE=^,故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质, 由等腰直角三角形的性质求出EF的长是解决问题的关键.6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE: EC=2: 1,则线段CH的长是()------------------- DB E CA. 3B. 4 C・ 5 D・ 6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠可得DH二EH,在直角ACEH中,设CH二x,则DH二EH二9-x,根据BE: EC二2: 1 可得CE二3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH二x,贝lj DH=EH=9 - x,•/BE: EC二2: 1, BC二9, .-.CE=-^BC=3,o・••在RtAECH 中,EH2=EC2+CH2,即(9-x)2=32+X2,解得:x二4,即CH二4.故选(B)・B E C【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.7.如图,在正方形ABCD中,Z\ABE和Z\CDF为直角三角形,ZAEB二ZCFD二90° , AE二CF二5, BE二DFP2,则EF的长是()B ------------------------ CA. 7B. 8 C・ 7V2D. 7^3【考点】正方形的性质.【分析】由正方形的性质得出ZBAD= ZABC= ZBCD= ZADC=900 , AB二BC二CD二AD,由SSS证明△ ABE^ACDF,得出ZABE二ZCDF,证出ZABE= ZDAG= ZCDF= ZBCH,由AAS 证明△ ABE^AADG, 得出AE=DG, BE=AG,同理:AE=DG=CF=BH=5, BE=AG=DF=CH=12,得岀EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:T四边形ABCD是正方形,J. ZBAD=ZABC=ZBCD=ZADC=90° , AB二BC二CD二AD,ZBAE+ZDAG=90° ,在AABE 和Z\CDF 中,(AB二CDAE 二CF ,|BE=DF/.AABE^ACDF (SSS),・・・ ZABE二ZCDF,•/ZAEB=ZCFD=90° ,・•・ ZABE+ZBAE二90° ,A ZABE=ZDAG=ZCDF,同理:Z ABE= Z DAG= Z CDF= Z BCH,・・・ ZDAG+ZADG二ZCDF+ZADG二90° , 即ZDGA二90。
人教版九年级上册数学解答题专题训练50题含答案一、解答题1.解方程:2630x x +-=.2.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.【答案】(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.【详解】(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?【答案】杠杆的旋转中心是点O ,旋转角是∵BOB ′(或∵AOA ′)【分析】根据旋转的定义即可得到杠杆绕支点转动撬起重物的旋转中心,旋转角.【详解】解:杠杆绕支点转动撬起重物,杠杆绕点O 旋转,所以杠杆的旋转中心是点 O ,旋转角是∵BOB ′(或∵AOA ′).【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角.4.已知,如图,直线AB 经过点()0,6B ,点()4,0A ,与抛物线22y ax =+在第一象限内相交于点P ,又知AOP 的面积为6.(1)求a 的值;(2)若将抛物线22y ax =+沿y 轴向下平移,则平移多少个单位才能使得平移后的抛物线经过点A .AOP∆的面积∴=,y3y=再把3P所以(2,3)P代入到把(2,3)5.某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.(1)若售价增加x元,则销售量是(______________)个(用含x的代数式表示);(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)6.2022年3月,举世瞩目的北京冬奥会、冬残奥会胜利闭幕.以下是2022年北京冬奥运会会徽—冬梦、冬残奥会会徽—飞跃、冬奥会吉祥物—冰墩墩及冬残奥会吉祥物—雪容融的卡片,四张卡片分别用编号A,B,C,D来表示,这4张卡片背面完全相同,现将这四张卡片背面朝上,洗匀放好.(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为;(2)将A冬梦和C冰墩墩的组合或B飞跃和D雪容融的组合称为“一套”,小明和小红依次从中随机抽取一张卡片(不放回),请你用列表或画树状图的方法求他们抽到的两张卡片恰好一套的概率.7.今年是中国共产党建党100周年,中华人民共和国成立72周年!在国庆前夕,社区便民超市调查了某种水果的销售情况获得如下信息:信息一:进价是每千克12元;信息二:当销售价为每千克27元时,每天可售出120千克;若每千克售价每降低2元,则每天的销售量将增加80千克.根据以上信息解答问题:该超市每天想要获得3080元的销售利润,又要尽可能让顾客得到实惠,求这种水果的销售单价应为多少元.【答案】这种水果的销售单价为19元【分析】设这种水果的销售单价为x 元,则有销售量为()120040x -千克,然后根据利润=销售量×单个利润即可求解.【详解】解:设这种水果的销售单价为x 元,由题意得:8.已知抛物线23y ax bx =++经过点()3,0A 和点()4,3B .(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值). 【答案】(1)243y x x =-+(2)开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-【分析】(1)由条件可知点A 和点B 的坐标,代入解析式可得到关于a 和b 的二元一次方程组,解得a 和b ,可写出二次函数解析式;(2)根据a 的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.【详解】(1)解:将点()3,0A 和点()4,3B 代入23y ax bx =++中,得933016433a b a b ++=⎧⎨++=⎩, 解得:14a b =⎧⎨=-⎩, ∵243y x x =-+(2)解:∵243y x x =-+()221x =--,1a =0>, ∵开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-. 【点睛】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用配方法确定二次函数的顶点坐标和对称轴.9.在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球实验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1)(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.10.(1)2(1)4x-=;(2)2430-+=;x xx x-=.(3)230x-+=;(4)(6)611.解方程:(用适当的方法解方程)(1)2430x x --=(2)2(1)(1)0x x x ---=(3)2542x x =-(4)2)(35)1x x --=(12.我国快递行业迅速发展,经调查,某快递公司今年2月份投递快递总件数为20万件,4月份投递快递总件数33.8万件,假设该公司每月投递快递总件数的增长率相同.(1)求该公司投递快递总件数的月增长率;(2)若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数是否达到45万件?答:若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数不能达到45万件.【点睛】本题主要考查了一元二次方程应用题中的平均增长率问题,如何正确根据题意列出一元二次方程是解题的关键.13.已知关于x的一元二次方程20ax bx c++=(a≠0)的一个根为,则244ac ba-=_____.14.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年1月份某厂家口罩产量为80万只,2月份比1月份增加了25%,4月份口罩产量为196万只.(1)该厂家2月份的口罩产量为______万只;(2)该厂家2月份到4月份口罩产量的月平均增长率是多少?【答案】(1)100(2)40%【分析】(1)用1月份的产量乘以(1+25%)即可求解;(2)设月平均增长率为x,根据题意列出一元二次方程,解方程即可求解.(1)2月份的产量为:80×(1+25%)=100(万只),故答案为:100;(2)设月平均增长率为x,根据题意有:100×(1+x)2=196,解得:x=40%,(负值舍去),故2月份到4月份的平均增长率为40%.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.15.“2019淮安清江浦国际半程马拉松赛”的赛事共有三项:A.“半程马拉松2019”、B.“纪念2019”、C.“爱跑2019”.小明和小丽参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“爱跑2019”项目组的概率为____________;(2)用树状图或列表法求小明和小丽被分配到不同项目组的概率.16.如图,∵ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将∵ABC 向右、向下分别平移1个单位长度和5个单位长度得到∵A 1B 1C 1,请画出∵A 1B 1C 1,并写出点A 1,C 1的坐标;(2)请画出∵ABC 关于原点O 成中心对称的∵A 2B 2C 2.【答案】(1)见解析,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)见解析.【分析】(1)利用点平移的坐标变换规律得出对应点的坐标,描点画出图形即可; (2)根据关于原点对称的点的坐标特征得出对应点的坐标,描点画出图形即可. 【详解】(1)如图,∵A 1B 1C 1为所作,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)如图,∵A 2B 2C 2为所作.【点睛】本题考查坐标与图形变换-平移、坐标与图形变换-旋转,熟练掌握坐标与图形变换的规律,正确得出对应点的坐标是解答的关键. 17.解方程 (1)2430x x -+= (2)()()2323x x -=- 【答案】(1)11x =,23x =. (2)13x =,25x =.【分析】(1)先把方程左边分解因式化为()()130x x --=,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程左边分解因式化为()()350x x --=,再化为两个一次方程,再解一次方程即可.【详解】(1)解:2430x x -+=, ∵()()130x x --=, ∵10x -=或30x -=, 解得:11x =,23x =. (2)()()2323x x -=-, 移项得:()()23230x x ---=, ∵()()350x x --=, ∵30x -=,50x -=, 解得:13x =,25x =.【点睛】本题考查的是一元二次方程的解法,掌握“利用因式分解的方法解一元二次方程”是解本题的关键.18.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.由表可知,共有12种等可能结果,其中小明被抽中的有6种结果,所以小明被抽中的概率为:61 122.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图1所示,是一块边长为2的正方形瓷砖,其中瓷砖的阴影部分是半径为1 的扇形.请你用这种瓷砖拼出两种不同的图案,使拼成的图案即是轴对称图形又是中心对称图形,并把它们分别画在下面边长为4的正方形中(要求用圆规画图).图1图2图3【答案】通过对轴对称图形分析作图【详解】试题分析:图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形既轴对称图形又中心对称的图形如图所示考点:旋转作图点评:本题考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图20.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形111A B C ∆,直接写出点1A 的坐标;(2)请画出△ABC 绕原点O 顺时针旋转90∘的图形222A B C ∆,直接写出点2A 的坐标; (3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.【答案】(1)1(3,1)A -,作图见解析,(2)2(1,1)A -,作图见解析,(3)(2,0)P ,作图见解析.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2)找出点A 、B 、C 绕原点O 顺时针旋转90°的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P . 【详解】解:(1)如图所示:点1A 的坐标(-3,1); (2)如图所示:点2A 的坐标(1,-1);(3)找出A 的对称点A′(1,-1), 连接BA′,与x 轴交点即为P ;则',PA PA = ('2,A A 重合),'',PA PB PA PB BA ∴+=+=则P 即为所求作的点,如图所示:点P 坐标为(2,0).【点睛】本题考查了利用平移,旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.21.已知关于x 的方程2390x x k --+=的两个实根为1x ,2x .且满足122x x =-,试求这个方程的两个实根及k 的值.22.嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:(下页) 解:由于a ≠0,方程ax 2+bx +c =0变形为: x 2+b ax =﹣ca ,…第一步x 2+b ax +(2b a )2=﹣c a +(2ba )2,…第二步(x +2b a )2=2244b ac a -,…第三步x +2b a =(b 2﹣4ac ≥0),…第四步x 1…第五步(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2﹣4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的求根公式是 . (2)用配方法解方程:2x 2﹣4x +1=0.23.如图,AB 是∵O 的直径,点D 在∵O 上,∵DAB=45°,BC∵AD ,CD∵AB .(1)判断直线CD 与∵O 的位置关系,并说明理由;(2)若∵O的半径为1,求图中阴影部分的面积(结果保留π).24.如图,∵O是△ABC的外接圆,AB是∵O的直径,延长AB到点E,连接EC,使得∵BCE=∵BAC(1)求证:EC是∵O的切线;(2)过点A作AD∵EC的延长线于点D,若AD=5,DE=12,求∵O的半径.25.如图O 是ABD △的外接圆,AB 为直径,点C 是AD 的中点,连结,OC BC 分别交AD 于点F ,E .(1)求证:2ABD C ∠=∠.(2)若10,8AB BC ==,求BD 的长. 【答案】(1)见解析;(2)2.8【分析】(1)由圆周角定理得出ABC CBD ∠=∠,由等腰三角形的性质得出ABC C ∠=∠,则可得出结论;(2)连接AC ,由勾股定理求出6AC =,得出222256(5)OF OF -=--,求出 1.4OF =,则可得出答案.【详解】解:(1)证明:C 是AD 的中点, ∴AC DC =,ABC CBD ∴∠=∠,OB OC =, ABC C ∴∠=∠,ABC CBD C ∴∠=∠=∠,2ABD ABC CBD C ∴∠=∠+=∠;(2)连接AC ,AB 为O 的直径,C 是AD OC ∴⊥2OA OF ∴-25OF ∴- 1.4OF ∴=又O 是AB 2BD OF ==【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系定理,勾股定理,以及三角形的外接圆与圆心,熟练掌握性质及定理是解决本题的关键.26.用公式法解方程:210x x --=.【答案】x =27.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当010x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当1012x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【答案】(1)25100(010),500(1012)y x x x y x =-+≤≤=<≤;(2)排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)2个【分析】(1)当010x ≤≤时,y 可看作是x 的二次函数,由于抛物线的顶点为(10,500),设y 与x 之间的函数解析式为:y =a (x -10)2+500,把O 点的坐标(0,0)代入即可求得a ;当1012x <≤时,累计人数保持不变,问题即可解决;(2)设第x 分钟时的排队人数为w 人,到校人数减去检测人生,即可得到w 与x 的函数解析式,根据二次函数解析式可求得其最大值=180;要全部学生都完成体温检测,根据题意得500400x -=,求解即可;(3)设从一开始就应该增加m 个检测点,由“在8分钟内让全部考生完成体温检测”,列出不等式,可求解.【详解】解:(1)当010x ≤≤时,设y 与x 之间的函数关系式为:2(10)500y a x =-+,把(0,0)代入上式得:20(010)500a =-+,解得:5a =-,故函数关系式为:25(10)500(010)y x x =--+≤≤当1012x <≤时,累计人数保持不变,即y =500.∵25100(010),500(1012)y x x x y x =-+≤≤=<≤(2)设第x 分钟时的排队等待人数为w 人,由题意可得:40w y x =-∵010x ≤≤时,2225100405605(6)180w x x x x x x =-+-=-+=--+,∵当6x =时,w 的最大值180=,∵当1012x <≤时,50040,w w x =-随x 的增大而减小,20100w ∴≤<,∵排队人数最多时是180人,要全部学生都完成体温检测,根据题意得:500400x -=解得:12.5x =答:排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m 个检测点,28.已知:如图.∵ABC和∵DEC都是等边角形.D是BC延长线上一点,AD与BE 相交于点P.AC、BE相交于点M,AD、CE相交于点N.(1)在图∵中,求证:AD=BE;(2)当∵CDE绕点C沿逆时针方向旋转到图∵时,∵APB=.【答案】(1)见解析(2)60°【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∵ACB=∵ECD=60°,求出∵BCE=∵ACD,根据SAS推出两三角形全等即可;(2)证明∵ACD∵∵BCE(SAS),得到AD=BE,∵DAC=∵EBC,根据三角形的内角和定理,即可解答.【详解】(1)证明:∵∵ABC和∵CDE为等边三角形,∵AC=BC,CD=CE,∵BCA=∵DCE=60°,∵∵ACD=∵BCE,在∵ACD和∵BCE中,AC=BC,∵ACD=∵BCE,CD=CE,∵∵ACD∵∵BCE(SAS),∵AD=BE;(2)解:∵∵ABC和∵CDE都是等边三角形,∵AC=BC,CD=CE,∵ACB=∵DCE=60°,∵∵ACB +∵BCD =∵DCE +∵BCD ,即∵ACD =∵BCE ,在∵ACD 和∵BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ACD ∵∵BCE (SAS ),∵∵DAC =∵EBC , ∵∵AMP =∵BMC ,∵∵APB =∵ACB =60°.故答案为:60°.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.29.图1,图2是小明家厨房的效果图和装修平面图(长方形),设计师将厨房按使用功能分为三个区域,区域∵摆放冰箱,区域∵为活动区,区域∵为台面区,其中区域∵、区域∵为长方形.现测得FG 与墙面BC 之间的距离等于HG 与墙面CD 之间的距离,比EF 与墙面AB 之间的距离少0.1m .设AE 为x (m ),回答下列问题:(1)用含x 的代数式表示FG ,则FG = m .(2)当AE 为何值时,区域∵的面积能达到2.34m 2?(3)测得JF =0.35m ,在(2)的条件下,在下列几款冰箱中选择安装,要求机身左右和背面与墙面之间的距离至少预留20mm 的散热空间,则选择购买 款冰箱更合适.【答案】(1)3.2-2x(2)0.7(3)B【分析】(1)用含x 的代数式表示出DH 的长,根据FG =AD -AE -DH ,代入化简,可表示出FG 的长.(2)用含x的代数式表示出GH的长,再根据长方形的面积=长×宽,可得到关于x的方程,解方程求出x的值.(3)将x的值代入计算求出EF,EJ的长,根据要求机身左右和背面与墙面之间的距离至少预留20mm的散热空间,利用A,B,C三款冰箱的尺寸,可得答案.【详解】(1)3100mm=3.1m,1900mm=1.9m∵AE=xm,DH=(x-0.1)m,∵FG=AD-AE-DH=3.1-x-(x-0.1)=3.2-2x故答案为:3.2-2x(2)解:GH=1.9-(x-0.1)=(2-x)m,∵(3.2-2x)(2-x)=2.34解之:x1=0.7,x2=2.9(舍去)∵x=0.7,∵当AE=0.7时,区域∵的面积能达到2.34m2.(3)由(2)得EF=GH=2-x=2-0.7=1.3mEJ=EF-JF=1.3-0.35=0.95m,EJ=950mm,AE=0.7=700mm,950-2×20=910mm,∵910>908且700-20>677,∵应该选择B冰箱更合适.故答案为:B.【点睛】一元二次方程的实际应用-几何问题,解题的关键是读懂题意,看清图形,根据题意设未知数,根据等量关系列一元二次方程.30.我们把能二等分多边形面积的直线称为多边形的“好线”.请用无刻度的直尺画出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个矩形组成(保留画图痕迹,不写画法)【答案】见解析【分析】图(1)过平行四边形的中心O画直线MN即可,图(2)过平行四边形和矩形的中心O,O′画直线MN即可.【详解】解:如图(1),直线MN即为所求(答案不唯一).如图(2),直线MN即为所求.【点睛】本题考查了利用中心对称图形的性质进行作图及平行四边形和矩形的性质,掌握中心对称图形的性质是解题的关键.31.幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:()1猜“是大于5的数”或“不是大于5的数”;()2猜“是3的倍数”或“不是3的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?254>>399∵为了尽可能获胜,我会选猜法(【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.32.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为_____.33.在平面直角坐标系xOy中,已知抛物线22=-+-+-(m是常数).y x mx m m22(1)求该抛物线的顶点坐标(用含m 代数式表示);(2)如果该抛物线上有且只有两个点到直线1y =的距离为1,直接写出m 的取值范围;(3)如果点1(,)A a y ,2(2,)B a y +都在该抛物线上,当它的顶点在第四象限运动时,总有12y y >,求a 的取值范围. 【答案】(1)抛物线的顶点坐标(m ,m -2);(2)2<m <4;(3)a ≥1.【分析】(1)将二次函数解析式化为顶点式求解.(2)由抛物线上有且只有两个点到直线1y =的距离为1,及抛物线开口向下可得顶点在直线y =0和直线y =2之间,进而求解.(3)由顶点在第四象限可得m 的取值范围,由y 1<y 2可得点B 到对称轴距离大于点A 到对称轴距离,进而求解.(1)∵22222()2y x mx m m x m m =-+-+-=--+-,∵抛物线的顶点坐标(m ,m -2);(2)∵抛物线开口向下,顶点坐标为(m ,m -2),∵0<m -2<2,解得2<m <4;(3)∵抛物线顶点在第四象限,∵020m m ⎧⎨-⎩><,解得0<m <2,∵抛物线开口向下,对称轴为直线x =m 且y 1>y 2,∵2(2,)B a y +在对称轴右侧,∵a +2-m >|a -m |,即a +2-m >a -m 或a +2-m >m -a ,解得a >m -1,∵0<m <2,∵a ≥1.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.34.解方程.21122x x --=-35.如图,半圆O 的直径AB=18,将半圆O 绕点B 顺针旋转45°得到半圆O′,与AB 交于点P .(1)求AP 的长.(2)求图中阴影部分的面积(结果保留π)36.某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m= ,n= ;(2)此次调查共抽取了多少名学生?(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?12337.操作发现:(1)数学活动课上,小明将已知△ABO(如图1)绕点O旋转180°得到△CDO(如图2).小明发现线段AB与CD有特殊的关系,请你写出:线段AB与CD的关系是.(2)连结AD(如图3),观察图形,试说明AB+AD>2AO.(3)连结BC(如图4),观察图形,直接写出图中全等的三角形:(写出三对即可).【答案】(1)AB=CD,AB//CD;(2)证明见解析;(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB【详解】分析:(1)根据图形旋转的性质即可得出结论;(2)根据三角形三边不等关系得AD+CD>AC,再由旋转的性质得AC=2AO,从而得出结论;(3)根据三角形全等的判定条件可得出结论.详解:(1)根据旋转的性质可得:ΔABO≅ΔCDO,∵AB=CD,∵ABO=∵CDO,∵AB//CD,故线段AB与CD的关系是:AB=CD,AB//CD;(2)在ΔACD中,AD+CD>AC又因为AB=CD,AO=OC所以AB+AD>2AO(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB.点睛:本题考查了旋转的性质,全等三角形的判定和性质等知识点.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.38.某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7∵这组成绩的中位数是_________,平均数是________;∵该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比∵中的平均数大,则丙同学“耐久跑”的成绩为________;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩39.如图,AC是∵O的弦,过点O作OP∵OC交AC于点P,在OP的延长线上取点B,使得BA=BP.(1)求证:AB是∵O的切线;(2)若∵O的半径为4,PC=AB的长.AB=.对称的点为B.(1)求点B的坐标;∠度数.(2)求AOB41.如图,在平面直角坐标系中,Rt∵ABC的顶点分别是A(﹣3,2)B(0,4)C (0,2).(1)将∵ABC以点C为旋转中心旋转180°,画出旋转后对应的∵A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.42.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)∵求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;∵求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?【答案】(1)∵y=﹣10x+1000;∵w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w (单位:元) 与售价x (单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题; (3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)∵由题意可得:y =500﹣(x ﹣50)×10=﹣10x +1000; ∵w =(x ﹣40)[﹣10x +1000]=﹣10x 2+1400x ﹣40000; (2)设销售单价为a 元,210140040000800040(101000)10000a a x ⎧-+-=⎨-+≤⎩, 解得,a =80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∵当x =70时,y 取得最大值,此时y =9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.43.如图所示,直角梯形ABCD 中,ABDC ,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的全面积.【答案】68π【分析】所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和.【详解】解:∵Rt∵AOD 中,AO =7-4=3cm ,OD =4cm , ∵AD 2=42+32=25 ∵AD =5cm ,∵所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2.故它的全面积为68πcm2.【点睛】本题考查圆锥的计算和圆柱的计算,得到几何体的形状是解决本题的突破点,需掌握圆锥、圆柱侧面积的计算公式.44.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.∵求从袋中摸出一个球是黄球的概率;∵现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?。
中考数学九年级专题训练50题含答案_一、单选题1.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .B .C .D .12.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为x ,则得方程( ) A .()2001722x -=⨯ B .()22001%72x -= C .()2200172x -=D .220072x =3.如图,已知BD 与CE 相交于点A ,DE BC ∥,如果348AD AB AC ===,,,那么AE 等于( )A .247B .1.5C .14D .64.如图,CD 是⊙O 的直径,A ,B 是⊙O 上的两点,若15ABD ∠=°,则 ⊙ADC 的度数为( )A .55°B .65°C .75°D .85°5.一元二次方程()()()221211x x x --+=的解为( ) A .2x = B .121,12x x =-=-C .121,22x x ==D .121,12x x ==-6.如图,在Rt ABC 中,90C ∠=︒,10AB =,8AC =,D 是AC 上一点,5AD =,DE AB ⊥,垂足为E ,则AE =( )A .2B .3C .4D .57.如图,抛物线211242y x x =--与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线MN 平行于x 轴,与抛物线相交于M ,N 两点,则线段MN 的长为( )AB C .D .8.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( )A .B .C .D .9.如图,O 中,弦AB AC ⊥,4AB =,2AC =,则O 直径的长是( ).A .B .CD 10.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1B .3或1C .3-或1D .3或1-11.2022年,某省新能源汽车产能达到30万辆.到了2024年,该省新能源汽车产能将达到41万辆,设这两年该省新能源汽车产能的平均增长率为x .则根据题意可列出的方程是( ) A .()301241x +=B .()230141x += C .()()23030130141x x ++++=D .()23030141x ++=12.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( ) A .134B .154C .238D .25813.下列说法正确的是( )A .了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B .若一组数据2、2、3、4、4、x 的众数是2,则中位数是2或3C .一组数据2、3、3、5、7的方差为3.2D .“面积相等的两个三角形全等”这一事件是必然事件 14.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上B .今年夏天马鞍山不会下雪C .随意掷两枚质地均匀的骰子,朝上的点数之和为1D .库里罚球投篮3次,全部命中15.如图是二次函数2(1)2y a x =++图象的一部分,则关于x 的不等式2(1)20a x ++>的解集是( )A .x<2B .x>-3C .-3<x<1D .x<-3或x>116.已知抛物线y =ax 2+bx +3中(a ,b 是常数)与y 轴的交点为A ,点A 与点B 关于抛物线的对称轴对称,二次函数y =ax 2+bx +3中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是( )A .抛物线的对称轴是x =1 B .当x =2时,y 有最大值-1C .当x <2时,y 随x 的增大而增大D .点A 的坐标是(0,3)点B 的坐标是(4,3)17.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( ) A .0B .﹣2C .1D .318.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =++<交x 轴于A ,B 两点(B 在A 左侧),交y 轴于点C .且CO AO =,分别以,BC AC 为边向外作正方形BCDE ,正方形ACGH .记它们的面积分别为12,S S ,ABC 面积记为3S ,当1236S S S +=时,b 的值为( )A .12-B .23-C .34-D .43-19.将方程()()212523x x x x -=--化为一般形式后为( ) A ..2x -8x-3=0 B .9.2x +12x-3=0 C .2x -8x+3=0D .9.2x -12x+3=020.如图,抛物线y=14(x+2)(x ﹣8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D .下列结论:⊙抛物线的最小值是-8;⊙抛物线的对称轴是直线x=3;⊙⊙D 的半径为4;⊙抛物线上存在点E ,使四边形ACED 为平行四边形;⊙直线CM 与⊙D 相切.其中正确结论的个数是( )A .5B .4C .3D .2二、填空题21.已知反比例函数1ky x-=,每一象限内,y 都随x 的增大而增大,则k 的值可以是(写出一个即可)_____.22.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).23.如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.24.若二次函数261(0)y mx mx m =-+>的图象经过A (2,a ),B (﹣1,b ),C (5,c )三点,则a ,b ,c 从小到大排列是_____.25.如图,AB 是O 的直径,点M 在O 上,且不与A 、B 两点重合,过点M 的切线交AB 的延长线于点C ,连接AM ,若⊙MAO=27°,则⊙C 的度数是______.26.如图,在平面直角坐标系中,点E 在x 轴上,E 与两坐标轴分别交于A B C D 、、、四点,已知()()6,0,2,0A C -,则B 点坐标为___________27.请写出一个以2和-5为根的一元二次方程:______________________. 28.已知ab =2,那么3232a b a b-+=______.29.二次函数2y x x 2=+-的图象与x 轴有______个交点. 30.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 31.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km32.皮影戏中的皮影是由________投影得到.33.计算:011(2019)12sin 45()3π---+=____.34.如图,在Rt △ABC 中,⊙C =90°.△ABC 的内切圆⊙O 切AB 于点D ,切BC 于点E ,切AC 于点F ,AD =4,BD =6,则Rt △ABC 的面积=_____.35.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为____cm 2.36.若一个圆锥的底面积为16πcm 2,母线长为12cm ,则该圆锥的侧面积为_____. 37.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.38.如图(1),在Rt ABC △中,=90ACB ∠︒,点P 以每秒1cm 的速度从点A 出发,沿折线AC CB -运动,到点B 停止,过点P 作PD AB ⊥,垂足为D ,PD 的长()y cm 与点P 的运动时间()x s 的函数图象如图(2)所示,当点P 运动5s 时,PD 的长是___________.39.在平面直角坐标系中,经过反比例函数ky x=图象上的点A (1,5)的直线2y x b =-+与x 轴,y 轴分别交于点C ,D ,且与该反比例函数图象交于另一点B .则BC AD +=______.三、解答题40.解方程:2(2)9x -=. 41.已知二次函数y=﹣x 2+2x+3(1)在如图所示的坐标系中,画出该函数的图象 (2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?42.在直角坐标平面内,直线y =12x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣212x +bx +c 经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果⊙ABE 的面积与⊙ABC 的面积之比为4:5,求⊙DBA 的余切值;(3)过点D 作DF ⊙AC ,垂足为点F ,联结CD .若⊙CFD 与⊙AOC 相似,求点D 的坐标.43.如图,已知直线2y x =与双曲线ky x=的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求k 的值和B 点坐标;(2)设点()(),00P m m ≠,过点P 作平行于y 轴的直线,交直线2y x =于点C ,交双曲线ky x=于点D .若POC △的面积大于POD 的面积,结合图象,直接写出m 的取值范围.44.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆. (1)若该小区家庭轿车的年平均增长量都相同, 请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.45.为了测量某教学楼CD 的高度,小明在教学楼前距楼基点C ,12米的点A 处测得楼顶D 的仰角为50°,小明又沿CA 方向向后退了3米到点B 处,此时测得楼顶D 的仰角为40°(B 、A 、C 在同一水平线上),依据这些数据小明能否求出教学楼的高度?若能求,请你帮小明求出楼高;若不能求,请说明理由. 2.24)46.(1)用配方法解方程:x2﹣2x﹣1=0.(2)解方程:2x2+3x﹣1=0.(3)解方程:x2﹣4=3(x+2).47.梯形ABCD中DC⊙AB,AB =2DC,对角线AC、BD相交于点O,BD=4,过AC的中点H作EF⊙BD分别交AB、AD于点E、F,求EF的长.48.计算:3-+;⊙222602cos458︒+︒+︒sin45cos60tan3049.小明根据学习函数的经验,对函数y=|x2﹣2x|﹣2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:(1)在给定的平面直角坐标系中;画出这个函数的图象,⊙列表,其中m=,n=.⊙描点:请根据表中数据,在如图所示的平面直角坐标系中描点:⊙连线:画出该函数的图象.(2)写出该函数的两条性质:.(3)进一步探究函数图象,解决下列问题:⊙若平行于x轴的一条直线y=k与函数y=|x2﹣2x|﹣2的图象有两个交点,则k的取值范围是;⊙在网格中画出y=x﹣2的图象,直接写出方程|x2﹣2x|﹣2=x﹣2的解为.参考答案:1.A【详解】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.2.C【分析】设调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x ,则:2200(1)72.x -=故选:C .【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.3.D【分析】证明ABC ADE △△∽ ,由相似三角形的性质得出AB AC AD AE=,则可得出答案. 【详解】解:⊙DE BC ∥,⊙ABC ADE △△∽, ⊙AB AC AD AE =, 即483AE =, ⊙6AE =,故选:D .【点睛】本题考查了相似三角形的判定与性质,熟记性质是解题的关键.4.C【分析】根据圆周角定理可得⊙ACD =15°,再由直径所对的圆周角是直角,可得⊙CAD =90°,即可求解.【详解】解:⊙⊙ACD =⊙ABD ,15ABD ∠=°,⊙⊙ACD =15°,⊙CD 是⊙O 的直径,⊙⊙CAD =90°,⊙⊙ADC =90°-⊙ACD =75°.故选:C【点睛】本题主要考查了圆周角定理,熟练掌握在同圆(或等圆)中,同弧(或等弧)所对的圆周角相等,直径所对的圆周角是直角是解题的关键.5.C【分析】根据因式分解法解一元二次方程,即可求解.【详解】解:()()()221211x x x --+= ()()212110x x x ----=,()()2120x x --=, 解得121,22x x ==, 故选C .【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 6.C【分析】先证明⊙ADE ⊙⊙ABC ,得出对应边成比例,即可求出AE 的长.【详解】解:⊙ED ⊙AB ,⊙⊙AED =90°=⊙C ,⊙⊙A =⊙A ,⊙⊙ADE ⊙⊙ABC , ⊙AD AE AB AC =,即5108AE =, 解得:AE =4.故选:C .【点睛】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.7.D【分析】利用二次函数图象上点的坐标特征求出点A 、B 、C 、D 的坐标,由点A 、D 的坐标,利用待定系数法求出直线AD 的解析式,利用一次函数图象上点的坐标特征求出点E的坐标,再利用二次函数图象上点的坐标特征得出点M 、N 的坐标,进而可求出线段MN 的长.【详解】当0y =时,2112042x x --=, 解得:1224x x =-=,,⊙点A 的坐标为(-2,0);当0x =时,2112242y x x =--=-, ⊙点C 的坐标为(0,-2);当2y =-时,2112242x x --=-, 解得:1202x x ==,,⊙点D 的坐标为(2,-2),设直线AD 的解析式为()0y kx b k =+≠,将A(-2,0),D(2,-2)代入y kx b =+,得:2022k b k b -+=⎧⎨+=-⎩,解得:121k b ⎧=-⎪⎨⎪=-⎩, ⊙直线AD 的解析式为112y x =--, 当0x =时,1112y x =--=-, ⊙点E 的坐标为(0,1-).当1y =-时,2112142x x --=-,解得:1211x x ==⊙点M 、N 的坐标分别为(1,-1)、(1-1),⊙MN=(11=故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点M 、N 的坐标是解题的关键.8.A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A 不可能,即不会是梯形.故选A .【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9.A【分析】连接BC ,由90BAC ∠=︒可知BC 为直径,利用勾股定理求解即可.【详解】解:连接BC ,如图:⊙AB AC ⊥,⊙90BAC ∠=︒,⊙BC 为直径,由勾股定理可得:BC =故选:A【点睛】此题考查了圆的有关性质,勾股定理,解题的关键是熟练掌握圆的相关知识. 10.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果.【详解】解:⊙A 、B 两点关于y 轴对称,⊙223x x +=,⊙()()310x x +-=,解得3x =-或1,故选:C .【点睛】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.11.B【分析】设这两年该省新能源汽车产能的平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】解:设这两年该省新能源汽车产能的平均增长率为x ,根据题意得,()230141x +=, 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.12.A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答. 【详解】 抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.13.C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得.【详解】解:A 、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B 、因为一组数据2、2、3、4、4、x 的众数是2,所以2x =,将这组数据按从小到大进行排序为2,2,2,3,4,4,则第三个数和第四个数的平均数为中位数, 所以中位数是23 2.52+=,则此项说法错误,不符题意; C 、这组数据的平均数为2335745++++=, 则方差为222221(24)(34)(34)(54)(74) 3.25⎡⎤⨯-+-+-+-+-=⎣⎦,此项说法正确,符合题意;D 、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C .【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键.14.C【分析】事件的发生的概率为0,即为一定不可能发生的事件.【详解】解:C 中事件中两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了不可能事件的定义,熟悉掌握概念是解决本题的关键.15.C【分析】直接根据二次函数的图像和性质即可得出结论.【详解】二次函数y =a(x +1)2+2的对称轴为x =﹣1,⊙二次函数y =a(x +1)2+2与x 轴的一个交点是(﹣3,0),⊙二次函数y =a(x +1)2+2与x 轴的另一个交点是(1,0),⊙由图像可知关于x 的不等式a(x +1)2+2>的解集是﹣3<x <1.故选C.【点睛】本题主要考查二次函数的图像与性质,找出y=a(x+1)2+2与x轴的两个交点是解本题的关键.16.D【分析】利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,然后根据x=-1时,y=8,判断增减性,再利用x=0时,y=3,结合对称轴,即可得出A、B点坐标.【详解】)⊙当x=1和3时,y=0,⊙抛物线的对称轴是直线x=2,故A选项错误;又⊙x=-1时,y=8,⊙x<2时,y随x增大而减小;x>2时,y随x增大而大,故C选项错误;⊙x=2时,y有最小值,故B选项错误;⊙x=0时,y=3,则点A(0,3),⊙点A与点B关于抛物线的对称轴对称,⊙B点坐标(4,3),⊙A、B、C错误,D正确.故选:D .【点睛】此题主要考查了二次函数的性质,由表格数据获取信息是解题的关键.17.D【分析】先找出二次函数y=2x2﹣2x+3的对称轴为直线x=12,求得a+b=1,再把x=1代入y=2x2﹣2x+3即可.【详解】解:⊙当x=a或x=b(a≠b)时,二次函数y=2x2﹣2x+3的函数值相等,⊙以a、b为横坐标的点关于直线x=12对称,则122a b+=,⊙a+b=1,⊙x=a+b,⊙x=1,当x=1时,y=2x2﹣2x+3=2﹣2+3=3,故选D.【点睛】题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质是解题的关键.18.B【分析】先确定(0,3)C 得到3OC OA ==,利用正方形的性质,由1236S S S +=得到2222163(3)2OC OB OC OA OB +++=⨯⨯⨯+,求出OB 得到0()9,B -,于是可设交点式(9)(3)y a x x =+-,然后把(0,3)C 代入求出a 即可得到b 的值.【详解】解:当0x =时,233y ax bx =++=,则(0,3)C ,3OC OA ∴==,(3,0)A ∴,1236S S S +=,2222163(3)2OC OB OC OA OB ∴+++=⨯⨯⨯+, 整理得290OB OB -=,解得9OB =,(9,0)B ∴-,设抛物线解析式为(9)(3)y a x x =+-,把(0,3)C 代入得9(3)3a ⨯⨯-=,解得19a =-, ∴抛物线解析式为1(9)(3)9y x x =-+-, 即212393y x x =--+,23b ∴=-. 故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和正方形的性质.19.C【分析】通过去括号、移项、合并同类项将已知方程转化为一般形式.【详解】解:由原方程,得2x-4x 2=10x-5x 2-3,则x 2-8x+3=0.故选C .【点睛】本题考查了一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.20.D【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴.⊙D 的半径计算,主要是计算AB ,将y=0,带入就可以解得.【详解】解:根据抛物线的解析式y=14(x+2)(x ﹣8)将其化为一般式可得213442y x x =-- ⊙错误,抛物线的最小值是2134(4)25421444⎛⎫⨯⨯-- ⎪⎝⎭=-⨯ ;⊙正确,抛 物线的对称轴是323124--=⨯ ;⊙错误,根据y=14(x+2)(x ﹣8)可得,要使y=0,则 x=-2或8,因此(2,0)A - ,(8,0)B ,可得10AB = ,所以⊙D 的半径的半径为5;⊙错误,抛物线上不存在点E ,使四边形ACED 为平行四边形;⊙正确,直线CM 与⊙D 相切 故选D【点睛】本题主要考查二次函数的性质,二次函数的最值,对称轴,交点坐标一直是考试的重点内容,必须熟练的掌握.21.2【分析】根据反比例函数的性质,每一象限内,y 都随x 的增大而增大,则1-k<0解出k 值范围,取合适的数即可.【详解】⊙反比例函数1k y x -=,每一象限内,y 都随x 的增大而增大, ⊙1-k<0,⊙k>1,取k=2,满足题意,故答案为:2.【点睛】本题考查了反比例函数的增减性,理解反比例函数的增减性是解题的关键. 22.⊙、⊙、⊙【详解】本题考查的是由三视图判断几何体依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可. ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故答案为⊙⊙⊙.23【分析】连接BC,连接CO并延长CO交AB于点H,切线性质定理得⊙OCD=90°,CD AB得CH⊙AB,由垂径定理可得CH垂直平分AB,可推出ABC为等边三角形,进//而得出答案.【详解】解:如图,连接BC,连接CO并延长CO交AB于点H,⊙,直线CD与O相切于点C,⊙OC⊙CD⊙⊙OCD=90°⊙//CD AB⊙⊙AHC=⊙OCD=90°⊙CH⊙AB⊙AH=BH⊙CH垂直平分AB⊙AC=BC=⊙AB AC⊙AC=BC=AB⊙ABC为等边三角形,⊙60A∠=︒,⊙cos⊙A【点睛】本题考查垂径定理、切线的性质定理等,熟练掌握垂径定理是解题的关键.24.a<c<b【分析】抛物线开口向上,可根据二次函数的性质拿出对称轴,再根据A,B,C三点横坐标到对称轴的距离判断大小关系.【详解】由题意对称轴x=-62m m-=3, A 点横坐标到对称轴的距离为3-2=1B 点横坐标到对称轴的距离为3-(-1)=4C 点横坐标到对称轴的距离为5-3=2⊙4>2>1⊙b >c >a,从小到大排列为a <c <b.【点睛】考察二次函数的性质,根据横坐标到对称轴的距离即可判断大小关系,不需要求出具体坐标.25.36【详解】如图:连接MO,因为M 为切点,所以OM⊙MC, ⊙OMC=90°,因为OA=OM,所以⊙MAO=⊙OMA= 27°,所以⊙MOC=54°,所以⊙C=90°-54°=36°26.(0,-【分析】根据A 、C 的坐标得到圆的半径长和OE 长,利用勾股定理求出OB 的长,得到点B 坐标.【详解】解:如图,连接BE ,⊙()6,0A ,()2,0C -,⊙8AC =,4BE CE ==,2OC =,⊙422OE =-=,⊙在Rt OBE 中,OB =⊙(0,B -.故答案是:(0,-.【点睛】本题考查圆的性质和平面直角坐标系,解题的关键是根据已知点坐标得到线段长,结合几何的性质求点坐标.27.答案不唯一,如【详解】试题分析:方程的根的定义:方程的根就是使方程左右两边相等的未知数的值. 答案不唯一,如.考点:一元二次方程的根的定义28.12 【分析】由已知可得a=2b ,代入式子进行计算即可.【详解】⊙a b=2, ⊙a=2b , ⊙3a 2b 3a 2b -+=6262b b b b -+=12, 故答案为12. 【点睛】本题考查了比例的性质,得出a=2b 是解题的关键.29.两【分析】二次函数2y x x 2=+-的图象与x 轴的交点个数,即是2x x 2=0+-解的个数.【详解】令2x x 2=0+-,即()()120x x -+=解得x=1或x=-2,二次函数2y x x 2=+-的图象与x 轴有两个交点.故答案为两【点睛】此题考查抛物线与坐标轴的交点,解题关键在于使函数值等于0.30.<【分析】根据反比例函数的性质即可解答.【详解】当x=2时,632y==,⊙k=6时,⊙y随x的增大而减小⊙x>2时,y<3故答案为<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.31.6.【分析】过点C作CE⊙BD于E构造直角三角形,由方位角确定⊙ECD=60°,在Rt⊙CED 中利用三角函数AB=CD•cos⊙ECD即可.【详解】过点C作CE⊙BD于E,由湖的南,北两端A和B⊙⊙EBA=⊙BAC=90º,又⊙BEC=90º则四边形ABCE为矩形,⊙AB=CE⊙点D位于点C的北偏东60°方向上,⊙⊙ECD=60°,⊙CD=12km,在Rt⊙CED中,⊙CE=CD•cos⊙ECD=12×12=6km,⊙AB=CE=6km.故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.32.中心【分析】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【详解】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【点睛】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.33.3【分析】原式第一项利用零指数幂法则计算,第二项根据绝对值的代数意义去绝对值符号,第三项代入特殊角三角函数值计算,第四项利用负整数指数幂法则进行计算,最后进行加减运算即可得到结果.【详解】解:011(2019)12sin 45()3π-︒--+=123-+=13=3【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.24【分析】设内切圆半径为r ,根据内切圆的性质和勾股定理求出r 即可.【详解】设内切圆半径为r,则OE=OF=OD=r易知BD=BE=6,AD=AF=4⊙Rt△ABC中,AC2+BC2=(4+r)2+(6+r)2=AB2=100解得r=2,则AC=6,BC=8⊙S△ABC=24【点睛】本题考查的是三角形,熟练掌握熟练掌握三角形的内切圆是解题的关键. 35.16π.【分析】根据大圆的弦AB与小圆相切于点C,运用垂径定理和勾股定理解答.【详解】设AB切小圆于点C,连接OC,OB,⊙AB切小圆于点C,⊙OC⊙AB,⊙BC=AC=12AB=12×8=4,⊙Rt⊙OBC中,OB2=OC2+BC2,即OB2-OC2= BC2=16,⊙圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=16π(cm2).故答案为:16π.【点睛】本题考查了圆的切线,熟练掌握圆的切线性质定理,垂径定理和勾股定理是解决此类问题的关键.36.48πcm2【分析】根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.【详解】解:⊙圆锥的底面面积为16πcm2,⊙圆锥的半径为4cm,这个圆锥的侧面积为:212412482cm ππ⨯⨯⨯= 故答案为:48πcm 2.【点睛】本题考查了圆锥的计算,解题的关键是根据圆锥的底面面积得出圆锥的半径.37.-【分析】作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,⊙AOD=60°,求出点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -, ⊙线段OA 绕点О按顺时针方向旋转60︒得到线段,OD⊙OA=OD=m ,⊙AOD=60°, ⊙1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,⊙点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭, ⊙点B 、D 都在反比例函数()0k y k x=≠的图象上,⊙1322m m -=, 解得124,0x x ==(不合题意,舍去),⊙点B 坐标为(-,⊙4k =--故答案为:-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.38.1.2cm【分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sinB 的值,可求出PD .【详解】解:由题图(2)可得3AC =cm ,4BC =cm ,5AB ∴=cm. 当5x =时,点P 在BC 边上,⊙5AC CP +=cm ,2BP AC BC AC CP ∴=+--=,在Rt ABC △中,3sin 5AC B AB ==, 在Rt PBD △中, 36sin 2 1.255PD BP B ∴=⋅=⨯==(cm ).【点睛】此题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC 、BC 的长度.39.【分析】先分别求出k ,b 的值得到函数解析式,得到点C ,D 的坐标,勾股定理求出CD 及AB 的长,即可得到答案. 【详解】解:将点(1,5)代入k y x =,得k =5,⊙5y x=, 将点(1,5)代入y =-2x +b ,得-2+b =5,解得b =7,⊙y =-2x +7,当527x x=-+时,解得x =1或x =2.5, 当x =2.5时,y =2,⊙B (2.5,2),令y =-2x +7中x =0,得y =7;令y =0,得x =3.5,⊙C (3.5,0),B (0,7),⊙CD =⊙AB⊙BC +AD =CD -AB故答案为:【点睛】此题考查了待定系数法求函数解析式,一次函数图象与坐标轴的交点,勾股定理,正确掌握待定系数法求出解析式是解题的关键.40.15 =x,21x=-【分析】直接利用开平方的方法解一元二次方程即可得到答案.【详解】解:(1)⊙()229x-=,⊙23x-=±,解得15 =x,21x=-.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.41.(1)图象见解析;(2)-1<x<3;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.【详解】试题分析:(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.试题解析:(1)列表:描点、连线可得如图所示抛物线.(2)当-1<x <3时,y >0;(3)当x <1时,y 随x 的增大而增大.当x >1时,y 随x 的增大而减小.42.(1)y =﹣21322x -x +2;(2)98;(3)(﹣32,258)或(﹣3,2). 【分析】(1)由直线得到A 、C 的坐标,然后代入二次函数解析式,利用待定系数法即可得;(2)过点E 作EH ⊙AB 于点H ,由已知可得141252AB EH AB OC =⨯ ,从而可得EH 、HB 的长,然后再根据三角函数的定义即可得;(3)分情况讨论即可得.【详解】(1)令直线y =12x +2中y =0得12x +2=0解得x =-4,⊙A (-4,0),令x =0得y =2,⊙C (0,2) 把A 、C 两点的坐标代入212y x bx c =-++得, 2840c b =⎧⎨-=⎩, ⊙322b c ⎧=-⎪⎨⎪=⎩ , ⊙213222y x x =--+ ;(2)过点E 作EH ⊙AB 于点H ,由上可知B (1,0), ⊙45ABE ABC S S ∆∆=, ⊙141••252AB EH AB OC =⨯ , ⊙4855EH OC ==, 将85y =代入直线y =12x +2,解得45x =- ⊙4855E ⎛⎫- ⎪⎝⎭, ⊙49155HB =+= , ⊙90EHB ∠=︒ ⊙995cot 885HB DBA EH ∠===; (3)⊙DF ⊙AC ,⊙90DFC AOC ∠=∠=︒,⊙若DCF CAO ∠=∠,则CD//AO ,⊙点D 的纵坐标为2,把y=2代入213222y x x =--+得x=-3或x=0(舍去), ⊙D (-3,2) ;⊙若DCF ACO ∠=∠时,过点D 作DG ⊙y 轴于点G ,过点C 作CQ ⊙DG 交x 轴于点Q ,⊙90DCQ AOC ∠=∠=︒ ,⊙90DCF ACQ ACO CAO ∠+∠=∠+∠=︒,⊙ACQ CAO ∠=∠,⊙AQ CQ =,设Q (m ,0),则4m + ⊙32m =- , ⊙302Q ⎛⎫- ⎪⎝⎭,, 易证:COQ ∆⊙DCG ∆ , ⊙24332DG CO GC QO === ,设D (-4t ,3t+2)代入213222y x x =--+得t=0(舍去)或者38t =, ⊙32528D ⎛⎫- ⎪⎝⎭,. 综上,D 点坐标为(﹣32,258)或(﹣3,2) 43.(1)2k =;点B 的坐标为()1,2--(2)1m >或1m <-【分析】(1)利用待定系数法进行求值即可;(2)结合图象,可知当PC >PD ,POC △的面积大于POD 的面积,由此可知1m >或1m <-.(1)解:⊙点()1,A a 在直线2y x =上,⊙212a =⨯=,⊙点A 的坐标是()1,2, 代入函数k y x=中,得212k =⨯= ⊙直线2y x =经过原点⊙由双曲线的对称性可知,点A 与点B 关于原点对称,点B 的坐标为()1,2--; (2)如图所示:⊙点A 的坐标是()1,2,点B 的坐标为()1,2--,若POC △的面积大于POD 的面积,则:PC >PD ,结合图象可知此时:1m >或1m <-,【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.44.(1)25%;(2)室内21露天66;室内22露天62;室内23露天58;室内24露天54;【分析】(1)设平均增长率为x ,根据题意可列出关于x 的一元二次方程,解方程即可. (2)设室内车位为a 个,露天车位为b 个,根据计划投入15万元用于建若干个停车位,可列出一个关于a ,b 的方程,再根据计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,列出关于a ,b 的不等式,解不等式可求出a 的范围,因为a 是整数,所以最后的方案有有限个.【详解】(1)设平均增长率为x ,根据题意得2640(1)1000x += 解得125%4x ==或94x =-(不符合题意,舍去)。
中考数学九年级上册专题训练50题含答案一、单选题1.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上2.若线段MN的长为2cm,点P是线段MN的黄金分割点,则最短的线段MP的长为()A.)1cm B C.(3cm D3.如图,将一块正方形空地划出部分区域进行绿化,绿化后一边减少了3m,另一边减少了2m,剩余面积为230m的矩形空地,则原正方形空地的边长为()A.6m B.7m C.8m D.9m︒+︒-︒的结果是()4.计算tan602sin452cos30C D.1A.2B5.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线⊙剪开,则虚线⊙所对的圆弧长和展开后得到的多边形的内角和分别为()A .,1802π︒ B .,5404π︒ C .,10804π︒ D .,21603π︒6.两个相似三角形的面积比为1⊙4,那么它们的周长比为( )A .B .2⊙1C .1⊙4D .1⊙2 7.下列一元二次方程中,有两个不相等的实数根的是( )A .2104x x -+=B .2230x x -+=C .220x x ++=D .220x x += 8.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB =2.若AC =2,则BD 的长为( )A .B .4CD .29.如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB 的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD =9.6米,留在墙上的影长CD =2米,则旗杆的高度( )A .12米B .10.2米C .10米D .9.6米 10.两个相似三角形的周长之比为3:2,其中较小的三角形的面积为12,则较大的三角形的面积为( )A .27B .18C .8D .311.如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,则图中阴影部分的面积为( )A .163π-B .43πC .163π-D .3π 12.如图,AB 为⊙O 直径,点C ,D 在⊙O 上且AC BC =.AD 与CO 交于点E ,⊙DAB =30°,若AO =CE 的长为( )A .1BC 1D .2 13.如图,在平面直角坐标系中,⊙P 过O (0,0),A (3,0),B (0,﹣4)三点,点C 是OA 上的点(点O 除外),连接OC ,BC ,则sin⊙OCB 等于( )A .45B .43C .34D .3514.如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,1AC =,以A 为圆心AC 为半径画圆,交AB 于点D ,则阴影部分面积是( )A 3π-B 6πC 6πD .π15.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC交于D 点.若⊙BFC =20°,则⊙DBC =( )A .30°B .29°C .28°D .20°16.已知a 是方程x 2﹣3x ﹣2=0的根,则代数式﹣2a 2+6a +2019的值为( ) A .2014 B .2015 C .2016 D .2017 17.已知实数a 是一元二次方程270x x +-=的根,则4371a a a ++-的值为( ) A .48 B .49 C .50 D .5118.用配方法解方程2210x x --=时,配方结果正确的是( )A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x += 19.一个矩形内放入两个边长分别为3cm 和4cm 的小正方形纸片,按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm 2;按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm 2,若把两张正方形纸片按图⊙放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为( )A .6cm 2B .7 cm 2C .12cm 2D .19 cm 2 20.如图,四边形ABCD 是正方形,动点E 、F 分别从D 、C 两点同时出发,以相同的速度分别在边DC 、CB 上移动,当点E 运动到点C 时都停止运动,DF 与AE 相交于点P ,若AD=8,则点P 运动的路径长为( )A .B .C .4πD .2π二、填空题21.已知关于x 的方程(x ﹣1)2=5﹣k 没有实数根,那么k 的取值范围是 ___. 22.如图,将四边形ABCD 绕顶点A 顺时针旋转45︒至四边形AB C D '''的位置,若4cm AB =,则图中阴影部分的面积为________2cm .23.如图,⊙O 是⊙ABC 的外接圆,AB =AC ,若⊙OBC =20°,则⊙ACB =_____°.24.若关于x 的一元二次方程2320ax a ++=有实数根,则a 的取值范围是______. 25.若m ,n 是一元二次方程2510x x --=的两个实数根,则26m m n --的值是________.26.已知y=x 2+x ﹣14,当x=____________时,y=﹣8.27.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x ,根据题意可列方程是_______. 28.直角三角形纸片的两直角边长分别为6,8,现将⊙ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan⊙CBE 的值是_____.29.已知26a -100a +7=0以及27b -100b +6=0,且ab ≠1,则a b的值为__________.30.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C 距离地面的高度为2.5m ,宽度AB 为1m ,则该圆形门的半径应为_____m .31.在△ABC 中,⊙C =90°,cosA c =4,则a =_______. 32.关于x 的一元二次方程()291600x ax a ++=>)有两个相等的实数根,则a 的值为_________.33.如图,⊙ABC 内接于O ,AB 为O 的直径,点D 为O 上的一点,且4AB =,15DCB ∠=︒,则劣弧AD 的长为______(结果保留π).34.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.35.如图,AB 是O 的直径,E 是O 上的一点,C 是弧AE 的中点,若A 50∠=,则AOE ∠的度数为________°.36.如图,在矩形ABCD 中,5AD =,4AB =,E 是BC 上的一点,3BE =,DF AE ⊥,垂足为F ,则tan FDC ∠=_______.37.若tana=12,则sina=___________________. 38.用配方法将2810x x --=变形为2(4)x m -=,则m=_________.39.如图,等腰BAC 中,120ABC ∠=︒,4BA BC ==,以BC 为直径作半圆,则阴影部分的面积为________.40.如图,ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE 沿直线DE 翻折得到FDE ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.三、解答题41.根据下列条件分别找到图1中的圆心O 和图2中的圆心P 的位置。
北师大版九年级数学上册《1.3正方形的性质与判定》同步测试题附答案·知识点1正方形的判定1.在菱形ABCD中,若添加一个条件后,使它是正方形,则添加的条件可以是( )A.AB=ADB.AB⊥BCC.AC⊥BDD.AC平分∠BAD2.(2023·玉林中考)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是( )A.仅①B.仅③C.①②D.②③3.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.当∠ACB=°时,四边形ADCF 是正方形.4.(2023·邵阳中考)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.·知识点2正方形的性质与判定的综合应用5.如图,在正方形OABC中,点A的坐标是(-3,1),则C点的坐标是( )A.(1,3)B.(2,3)C.(3,2)D.(3,1)6.(2023·益阳中考)如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A'满足AA'=1AC,则所得正方形与原正方形重叠部分3的面积是.7.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )A.1B.√2C.√3D.28.如图,在正方形ABCD中,O为对角线AC,BD的交点,E,F分别为边BC,CD上一点,且OE⊥OF,连接EF.若∠AOE=150°,DF=√3,则EF的长为( )A.2√3B.2+√3C.√3+1D.39.如图,在正方形ABCD中,E,F分别是AB,BC的中点,CE,DF交于点G,连接AG,下列结论:①CE=DF;②CE⊥DF;③∠AGE=∠CDF;④∠EAG=30°,其中正确的结论是( )A.①②B.①③C.①②④D.①②③10.如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.【素养提升】11.如图1,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接BE.(1)求证:CE=AD;(2)如图2,当点D是AB中点时,连接CD.(ⅰ)四边形BECD是什么特殊四边形?说明你的理由;(ⅱ)当∠A=°时,四边形BECD是正方形.(直接写出答案)【解题模型】·模型:共顶点的正方形中“手拉手”模型如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H.则(1)AG=CE;(2)AG⊥CE;(3)HD平分∠AHE.参考答案·知识点1正方形的判定1.在菱形ABCD中,若添加一个条件后,使它是正方形,则添加的条件可以是(B)A.AB=ADB.AB⊥BCC.AC⊥BDD.AC平分∠BAD2.(2023·玉林中考)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是(C)A.仅①B.仅③C.①②D.②③3.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.当∠ACB=90°时,四边形ADCF是正方形.4.(2023·邵阳中考)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.【证明】∵四边形ABCD是菱形∴AC⊥BD,OA=OC,OB=OD∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∴OE=OF=OA=OC,即EF=AC∴菱形AECF是正方形.·知识点2正方形的性质与判定的综合应用5.如图,在正方形OABC中,点A的坐标是(-3,1),则C点的坐标是(A)A.(1,3)B.(2,3)C.(3,2)D.(3,1)6.(2023·益阳中考)如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A'满足AA'=1AC,则所得正方形与原正方形重叠部分3的面积是4.7.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为(D)A.1B.√2C.√3D.28.如图,在正方形ABCD中,O为对角线AC,BD的交点,E,F分别为边BC,CD上一点,且OE⊥OF,连接EF.若∠AOE=150°,DF=√3,则EF的长为(A)A.2√3B.2+√3C.√3+1D.39.如图,在正方形ABCD中,E,F分别是AB,BC的中点,CE,DF交于点G,连接AG,下列结论:①CE=DF;②CE⊥DF;③∠AGE=∠CDF;④∠EAG=30°,其中正确的结论是(D)A.①②B.①③C.①②④D.①②③10.如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是2√5.【素养提升】11.如图1,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接BE.(1)求证:CE=AD;(2)如图2,当点D是AB中点时,连接CD.(ⅰ)四边形BECD是什么特殊四边形?说明你的理由;(ⅱ)当∠A=°时,四边形BECD是正方形.(直接写出答案)【解析】略【解题模型】·模型:共顶点的正方形中“手拉手”模型如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H.则(1)AG=CE;(2)AG⊥CE;(3)HD平分∠AHE.。
人教版数学九年级上册第21章一元二次方程一元二次方程的实际应用专题练习题类型一:循环、传播问题1.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排36场比赛,应邀请多少支球队参加比赛?2.张老师自编了一套健美操,他先教会一些同学,然后让学会健美操的同学每人教会相同的人数,每人每轮教会的人数相同,经过两轮,全班57人(含张老师)都能做这套健美操,请问每轮中每人必须教会几人?3.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?类型二:增长率与利润问题4.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果质量的月平均增长率为x,根据题意可列方程为_______________________.5.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,如果每件涨价1元(售价不能高于45元),那么每星期少卖出10件,设每件涨价x元,每星期销量为y件.(1)求y关于x的函数关系式(不要求写出自变量x的取值范围);(2)如何定价才能使每星期的利润为1560元?每星期的销量是多少?6.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?类型三:面积问题7.如图,矩形ABCD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为____.8.如图是长30 m,宽20 m的花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)9.(2016·赤峰)如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的17 80.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.10.如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x m,面积为S m2.(1)求S与x的函数关系式;(2)如果要围成面积为45 m2的花圃,问AB的长是多少?11.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2 m宽的门,另三边用竹篱笆围成,篱笆总长33 m,围成长方形的鸡场除门之外四周不能有空隙.(1)若墙长为18 m,要围成鸡场的面积为150 m2,则鸡场的长和宽各为多少米?(2)围成鸡场的面积可能达到200 m 2吗?(3)若墙长为a m ,对建150 m 2面积的鸡场有何影响?答案:1. 解:设要邀请x 支球队参加比赛,由题意得12x(x -1)=36,解得x 1=9,x 2=-8(舍去),则应邀请9支球队参加比赛2. 解:设每轮中每人必须教会的人数为x ,由题意得1+x +x 2=57 ,解得x 1=7,x 2=-8(不合题意,舍去),故每轮中每人必须教会7人3. 解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得1+x +(1+x)x =81,整理得(1+x)2=81,解得x 1=8,x 2=-10(舍去),∴81×8+81=729>700,故每轮感染中平均一台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台4. 10(1+x)2=135. 解:(1)y =150-10x(2)依题意得(10+x)(150-10x)=1560,解得x 1=2,x 2=3,∵售价不高于45元,∴x 1=2,x 2=3均符合题意,当x 1=2时,每星期的销量是150-10×2=130(件);当x 2=3时,每星期的销量是150-10×3=120(件),则该商品每件定价42元或43元才能使每星期的利润为1560元,此时每星期的销量是130件或120件6. 解:(1)设该种商品每次降价的百分率为x%,依题意得400×(1-x%)2=324,解得x =10,或x =190(舍去),则该种商品每次降价的百分率为10%(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为400×(1-10%)-300=60(元/件),第二次降价后的单件利润为324-300=24(元/件),依题意得60m +24×(100-m)≥3210,即36m +2400≥3210,解得m≥22.5,∵m 为整数,∴m≥23,则第一次降价后至少要售出该种商品23件7. 68. 解:设小道进出口的宽度为x 米,依题意有(30-2x)(20-x)=532,解得x 1=1,x 2=34(不合题意,舍去),则小道进出口的宽度为1米9. 解:(1)设条纹的宽度为x 米.依题意得 2x×5+2x×4-4x 2=1780×5×4,解得x 1=174(不符合题意,舍去),x 2=14,则配色条纹宽度为14米(2)条纹造价为1780×5×4×200=850(元),其余部分造价为(1-1780)×4×5×100=1575(元),∴总造价为850+1575=2425(元)10. 解:(1)S =(24-3x)x ,即S =24x -3x 2(2)由题意得45=24x -3x 2,解得x 1=5,x 2=3,若x =3,则BC =15 m >10 m ,不合题意,舍去;若x=5,则BC=9 m<10 m,符合题意,故AB的长为5 m11. 解:(1)设养鸡场的宽为x m,根据题意得x(33-2x+2)=150,解得x1=10,x2=7.5,当x1=10时,33-2x+2=15<18;当x2=7.5时,33-2x+2=20>18,不合题意,舍去,则养鸡场的宽为10 m,长为15 m(2)设养鸡场的宽为x m,根据题意得x(33-2x+2)=200,整理得2x2-35x+200=0,Δ=(-35)2-4×2×200=1225-1600=-375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200 m2(3)当0<a<15时,问题无解;当15≤a<20时,问题有一解,即长为15 m,宽为10 m;当a≥20时,问题有两解,即长为20 m,宽为7.5 m或长为15 m,宽为10 m。
2012年学业水平模拟测试
数学试题
本试题分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,本试题共8页,满分为120分,考试时间为120分钟,答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器,
第1卷(选择题共45分)
注意事项:
第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.-2+2的值是( )
2.如图,是由4个大小相同的正方体搭成的几何体,其俯视图是( )
3.下列运算中正确的是( )
4.如果2是方程x2 -3x+c=0的一个根,那么c的值是( )
A.4 B.-4 C.2 D.-2
5.不等式组的解集在数轴上表示为( )
6.某市2012年第一季度财政收入为42.76亿元,用科学记数法(结果保留两个有效
数字)表示为( )
A. 42.7×108元
B. 4.3×109元
C. 4.2×109元
D. 42×108元
7.如图,⊙O中,弦AB、CD相交于点P,若∠A= 300,∠APD= 700,则∠B等于
A.300 B.350 C.400 D.500
8.将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若
AB: BC=4:5,则cos∠DCF的值是( )
9.如图,AB=AC,∠BAC =110O,AB的垂直平分线交BC于点D,那么∠DAC是( )
A.550 B.700 C.750 D.900
10.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y,如果),关于工的函数图象如图2所示,则△ABC的面积是( )
A.1 B .2 C.3 D.4
11-如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是( )
A.DA=DE B.BD= CE
C.∠EAC=900 D.∠ABC=2∠E
12.若A(-4,y 1),B(-1,y 2),2),C (3,y3)为二次函数y=x2 +4x-5的图象上的三点,则y 1,y 2,y3的大小关系是( ).
A. y1< y2< y3
B. y2< y l< y3
C. y3 < y l < y2 D. y1< y3 < y2
13.如图,已知矩形ABCO的一边OC在x轴上,一边OA在y轴上,双曲线y=k/x交OB的中点于D,交BC边于E,若△OBC的面积等于4,则CE:BE的值为( )
A.1:2 B.1:3 C.1:4 D.无法确定
14.已知二次函数y=ax 2+ bx+ c(a≠0)的图象如图所示,有下列5个结论: ①abc>0;⑦b 2 - 4ac >0;③方程ax 2+bx+c =0的另一个根在2和3之间. ④2c<3b;⑤a 十b>m(am+b),(m≠1的实数)其中正确的结论有( ) A.1个 B .2个 C .3个 D .4个
15-古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是( ) A .13= 3+10 B .25= 9+16 C .36=15+21 D .49=18+31
第Ⅱ卷(非选择题共75分)
注意事项:
1.第Ⅱ卷共6页,用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚, 二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.) 16.甲、乙两人5次射击命中的环数如下:
甲:7 9 8 6 10 ; 乙:7 8 9 8 8 则这两人5次射击
17.分解因式:a 3
—2a 2
+a=______________ 18.己知α是锐角,且2
3
)15sin(0
=
+α则α=______________ 19.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2
件,设每件商品降价x元,要使商场日盈利达到2100元,可列方程
20.如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是,
21.在直角梯形ABCD中,AB=BC,E为AB边上一点,∠BCE =150,
且AE=AD.连接DE交对角线AC于H,连接BH,下列结论:
②△CDE为等边三角形:其中结论正确的是
三、解答题(本大题共7个小题,共57分,解答应写出文字说明、证明过程或演算骤.
22.(本小题满分7分)
23.(本小题满分7分)
(1)已知:如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作
垂足分别为E,F.求证:DE=DF
(2)如图,已知△ABC内接于⊙O ,AC是⊙O的直径,过点D作直线BC的垂线,分别交CB, CA的延长线于E,F,求证:EF是⊙O的切线.
24.(本小题满分8分)
某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套.B 品牌的化妆品6套,需要950元:若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这些化妆品全部售出后,使总的获利不少于1200元,问有几种进货方案?
(3)如何进货才能使总获利最大,最大为多少?
25.(本题满分8分)
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
26(本题满分9分)
已知:如图,在△ABC中,∠ACB=900,∠CAB=300,△ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F.
(1)求证:②四边形BCFD是平行四边形:
(2)如图,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin ∠ACH的值.
27(本题满分9分)
如图,在平面直角坐标系中,点动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A 出发沿AB向终点B运动.过点E作交BC于点F,连结DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S
①求S关于t的函数关系式;
②若一抛物线求m的取值范围(写出答案即可).
28.(本小题满分9分)
如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线所得抛物线与x轴交于A、B两点(点A在点B的左
边),与y轴交于点C,顶点为D.
(1)求从h,k的值;
(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM与△ABC相似.若存在,求出点M的坐标:若不存在,说明理由.。